Answer:
1.67 m
Explanation:
The potential energy change of the small ball ΔU equals the work done by the buoyant force, W
ΔU = -W
Now ΔU = mgΔh where m = mass of small ball = ρV where ρ = density of small ball and V = volume of small ball. Δh = h - h' where h = final depth of small ball and h' = initial height of small ball = 5 m. Δh = h - 5
ΔU = mgΔh
ΔU = ρVgΔh
Now, W = ρ'VgΔh' where ρ = density of water and V = volume of water displaced = volume of small ball. Δh' = h - h' where h = final depth of small ball and h' = initial depth of small ball at water surface = 0 m. Δh' = h - h' = h - 0 = h
So, ΔU = -W
ρVgΔh = -ρ'VgΔh'
ρVg(h - 5) = -ρ'Vgh
ρ(h - 5) = -ρ'h
Since the density of the small ball equals 1/2 the density of water,
ρ = ρ'/2
ρ(h - 5) = -ρ'h
(ρ'/2)(h - 5) = -ρ'h
ρ'(h - 5)/2 = -ρ'h
(h - 5)/2 = -h
h - 5 = -2h
h + 2h = 5
3h = 5
h = 5/3
h = 1.67 m
So, the maximum depth the ball reaches is 1.67 m.
Which one of the following physical quantities has its S.I. unit m/s?
(i) Acceleration
(ii) Velocity
(iii) Force
(iv) Density
Answer:
velocity is the answer of this question.
Answer:
Velocity is the right answer ok
Someone help me with these questions please!
Answer:
a 25 and b 25
2. 26
60n
a 0.0780 kg lemming runs off a 5.36 m high cliff at 4.84 m/s. what is its kinetic energy when it's 2.00 m above the ground
Answer:
KE_2 = 3.48J
Explanation:
Conservation of Energy
E_1 = E_2
PE_1+KE_1 = PE_2+KE_2
m*g*h+(1/2)m*v² = m*g*h+(1/2)m*v²
(0.0780kg)*(9.81m/s²)*(5.36m)+(.5)*(0.0780kg)*(4.84m/s)² = (0.0780kg)*(9.81m/s²)*(2m)+KE_2
4.10J+0.914J = 1.53J + KE_2
5.01J = 1.53J + KE_2
KE_2 = 3.48J
I need help with this please!!!!
Answer:
1.84 hours
I hope it's helps you
When the lightbulbs were used as the resistors, you observed only a flash of light, as opposed to a continuous glow. Explain why that behavior is expected. After all, the light bulb is directly connected to the power supply.
Solution :
Whenever the lightbulbs are used as resistors, we throw the switch to the left. This allows the current to flow through the circuit which causes the bulb to glow and also the capacitor gets charged. When the capacitor gets fully charged, the electric field becomes constant between its two plates. Now there is no displacement current induced in the plates of the capacitor. The capacitor works as an open switch and the bulb gets switched off.
And thus the bulb flashes for the moment as opposed to continuous glow.
Assume the speed of sound is 343 m/s. You are sitting 150 m away from home plate at a baseball game. How much time in seconds elapses between the batter hitting a home run and the moment you actually hear the batter hitting the ball
Answer:
t = 0.437 s
Explanation:
Sound is a wave so its speed is constant
v = x / t
t = x / v
indicates that the distance is x = 150 m
t = 150/343
t = 0.437 s
this is the time it takes to hear the hit
To see the blow it is almost instantaneous since the speed of light is much greater c = 3 10⁸ m / s
If a bus travels 50 km in 10 hours, how fast was the
bus travelling?
Answer:
5 kilometers per hour
Explanation:
Speed = distance / time
Distance: 50km
Time: 10 hours
Speed = 50/10 = 5kph
Answer:
5kmph
Explanation:
if the bus traveled 50 km in 10 hours, we have to divide 50 by 10 to see how fast it traveled per hour.
