A spacecraft on its way to Mars has small rocket engines mounted on its hull; one on its left surface and one on its back surface. At a certain time, both engines turn on. The one on the left gives the spacecraft an acceleration component in the x direction of
ax = 5.10 m/s2,
while the one on the back gives an acceleration component in the y direction of
ay = 7.30 m/s2.
The engines turn off after firing for 670 s, at which point the spacecraft has velocity components of
vx = 3670 m/s and vy = 4378 m/s.
What was the magnitude and the direction of the spacecraft's initial velocity before the engines were turned on? Express the magnitude as m/s and the direction as an angle measured counterclockwise from the +x axis.

magnitude m/s
direction ° counterclockwise from the +x-axis

Answers

Answer 1

Answer:

a)    v = 517.99 m / s,  b) θ = 296.3º

Explanation:

This is an exercise in kinematics, we are going to solve each axis independently

X axis

the acceleration is aₓ = 5.10 1 / S², they are on for t = 670 s and reaches a speed of vₓ=  3670 m / s, let's use the relation

           vₓ = v₀ₓ + aₓ t

           v₀ₓ = vₓ - aₓ t

           v₀ₓ = 3670 - 5.10 670

           v₀ₓ = 253 m / s

Y axis  

the acceleration is ay = 7.30 m / s², with a velocity of 4378 m / s after

t = 670 s

          v_y = v_{oy} + a_y t

          v_{oy} = v_y - a_y t

          v_oy} = 4378 - 7.30 670

          v_{oy}  = -513 m / s

to find the velocity modulus we use the Pythagorean theorem

          v = [tex]\sqrt{v_o_x^2 + v_o_y^2}[/tex]

          v = [tex]\sqrt{253^2 +513^2}[/tex]

          v = 517.99 m / s

to find the direction we use trigonometry

         tan θ ’= [tex]\frac{v_o_y}{v_o_x}[/tex]

         θ'= tan⁻¹  [tex]\frac{voy}{voy}[/tex]  

         θ'= tan⁻¹ (-513/253)

         tea '= -63.7

the negative sign indicates that it is below the ax axis, in the fourth quadrant

to give this angle from the positive side of the axis ax

          θ = 360 -   θ  

          θ = 360 - 63.7

          θ = 296.3º


Related Questions

Which of the following represents the velocity time relationship for a falling apple?

Answers

Answer "a" would be correct.

Answer:

d

Explanation:

There's an acceleration from gravity, thus the velocity is becoming faster and faster as it reaches the ground. Thus its D

Brainliest please~

The weight of a hydraulic barber's chair with a client is 2100 N. When the barber steps on the input piston with a force of 44 N, the output plunger of a hydraulic system begins to lift the chair. Determine the ratio of the radius of the output plunger to the radius of the input piston.

Answers

Answer:

[tex]\frac{r_1}{r_2}=6.9[/tex]

Explanation:

According to Pascal's Law, the pressure transmitted from input pedal to the output plunger must be same:

[tex]P_1 = P_2\\\\\frac{F_1}{A_1}=\frac{F_2}{A_2}\\\\\frac{F_1}{F_2}=\frac{A_1}{A_2}\\\\\frac{F_1}{F_2}=\frac{\pi r_1^2}{\pi r_2^2}\\\\\frac{F_1}{F_2}=\frac{r_1^2}{r_2^2}[/tex]

where,

F₁ = Load lifted by output plunger = 2100 N

F₂ = Force applied on input piston = 44 N

r₁ = radius of output plunger

r₂ = radius of input piston

Therefore,

[tex]\frac{r_1^2}{r_2^2}=\frac{2100\ N}{44\ N}\\\\\frac{r_1}{r_2}=\sqrt{\frac{2100\ N}{44\ N}} \\\\\frac{r_1}{r_2}=6.9[/tex]

A planet of mass m moves around the Sun of mass M in an elliptical orbit. The maximum and minimum distance of the planet from the Sun are r1 and r2, respectively. Find the relation between the time period of the planet in terms of r1 and r2.