50/10 = 5
therefore, the bus was traveling 5 km per hour
hope this helps :)
An ideal double slit interference experiment is performed with light of wavelength 640 nm. A bright spot is observed at the center of the resulting pattern as expected. For the 2n dark spot away from the center, it is known that light passing through the more distant slit travels the closer slit.
a) 480 nm
b) 600 nm
c) 720 nm
d) 840 nm
e) 960 nm
Answer:
960 nm
Explanation:
Given that:
wavelength = 640 nm
For the second (2nd) dark spot; the order of interference m = 1
Thus, the path length difference is expressed by the formula:
[tex]d sin \theta = (m + \dfrac{1}{2}) \lambda[/tex]
[tex]d sin \theta = (1 + \dfrac{1}{2}) 640[/tex]
[tex]d sin \theta = ( \dfrac{3}{2}) 640[/tex]
dsinθ = 960 nm
A car accelerates from 0 m/s to 25 m/s in 5 seconds. What is the average acceleration of the car.
Answer:
5 m/s I hope it will help you
Explanation:
mark me as a brainlist answer
the specific heat capacity of a substance is 500J/kg/oC. Find the heat required to rise the temperature of 10 quintial of the substance by 3 degree celcius
[tex]\boxed{\sf Q=mc\Delta T}[/tex]
[tex]\\ \sf\longmapsto Q=1000(5000)(3)[/tex]
[tex]\\ \sf\longmapsto Q=15000000J[/tex]
[tex]\\ \sf\longmapsto Q=1.5\times 10^7J[/tex]
A man throw a ball vertically up word with an intial speed 20m/s. What is the maximum height rich by the ball and how long does it take to return to the point it was trow
Answer:
u=20 m/s, T=4s
Explanation:
Given final velocity v= 0 m/s and displacement h= 20 m; acceleration due to gravity = 10 m/ s 2
From equation of motion
v2=u2+2gs−u2=−2(10).20u=20m/s
and time t can be determined by the formula
t=gv−u=−10−20=2s
total time = 2× time of ascend=2×2=4s
it is helpful for you
2- A student ran 135 meters in 15 seconds. What was the student's velocity?
*
7.5 m/s
9 m/s
12 m/s
15 m/s
Answer:
9 Brainly hahaha ............huh
1 Poin Question 4 A 85-kg man stands in an elevator that has a downward acceleration of 2 m/s2. The force exerted by him on the floor is about: (Assume g = 9.8 m/s2) А ON B 663 N C) 833 N D) 1003 N
Answer:
D) 1003 N
Explanation:
Given the following data;
Mass of man = 85 kg
Acceleration of elevator = 2 m/s²
Acceleration due to gravity, g = 9.8 m/s²
To find the force exerted by the man on the floor;
Force = mg + ma
If you dive underwater, you notice an uncomfortable pressure on your eardrums due to the increased pressure. The human eardrum has an area of about 70 mm217 * 10-5 m22, and it can sustain a force of about 7 N without rupturing. If your body had no means of balancing the extra pressure (which, in reality, it does), what would be the maximum depth you could dive without rupturing your eardrum
Answer:
[tex]h=10m[/tex]
Explanation:
From the question we are told that:
Area [tex]a=70 x 10^{-6}[/tex]
Force [tex]F=7N[/tex]
Generally the equation for Pressure is mathematically given by
Pressure = Force/Area
[tex]P=\frac{F}{A}[/tex]
[tex]P=\frac{ 7}{(70 * 10^{-6})}[/tex]
[tex]P= 1*10^{5} Pa[/tex]
Generally the equation for Pressure is also mathematically given by
[tex]P=hpg[/tex]
Therefore
[tex]h=\frac{P}{hg}[/tex]
[tex]h=\frac{10000}{1000*9.8}[/tex]
[tex]h=10m[/tex]
state the laws of reflection
Answer:
Explanation:
The law of reflection says that the reflected angle (measured from a vertical line to the surface called the normal) is equal to the reflected angle measured from the same normal line.
All other properties of reflection flow from this one statement.
Two objects are identical and small enough that their sizes can be ignored relative to the distance between them, which is 0.189 m. In a vacuum, each object carries a different charge, and they attract each other with a force of 1.39 N. The objects are brought into contact, so the net charge is shared equally, and then they are returned to their initial positions. Now it is found that the objects repel one another with a force whose magnitude is equal to that of the initial attractive force. What is the initial charge on each object, part (a) being the one with the greater (and positive) value and part (b) being the other value?
Answer:
The charges are + 74.3 μC and - 74.3 μC
Explanation:
Let the charges be q and q'.