Answers

Answer:

the relation between the time period of the planet is

T = 2π √[( r1 + r2 )³ / 8GM ]

Explanation:

Given the data i  the question;

mass of sun = M

minimum and maximum distance = r1 and r2 respectively

Now, using Kepler's third law,

" the square of period T of any planet is proportional to the cube of average distance "

T² ∝ R³

average distance a = ( r1 + r2 ) / 2

we know that

T² = 4π²a³ / GM

T² = 4π² [( ( r1 + r2 ) / 2 )³ / GM ]

T² = 4π² [( ( r1 + r2 )³ / 8 ) / GM ]

T² = 4π² [( r1 + r2 )³ / 8GM ]

T = √[ 4π² [( r1 + r2 )³ / 8GM ] ]

T = 2π √[( r1 + r2 )³ / 8GM ]

Therefore, the relation between the time period of the planet is

T = 2π √[( r1 + r2 )³ / 8GM ]

Suppose oil spills from a ruptured tanker and spreads in a circular pattern. If the radius of the oil spill increases at a constant rate of 2 m/s, exactly how fast (in m2/s) is the area of the spill increasing when the radius is 39 m?

Answers

Explanation:

The area of a circle of radius r is given by

[tex]A = \pi r^2[/tex]

Taking the derivative of A with respect to time t, we get

[tex]\dfrac{dA}{dt} = 2\pi r \dfrac{dr}{dt}[/tex]

We also know that

[tex]\dfrac{dr}{dt} = 2\:\text{m/s}\:\text{at}\:r = 39\:\text{m}[/tex]

[tex]\dfrac{dA}{dt} = 2\pi (39\:\text{m})(2\:\text{m/s})= 490\:\text{m}^2\text{/s}[/tex]

1. A block of mass m = 10.0 kg is released with a speed v from a frictionless incline at height 7.00 m. The
block reaches the horizontal ground and then slides up another frictionless incline as shown in Fig. 1.1. If the
horizontal surface is also frictionless and the maximum height that the block can slide up to is 26.0 m, (a) what
is the speed v of the block equal to when it is released and (b) what is the speed of the block when it reaches
the horizontal ground? If a portion of length 1 2.00 m on the horizontal surface is frictional with coefficient
of kinetic friction uk = 0.500 (Fig. 1.2) and the block is released at the same height 7.00 m with the same
speed v determined in (a), (c) what is the maximum height that the block can reach, (d) what is the speed of the
block at half of the maximum height, and (e) how many times will the block cross the frictional region before
it stops completely?
1 = 2.00 m (frictional region)

Answers

Let A be the position of the block at the top of the first incline; B its position at the bottom of the first incline; C its position at the bottom of the second incline; and D its position at the top of the second incline. I'll denote the energy of the block at a given point by E (point).

At point A, the block has total energy

E (A) = (10.0 kg) (9.80 m/s²) (7.00 m) + 1/2 (10.0 kg) v₀²

E (A) = 686 J + 1/2 (10.0 kg) v₀²

At point B, the block's potential energy is converted into kinetic energy, so that its total energy is

E (B) = 1/2 (10.0 kg) v₁²

The block then slides over the horizontal surface with constant speed v₁ until it reaches point C and slides up a maximum height of 26.0 m to point D. Its total energy at D is purely potential energy,

E (D) = (10.0 kg) (9.80 m/s²) (26.0 m) = 2548 J

Throughout this whole process, energy is conserved, so

E (A) = E (B) = E (C) = E (D)

(a) Solve for v₀ :

686 J + 1/2 (10.0 kg) v₀² = 2548 J

==>   v₀19.3 m/s

(b) Solve for v₁ :

1/2 (10.0 kg) v₁² = 2548 J

==>   v₁22.6 m/s

Now if the horizontal surface is not frictionless, kinetic friction will contribute some negative work to slow down the block between points C and D. Check the net forces acting on the block over this region:

• net horizontal force:

∑ F = -f = ma

• net vertical force:

F = n - mg = 0

where f is the magnitude of kinetic friction, a is the block's acceleration, n is the mag. of the normal force, and mg is the block's weight. Solve for a :

n = mg = (10.0 kg) (9.80 m/s²) = 98.0 N

f = µn = 0.500 (98.0 N) = 49.0 N

==>   - (49.0 N) = (10.0 kg) a

==>   a = - 4.90 m/s²

The block decelerates uniformly over a distance 2.00 m and slows down to a speed v₂ such that

v₂² - v₁² = 2 (-4.90 m/s²) (2.00 m)

==>   v₂² = 490 m²/s²

and thus the block has total/kinetic energy

E (C) = 1/2 (10.0 kg) v₂² = 2450 J

(c) The block then slides a height h up the frictionless incline to D, where its kinetic energy is again converted to potential energy. With no friction, E (C) = E (D), so

2450 J = (10.0 kg) (9.80 m/s²) h

==>   h = 25.0 m

(d) At half the maximum height, the block has speed v₃ such that

2450 J = (10.0 kg) (9.80 m/s²) (h/2) + 1/2 (10.0 kg) v₃²

==>   v₃15.7 m/s

The block loses speed and thus energy as it moves between B and C, but its energy is conserved elsewhere. If we ignore the inclines and pretend that the block is sliding over a long horizontal surface, then its velocity v at time t is given by

v = v₁ + at = 22.6 m/s - (4.90 m/s²) t

The block comes to a rest when v = 0 :

0 = 22.6 m/s - (4.90 m/s²) t

==>   t ≈ 4.61 s

It covers a distance x after time t of

x = v₁t + 1/2 at ²

so when it comes to a complete stop, it will have moved a distance of

x = (22.6 m/s) (4.61 s) + 1/2 (-4.90 m/s²) (4.61 s)² = 52.0 m

(e) The block crosses the rough region

(52.0 m) / (2.00 m) = 26 times

190 students sit in an auditorium listening to a physics lecture. Because they are thinking hard, each is using 125 W of metabolic power, slightly more than they would use at rest. An air conditioner with a COP of 5.0 is being used to keep the room at a constant temperature. What minimum electric power must be used to operate the air conditioner?

Answers

Answer:

W = 4.75 KW

Explanation:

First, we will calculate the heat to be removed:

Q = (No. of students)(Metabolic Power of Each Student)

Q = (190)(125 W)

Q = 23750 W = 23.75 KW

Now the formula of COP is:

[tex]COP = \frac{Q}{W}\\\\W = \frac{Q}{COP}\\\\W = \frac{23.75\ KW}{5}\\\\[/tex]

W = 4.75 KW

A point charge of -3.0 x 10-C is placed at the origin of coordinates. Find the clectric field at the point 13. X= 5.0 m on the x-axis.​

Answers

Answer:

-1.0778×10⁻¹⁰ N/C

Explanation:

Applying,

E = kq/r²................ equation 1

Where E = elctric field, q = charge, r = distance, k = coulomb's law

From the question,

Given: q = -3.0×10 C, r = 5.0 m

Constant: k = 8.98×10⁹ Nm²/C²

Substitute these values in equation 1

E = (-3.0×10)(8.98×10⁹)/5²

E = -1.0778×10⁻¹⁰ N/C

Hence the electric field on the x-axis is -1.0778×10⁻¹⁰ N/C

* A ball is projected horizontally from the top of
a building 19.6m high.
a, How long when the ball take to hit the ground?
b, If the line joining the point of projection to
the point where it hits the ground is 45
with the horizontal. What must be the
initial velocity of the ball?
c,with what vertical verocity does the ball strike
the grounds? (9= 9.8 M152)​

Answers

Explanation:

Given

Ball is projected horizontally from a building of height [tex]h=19.6\ m[/tex]

time taken to reach ground is given by

[tex]\text{Cosidering vertical motion}\\\Rightarrow h=ut+0.5at^2\\\Rightarrow 19.6=0+0.5\times 9.8t^2\\\Rightarrow t^2=4\\\Rightarrow t=2\ s[/tex]

(b) Line joining the point of projection and the point where it hits the ground makes an angle of [tex]45^{\circ}[/tex]

From the figure, it can be written

[tex]\Rightarrow \tan 45^{\circ}=\dfrac{h}{x}\\\\\Rightarrow x=h\cdot 1\\\Rightarrow x=19.6[/tex]