Since the charges initially attract each other with a force of 1.39 N, the force of attraction is given by
F = kqq'/r² where k = 9 × 10⁹ Nm²/C² and r = distance between the charges = 0.189 m
When the charges are brought together, they share their charge equally and have a net charge of (q + q')/2 each.
They now repel each other.
So, the magnitude of the force of repulsion is given by
F' = k[(q + q')/2][(q + q')/2]/r²
F' = k[(q + q')²/4r²
Since the magnitude of the force of attraction and repulsion are the same, we have that
F = F'
kqq'/r² = k[(q + q')²/4r²
qq' = (q + q')²/4
(q + q')² = 4qq'
q² + 2qq' + q'² = 4qq'
q² + 2qq' - 4qq' + q'² = 0
q² - 2qq' + q'² = 0
(q - q')² = 0
q - q' = 0
q = q'
Substituting q = q' into F, we have
F = kqq'/r²
F = kq²/r²
making q subject of the formula, we have
q² = Fr²/k
q = √(Fr²/k)
q = r√(F/k)
Substituting the values of the variables into the equation, we have
q = 0.189 m√(1.39 N/9 × 10⁹ Nm²/C²)
q = 0.189 m√(0.15444 × 10⁻⁹ Nm²/C²)
q = 0.189 m(0.3923 × 10⁻³ C/m)
q = 0.0743 × 10⁻³ C
q = 74.3 × 10⁻³ × 10⁻³ C
q = 74.3 × 10⁻⁶ C
q = 74.3 μC
Since q and q' initially attract, it implies that they initially had opposite charges.
So, q = 74.3 μC and q' = -74.3 μC
So, the charges are + 74.3 μC and - 74.3 μC
Where does a body have more weight the poor at the eqator of the earth.
Answer:
Explanation:
Your body weighs more at the pole for two important reasons. Both have to do to the spin of the earth on its axis.
Because of its spin the earth is thicker around the equator than it is through the poles. This means that when you stand on the equator, you are farther away from the center of earth than you would be at the poles. As gravity decreases with the inverse of the square of distance, gravity will be weaker at the equator.
As you are also spinning with the earth, you will have a required centripetal acceleration and force to keep you attached to the ground, This force decreases the effect of gravity so again, you would weigh less at the equator.
If a boy lifts a mass of 6kg to a height of 10m and travels horizontally with a constant velocity of 4.2m/s, calculate the work done? Explain your answer.
Answer:
W = 641.52 J
Explanation:
The work done here will be the sum of potential energy and the kinetic energy of the boy. Here potential energy accounts for vertical motion part while the kinetic energy accounts for the horizontal motion part:
[tex]Work\ Done = Kinetic\ Energy + Potential\ Energy\\\\W = K.E +P.E\\\\W = \frac{1}{2}mv^2+mgh\\\\[/tex]
where,
W = Work Done = ?
m = mass = 6 kg
v = speed = 4.2 m/s
g = acceleration dueto gravity = 9.81 m/s²
h = height = 10 m
Therefore,
[tex]W = \frac{1}{2}(6\ kg)(4.2\ m/s)^2+(6\ kg)(9.81\ m/s^2)(10\ m)[/tex]
W = 52.92 J + 588.6 J
W = 641.52 J
what is the dimensional formula of young modulas
Answer:
The dimensional formula of Young's modulus is [ML^-1T^-2]
Answer:
G.oogle : The dimensional formula for Young’s modulus is:
A. [ML−1T−2]A. [ML−1T−2]
B. [M0LT−2]B. [M0LT−2]
C. [MLT−2]C. [MLT−2]
D. [ML2T−2]
How much amount of water can be decomposed
through electrolysis by passing 2 F charge?
Answer:
So, with 2 Faraday of electricity, we can decompose (2/4 × 2) = 1 mole of water. So 18 grams of water is decomposed.
How do you know that a liquid exerts pressure?
Answer:
The pressure of water progressively increases as the depth of the water increases. The pressure increases as the depth of a point in a liquid increases. The walls of the vessel in which liquids are held are likewise subjected to pressure. The sideways pressure exerted by liquids increases as the liquid depth increases.