Considering horizontal motion

[tex]\Rightarrow x=u_xt\\\Rightarrow 19.6=u_x\times 4\\\Rightarrow u_x=4.9\ m/s[/tex]

(c) The vertical velocity with which it strikes the ground is given by

[tex]\Rightarrow v^2-u_y^2=2as\\\Rightarrow v^2-0=2\times 9.8\times 19.6\\\Rightarrow v=\sqrt{384.16}\\\Rightarrow v=19.6\ m/s[/tex]

Thus, the ball strikes with a vertical velocity of [tex]19.6\ m/s[/tex]

Explanation:

Given

Ball is projected horizontally from a building of height  

time taken to reach ground is given by

(b) Line joining the point of projection and the point where it hits the ground makes an angle of  

From the figure, it can be written

Considering horizontal motion

(c) The vertical velocity with which it strikes the ground is given by

Thus, the ball strikes with a vertical velocity of

What happens to the acceleration if you triple the force that you apply to the painting with your hand? (Use the values from the example given in the previous part of the lecture.) Submit All Answers Answer: Not yet correct, tries 1/5 3. A driver slams on the car brakes, and the car skids to a halt. Which of the free body diagrams below best matches the braking force on the car. (Note: The car is moving in the forward direction to the right.] (A) (B) (C) (D) No more tries. Hint: (Explanation) The answer is A. The car is moving to the right and slowing down, so the acceleration points to the left. The only significant force acting on the car is the braking force, so this must be pointing left because the net force always shares the same direction as the object's acceleration. 4. Suppose that the car comes to a stop from a speed of 40 mi/hr in 24 seconds. What was the car's acceleration rate (assuming it is constant). Answer: Submit Al Answers Last Answer: 55 N Only a number required, Computer reads units of N, tries 0/5. 5. What is the magnitude (or strength) of the braking force acting on the car? [The car's mass is 1200 kg.) Answer: Submit Al Answers Last Answer: 55N Not yet correct, tries 0/5

Answers

Answer:

2) when acceleration triples force triples,  3) a diagram with dynamic friction force in the opposite direction of movement of the car

4)  a = 2.44 ft / s², 5)  fr = 894.3 N

Explanation:

In this exercise you are asked to answer some short questions

2)  Newton's second law is

         F = m a

when acceleration triples force triples

3) Unfortunately, the diagrams are not shown, but the correct one is one where the axis of movement has a friction force in the opposite direction of movement, as well as indicating that the car slips, the friction coefficient of dynamic.

The correct answer is: a diagram with dynamic friction force in the opposite direction of movement of the car

4) let's use the scientific expressions

          v = v₀ - a t

as the car stops v = 0

          a = v₀ / t

let's reduce the magnitudes

          v₀ = 40 mile / h ([tex]\frac{5280 ft}{1 mile}[/tex]) ([tex]\frac{1 h}{3600 s}[/tex]) = 58.667 ft / s

          a = 58.667 / 24

          a = 2.44 ft / s²

5) let's use Newton's second law

           fr = m a

We must be careful not to mix the units, we will reduce the acceleration to the system Yes

           a = 2.44 ft / s² (1 m / 3.28 ft) = 0.745 m / s²

           fr = 1200  0.745

           fr = 894.3 N

Two blocks in contact with each other are pushed to the right across a rough horizontal surface by the two forces shown. If the coefficient of kinetic friction between each of the blocks and the surface is 0.30, determine the magnitude of the force exerted on the 2.0-kg block by the 3.0-kg block.

Answers

I assume the blocks are pushed together at constant speed, and it's not so important but I'll also assume it's the smaller block being pushed up against the larger one. (The opposite arrangement works out much the same way.)

Consider the forces acting on either block. Let the direction in which the blocks are being pushed by the positive direction.