Two identical loudspeakers 2.30 m apart are emitting sound waves into a room where the speed of sound is 340 m/s. Abby is standing 4.50 m in front of one of the speakers, perpendicular to the line joining the speakers, and hears a maximum in the intensity of the sound.
Required:
What is the lowest possible frequency of sound for which this is possible?
Answer:
Abby is standing (4.5^2 + 2.3^2)^1/2 from the far speaker
D2 = 5.05 m from the far speaker
The difference in distances from the speakers is
5.05 - 4.5 = .55 m (Let y be wavelength, lambda)
n y = 4.5
(n + 1) y = 5.05 for the speakers to be in phase at smallest wavelength
y = .55 m subtracting equations
f = v / y = 340 / .55 = 618 / sec should be the smallest frequency
What Are the type's of Tidal turbines?
Answer:
Types of tidal turbines
Axial turbines.
Crossflow turbines.
Flow augmented turbines.
Oscillating devices.
Venturi effect.
Tidal kite turbines.
Turbine power.
Resource assessment.
Answer:
Axial turbines
Crossflow turbines
flow augmented turbines
Parallel Wires: Two long, parallel wires carry currents of different magnitudes. If the current in one of the wires is doubled and the current in the other wire is halved, what happens to the magnitude of the magnetic force that each wire exerts on the other?
Answer:
Explanation:
Given force between 2 currents carrying
wires = F₀
Magnetic force between the2 wires =F₀= (μ₀/4π) x ( 2 (μ₀/4π) x ( 2I₁I₂ / μ) x L
where I₁=Current in wire 1
I₂= Current in wire 2
L= Length of the wire
when one current is doubled and the other is halved
I₁= 2 I₁
I₂= I₂/2
F₀ = (μ₀/4π) x ( 2× (2I₁) (I₂/2) / μ) x L
In Young's double slit experiment, 402 nm light gives a fourth-order bright fringe at a certain location on a flat screen. What is the longest wavelength of visible light that would produce a dark fringe at the same location? Assume that the range of visible wavelengths extends from 380 to 750 nm.
Answer:
λ₂ = 357.3 nm
Explanation:
The expression for double-slit interference is
d sin θ = m λ constructive interference
d sin θ = (m + ½) λ destructive interference.
The initial data corresponds to a constructive interference, they indicate that we are in the fourth order (m = 4), let's look for the separation of the slits
d sin θ = m λ₁
now ask for destructive interference for m = 4
d sin θ = (m + ½) λ₂
we match these two expressions
m λ₁ = (m + ½) λ₂
λ₂ = ( m / m + ½) λλ₁
let's calculate
λ₂ =[tex]\frac{4}{(4.000 +0.5) \ 401}[/tex]
λ₂ = 357.3 nm
A solenoid has a length , a radius , and turns. The solenoid has a net resistance . A circular loop with radius is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance . At a time , the solenoid is connected to a battery that supplies a potential . At a time , what current flows through the outer loop
This question is incomplete, the complete question is;
A solenoid has a length 11.34 cm , a radius 1.85 cm , and 1627 turns. The solenoid has a net resistance of 144.9 Ω . A circular loop with radius of 3.77 cm is placed around the solenoid, such that it lies in a plane whose normal is aligned with the solenoid axis, and the center of the outer loop lies on the solenoid axis. The outer loop has a resistance of 1651.6 Ω. At a time of 0 s , the solenoid is connected to a battery that supplies a potential 34.95 V. At a time 2.58 μs , what current flows through the outer loop?