The 2.0-kg block feels

• the downward pull of its own weight, (2.0 kg) g

• the upward normal force of the surface, magnitude n₁

• kinetic friction, mag. f₁ = 0.30n₁, pointing in the negative horizontal direction

• the contact force of the larger block, mag. c₁, also pointing in the negative horizontal direction

• the applied force, mag. F, pointing in the positive horizontal direction

Meanwhile the 3.0-kg block feels

• its own weight, (3.0 kg) g, pointing downward

• normal force, mag. n₂, pointing upward

• kinetic friction, mag. f₂ = 0.30n₂, pointing in the negative horizontal direction

• contact force from the smaller block, mag. c₂, pointing in the positive horizontal direction (this is the force that is causing the larger block to move)

Notice the contact forces form an action-reaction pair, so that c₁ = c₂, so we only need to find one of these, and we can get it right away from the net forces acting on the 3.0-kg block in the vertical and horizontal directions:

• net vertical force:

n₂ - (3.0 kg) g = 0   ==>   n₂ = (3.0 kg) g   ==>   f₂ = 0.30 (3.0 kg) g

• net horizontal force:

c₂ - f₂ = 0   ==>   c₂ = 0.30 (3.0 kg) g8.8 N

A 10.0 L tank contains 0.329 kg of helium at 28.0 ∘C. The molar mass of helium is 4.00 g/mol . Part A How many moles of helium are in the tank? Express your answer in moles.

Answers

Answer:

82.25 moles of He

Explanation:

From the question given above, the following data were obtained:

Volume (V) = 10 L

Mass of He = 0.329 Kg

Temperature (T) = 28.0 °C

Molar mass of He = 4 g/mol

Mole of He =?

Next, we shall convert 0.329 Kg of He to g. This can be obtained as follow:

1 Kg = 1000 g

Therefore,

0.329 Kg = 0.329 Kg × 1000 g / 1 Kg

0.329 Kg = 329 g

Thus, 0.329 Kg is equivalent to 329 g.

Finally, we shall determine the number of mole of He in the tank. This can be obtained as illustrated below:

Mass of He = 329 g

Molar mass of He = 4 g/mol

Mole of He =?

Mole = mass / molar mass

Mole of He = 329 / 4

Mole of He = 82.25 moles

Therefore, there are 82.25 moles of He in the tank.

Electrical resistance is a measure of resistance to the flow of _?____

Answers

Resistance is a measure of the opposition to current flow in an electrical circuit. Resistance is measured in ohms, symbolized by the Greek letter omega (Ω). Ohms are named after Georg Simon Ohm (1784-1854), a German physicist who studied the relationship between voltage, current and resistance.

Hope this helps!!!!

Answer:

electric current

Explanation:

The answer is electric current

g A mass of 2.0 kg traveling at 3.0 m/s along a smooth, horizontal plane hits a relaxed spring. The mass is slowed to zero velocity when the spring has been compressed by 0.15 m. What is the spring constant of the spring

Answers

By the work-energy theorem, the total work done on the mass by the spring is equal to the change in the mass's kinetic energy:

W = ∆K

and the work done by a spring with constant k as it gets compressed a distance x is -1/2 kx ²; the work it does is negative because the restoring force of the spring points opposite the direction in which it's getting compressed.

So we have

-1/2 k (0.15 m)² = 0 - 1/2 (2.0 kg) (3.0 m/s)²

Solve for k to get k = 800 N/m.

Which of the following is a noncontact force?
O A. Friction between your hands
O B. A man pushing on a wall
O C. Air resistance on a car
D. Gravity between you and the Sun

Answers

Answer:

Gravity between you and the sun

Which simple machine is shown in the diagram?
a wedge
a screw
an inclined plane
a wheel and axle

Answers

Answer:

Wheel and axle

Explanation:

Which simple machine is shown in the diagram?

a wheel and axle

From the given diagram, the machine shown is actually a wheel and axle

Description of wheel and axle

The wheel and axle is a machine consisting of a wheel attached to a smaller axle so that these two parts rotate together in which a force is transferred from one to the other.

Answer:

Wheel and axle

Explanation:

The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?