Answer:
the current flows through the outer loop is 1.3 × 10⁻⁵ A
Explanation:
Given the data in the question;
Length [tex]l[/tex] = 11.34 cm = 0.1134 m
radius a = 1.85 cm = 0.0185 m
turns N = 1627
Net resistance [tex]R_{sol[/tex] = 144.9 Ω
radius b = 3.77 cm = 0.0377 m
[tex]R_o[/tex] = 1651.6 Ω
ε = 34.95 V
t = 2.58 μs = 2.58 × 10⁻⁶ s
Now, Inductance; L = μ₀N²πa² / [tex]l[/tex]
so
L = [ ( 4π × 10⁻⁷ ) × ( 1627 )² × π( 0.0185 )² ] / 0.1134
L = 0.003576665 / 0.1134
L = 0.03154
Now,
ε = d∅/dt = [tex]\frac{d}{dt}[/tex]( BA ) = [tex]\frac{d}{dt}[/tex][ (μ₀In)πa² ]
so
ε = μ₀n [tex]\frac{dI}{dt}[/tex]( πa² )
ε = [ μ₀Nπa² / [tex]l[/tex] ] [tex]\frac{dI}{dt}[/tex]
ε = [ μ₀Nπa² / [tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
I = ε/[tex]R_o[/tex] = [ μ₀Nπa² / [tex]R_o[/tex][tex]l[/tex] ] [ (ε/L)e^( -t/[tex]R_{sol[/tex]) ]
so we substitute in our values;
I = [ (( 4π × 10⁻⁷ ) × 1627 × π(0.0185)²) / (1651.6 ×0.1134) ] [ ( 34.95 / 0.03154)e^( -2.58 × 10⁻⁶ / 144.9 ) ]
I = [ 2.198319 × 10⁻⁶ / 187.29144 ] [ 1108.116677 × e^( -1.7805 × 10⁻⁸ )
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.116677 × 0.99999998 ]
I = [ 1.17374 × 10⁻⁸ ] × [ 1108.11665 ]
I = 1.3 × 10⁻⁵ A
Therefore, the current flows through the outer loop is 1.3 × 10⁻⁵ A
Answer:
1.28 *10^-5 A
Explanation:
Same work as above answer. Needs to be more precise
Express 6revolutions to radians
Answer:
About 37.70 radians.
Explanation:
1 revolution = 2[tex]\pi[/tex] radians
∴ 6 revolutions = (6)(2[tex]\pi[/tex] radians)
6 revolutions = 37.6991 or ≈ 37.70 radians
an aluminum atom has an atomic number of 13 and a mass number of 27,how many
a)protons
b) electrons
pls write the formula too
Element is
[tex]\boxed{\sf {}^{27}Al_{13}}[/tex]
Atomic number=13Mass number=27[tex]\\ \sf\longmapsto No\:of\:Protons=Atomic \:Number=13[/tex]
And[tex]\\ \sf\longmapsto No\:of\:Neutrons=Mass\:number-Atomic\:Number[/tex]
[tex]\\ \sf\longmapsto No\:of\:Neutrons=27-13[/tex]
[tex]\\ \sf\longmapsto No\:of\:Neutrons=14[/tex]
And
[tex]\\ \sf\longmapsto No\:of\:electrons=No\:of\:Protons=13[/tex]
can you guys pls also solve for average speed.
Answer:
d_t = 3.05km
v_a = 4.3km/h
Explanation:
42mins*(2/3) = 28mins
42mins-28mins = 14mins
d = v*t
d_1 = (4km/h)*(1h/60mins)*(28mins)
d_1 = 1.87km
d_2 = (5km/h)*(1h/60mins)*(14mins)
d_2 = 1.17km
d_t = d_1+d_2
d_t = 1.87km+1.17km
d_t = 3.05km
v_a = (v_1+v_2)/2
v_a = [(2*4km/h)+5km/h)]/3
v_a = 4.3km/h
find the upward force in Newton when each of these is under water(density of 1g/cm3) a lump of iron of volume 2000cm3
Answer:
Upthrust = 19.6 N
Explanation:
When an object is immersed under water, the upward force it experience is called an upthrust. An upthrust is a force which is applied on any object in a fluid which acts in an opposite direction to the direction of the weight of the object.
Upthrust = density of liquid x gravitational force x volume of object
i.e U = ρ x g x vol
Given: ρ = 1g/[tex]cm^{3}[/tex] (1000 kg/[tex]m^{3}[/tex]), volume = 2000 c[tex]m^{3}[/tex] (0.002 [tex]m^{3}[/tex]) and g = 9.8 m/[tex]s^{2}[/tex]
So that;
U = 1000 x 9.8 x 0.002 (kg/[tex]m^{3}[/tex] x [tex]m^{3}[/tex] x m/[tex]s^{2}[/tex])
= 19.6 Kg m/[tex]s^{2}[/tex]
U = 19.6 Newtons
The upthrust on the iron is 19.6 N.