Answers

Answer:

Explanation:

From the information given:

The angular frequency ω = 430 π rad/s

The wavenumber k = 4.00π which can be expressed by the equation:

k = ω/v

4.00 =  430 /v

v = 430/4.00

v = 107.5 m/s

Similarly: k  = ω/v = 2πf/fλ

We can say that:

k = 2π/λ

4.00 π = 2π/λ

wavelength λ = 2π/4.00 π

wavelength λ = 0.5 m

frequency of the wave can now be calculated by using the formula:

f = v/λ

f = 107.5/0.5

f = 215 Hz

Also, the Period(T) = 1/215 secs

The time at which particle proceeds from point A  to its maximum upward displacement  and to its maximum downward displacement  can be computed as t = T/2;

Thus, the distance(x) covered by each wave during this time interval(T/2) will be:

x = v * t

x = v * T/2

x = λ/2

x = 0.5/2

x =  0.25 m

What is the total surface charge qint on the interior surface of the conductor (i.e., on the wall of the cavity)

Answers

Answer: hello your question is incomplete below is the missing part

A spherical cavity is hollowed out of the interior of a neutral conducting sphere. At the center of the cavity is a point charge, of positive charge q.

answer:

- q

Explanation:

Since the spherical cavity was carved out of a neutral conducting sphere hence the electric field inside this conductor = zero

given that there is a point charge +q at the center of the spherical cavity hence for the electric field inside the conductor to be = zero the total surface charge qint on the wall of the cavity will be -q

Based on the information in the table, what
is the acceleration of this object?

t(s) v(m/s)
0.0
9.0
1.0
4.0
2.0
-1.0
3.0
-6.0
A. -5.0 m/s2
B. -2.0 m/s2
C. 4.0 m/s2
D. 0.0 m/s2

Answers

Answer:

Option A. –5 m/s²

Explanation:

From the question given above, the following data were obtained:

Initial velocity (v₁) = 9 m/s

Initial time (t₁) = 0 s

Final velocity (v₂) = –6 m/s

Final time (t₂) = 3 s

Acceleration (a) =?

Next, we shall determine the change in the velocity and time. This can be obtained as follow:

For velocity:

Initial velocity (v₁) = 9 m/s

Final velocity (v₂) = –6 m/s

Change in velocity (Δv) =?

ΔV = v₂ – v₁

ΔV = –6 – 9

ΔV = –15 m/s

For time:

Initial time (t₁) = 0 s

Final time (t₂) = 3 s

Change in time (Δt) =?

Δt = t₂ – t₁

Δt = 3 – 0

Δt = 3 s

Finally, we shall determine the acceleration of the object. This can be obtained as follow:

Change in velocity (Δv) = –15 m/s

Change in time (Δt) = 3 s

Acceleration (a) =?

a = Δv / Δt

a = –15 / 3

a = –5 m/s²

Thus, the acceleration of the object is

–5 m/s².

what is time taken by radio wave to go and return back from communication satellite to earth??​

Answers

Answer:

Radio waves are used to carry satellite signals. These waves travel at 300,000 km/s (the speed of light). This means that a signal sent to a satellite 38,000 km away takes 0.13 s to reach the satellite and another 0.13 s for the return signal to be received back on Earth.

Explanation:

hope it help

A body starts from rest and accelerates uniformly at 5m/s. Calculate the time taken by the body to cover a distance of 1km

Answers

Answer:

20 seconds

Explanation:

We are given 2 givens in the first statement

v0=0 and a=5

And we are trying to find time needed to cover 1km or 1000m.

So we use

x-x0=v0t+1/2at²

Plug in givens

1000=0+2.5t²

solve for t

t²=400

t=20s

Which physical phenomenon is illustrated by the fact that the prism has different refractive indices for different colors

Answers

Answer:

The incoming white light is composed of light of different colors,

Since these different colors have different refractive indices they are refracted at different angles from one another.

The output light is then separated by color creating a color spectrum.

Since n is greater for shorter wavelengths  (violet colors) these wavelengths are refracted thru the larger angles.

what is conservation energy?

Answers

Explanation:

Conservation of energy, principle of physics according to which the energy of interacting bodies or particles in a closed system remains constant

hope it is helpful to you

David is driving a steady 30 m/s when he passes Tina, who is sitting in her car at rest. Tina begins to accelerate at a steady 2.0 m/s2 at the instant when David passes. How far does Tina drive before passing David?

Answers

a. 441 m B: 46.0 m/s

Three 15-Ω and two 25-Ω light bulbs and a 24 V battery are connected in a series circuit. What is the current that passes through each bulb?
1) 0.18 A
2) 0.25 A
3) 0.51 A
4) 0.74 A
5) The current will be 1.6 A in the 15-Ω bulbs and 0.96 A in the 25-Ω bulbs.

Answers

Answer:

I = 0.25 A

Explanation:

Given that,

Three 15 ohms and two 25 ohms light bulbs and a 24 V battery are connected in a series circuit.

In series combination, the equivalent resistance is given by :

[tex]R=R_1+R_2+R_3+....[/tex]

So,

[tex]R=15+15+15+25+25\\\\=95\ \Omega[/tex]

The current each resistor remains the same in series combination. It can be calculated using Ohm's law i.e.

V = IR

[tex]I=\dfrac{V}{R}\\\\I=\dfrac{24}{95}\\\\I=0.25\ A[/tex]

So, the current of 0.25 A passes through each bulb.

A mass-spring system oscillates with an amplitude of 4.20 cm. If the spring constant is 262 N/m and the mass is 560 g, determine the mechanical energy of the system.

Answers

Answer:

[tex]M.E=41J[/tex]

Explanation:

From the question we are told that:

Amplitude [tex]a=4.20cm[/tex]

Spring Constant [tex]K=262N/m[/tex]

Mass [tex]m=560g[/tex]

Generally the equation for mechanical energy is mathematically given by

[tex]M.E=\frac{1}{2}km^2[/tex]

[tex]M.E=0.5*262*0.56^2[/tex]

[tex]M.E=41J[/tex]

A uniform steel rod of length 0.9 m and mass 3.8 kg has two point masses of 2.3 kg each at the two ends. Calculate the moment of inertia of the system about an axis perpendicular to the rod, and passing through its center.

Answers

Answer: [tex]2.4705\ kg.m^2[/tex]

Explanation:

Given

length of the rod is L=0.9 m

Mass of the rod m=3.8 kg

Point masses has mass of m=2.3 kg

Moment of Inertia of the rod about the center is

[tex]\Rightarrow I_o=\dfrac{1}{12}ML^2[/tex]

Moment of inertia of combined system is the sum of rod and two point masses.

[tex]\Rightarrow I=I_o+2mr^2[/tex]

[tex]\Rightarrow I=\dfrac{1}{12}3.8\times 0.9^2+2\times 2.3\times \left(\dfrac{0.9}{2}\right)^2\\\\\Rightarrow I=1.539+0.9315\\\Rightarrow I=2.4705\ kg-m^2[/tex]

Cell phone conversations are transmitted by high-frequency radio waves. Suppose the signal has wavelength 35 cm while traveling through air. What are the
(a) frequency and
(b) wavelength as the signal travels through 3-mm-thick window glass into your room?

Answers

Answer:

(a) 8.57 x 10^8 Hz

(b) 23.3 cm

Explanation:

Wavelength = 35 cm = 0.35 m

speed =3 x10^8 m/s

Let the frequency is f.

(a) The relation is

speed  = frequency x wavelength

3 x 10^8 = 0.35 x f

f = 8.57 x 10^8 Hz

(b) refractive index of glass  is 1.5

The relation for the refractive index and the wavelength is

wavelength in glass= wavelength in air/ refractive index.

Wavelength in glass= 35/1.5 = 23.3 cm

Two guitar strings, of equal length and linear density, are tuned such that the second harmonic of the first string has the same frequency as the third harmonic of the second string. The tension of the first string is 510 N. Calculate the tension of the second string.

Answers

Answer:

The tension in the second string is 226.7 N.

Explanation:

Length is L, mass per unit length = m

T = 510 N

Let the tension in the second string is T'.

second harmonic of the first string = third harmonic of the second string

[tex]2 f = 3 f'\\\\2\sqrt{\frac{T}{m}} = 3 \sqrt {\frac{T'}{m}}\\\\4 T = 9 T'\\\\4\times 510 = 9 T'\\\\T' = 226.7 N[/tex]

A point charge of -3.0 x 10-5C is placed at the origin of coordinates. Find the electric field at the point 3. r= 50 m on the x-axis​

Answers

Answer: -5×10-3

Explanation:

E=kq/r

Why don’t you see tides ( like those of the ocean ) in your swimming pool ?

Answers

In smaller bodies, like your backyard swimming pool, or your own body, the differences of the earth's gravitational force over such small volumes are so slight as to have negligible affect. ... Therefore the tidal bulges move north and south with respect to earth's geography over the course of a year.
Other Questions
1.Which sentence contains an error in subject-verb agreement?A. Many citizens of Clarkson County are fighting to save the local wetlands.B. Each of the athletes have trained hard for the competition.C. Macaroni and cheese is being served in the cafeteria today.D. My mother or my father is going to pick me up from swim practice. How is the Elizabeth river important to the US development What is the phenomenon that many types of data analysis become significantly harder as the dimensionality of the data increases List a function that's it's own inverse 10 A turning pork creates sound careswithFrequency of 170Hz: To thespeed of sound in is in 340mlscalculate the wavewave lengthofin air isthe sound wales. Fill in the blank with the best word choice1. Est-ce que tule franais?2. Voussouvent le train?3. Est-ce que vous voulezdes tomates ou des brocolis? (eat)4. Je voudrais un, s'il vous plat. (lemonade)5. Yolande veut commanderde fromage.6. Est-ce que tu prends? Il y a des hutres! Non, je n'ai pas trs faim. Je prends juste un plat principal.7. Est-ce que tu laisses? Non, le service est compris.8., c'est un sandwich grill avec du jambon et du fromage.9. Tu manges souventrestaurant?10. Est-ce que tu prends? Il y a des profiteroles au chocolat! Someone tell me where everyone is going right please !! An object weighs 2.2 pounds on Earth and has a mass of 1 kilogram. What are the weight and mass of the same object in space where there is no gravity acting on it? Solve the inequality. 2 + |t + 6| < 12 A cubical water tank can contain 1000/125 cubic meters of water. Find the length of aside of the water tank.2 meters 3 meters1/2 meters1/3 meters what is the volume of the square pyramid? answer i need this done for my geometry credit thank you I. Choose the words whose underlined part is pronounced differently from that of the others in each group 1. A. Leaves B. Arrives C. Finishes D. Goes Suppose these data show the number of gallons of gasoline sold by a gasoline distributor in Bennington, Vermont, over the past 12 weeks.Week Sales (1,000s of gallons)1 172 223 204 245 186 177 218 199 2310 2111 1612 23(a) Using a weight of 12 for the most recent observation, 13 for the second most recent observation, and 16 for third most recent observation, compute a three-week weighted moving average for the time series. (Round your answers to two decimal places.) Compute four-week and five-week moving averages for the time series.Week Time Series Moving Value Average Forecast1 17 2 22 3 20 4 24 5 18 6 17 7 21 8 19 9 23 10 21 11 16 12 23 (b) Compute the MSE for the four-week moving average forecasts. (Round your answer to two decimal places.)Compute the MSE for the five-week moving average forecasts. (Round your answer to two decimal places.)(c) What appears to be the best number of weeks of past data (three, four, or five) to use in the moving average computation? MSE for the three-week moving average is 11.12. Question 1: Use the image and your knowledge of the isosceles triangle to find the value of x examine the value that early modern Europe is responsible in making of the modern world? what shape is this cause I'm having a bit of trouble? What internal physical structure protects the organs and supports the body of the animal? Fur Feathers Skeleton Skin What question is not answered in the text?a.When did the woman first disappear?c.Who murdered the missing woman?b.Where was the cat DNA analyzed?d.How did the cat hair help convict Beamish?Please select the best answer from the choices providedABCD What percentage of 1hour is 6munites 20seconds Kathy travels in a taxi which charges $ 5.75 flat rate in addition to $ 2.50 per mile. Kathy has only $25 in her wallet. How many miles can Kathy travel without exceeding her limit?HELPP