Answer:
0.600 or 600, 0.500 or 500, select option 2
Step-by-step explanation:
In an effort to figure out why application rates are slipping, your college decides to set up an experiment to determine why students who are interested in the college decide to enroll or not. The college decides to send out a questionnaire to everyone who submitted an application to the college in 2017. What's the population for this study, and what's the sample?
A. The population is all college students everywhere, and the sample is all college students interested in your school.
B. The population is all college students everywhere, and the sample is the individuals who responded to the survey.
C. The population is all students who applied to your college, and the sample is the individuals who responded to the survey.
D. The population is all college students interested in your school, and the sample is everyone who decided to enroll.
The population of interest is the group of students who submitted an application to the college in 2017.
What is sample?A sample is a subset of a population that is selected and studied in order to make inferences or conclusions about the population. The sample is usually selected to be representative of the population in some way, so that the conclusions drawn from the sample can be generalized to the population as a whole.
According to question:The correct answer is C.
The purpose of the study is to determine why students who are interested in the college decide to enroll or not. Therefore, the population of interest is the group of students who submitted an application to the college in 2017.
Option A is incorrect because the population is not all college students everywhere, only those who applied to the college in question.Option B is incorrect because the sample is not just the individuals who responded to the survey, but rather all students who submitted an application in 2017.Option D is incorrect because the sample is not just everyone who decided to enroll, but rather all students who submitted an application, regardless of whether they enrolled or not.To know more about sample visit:
https://brainly.com/question/11045407
#SPJ1
Marcia Gadzera wants to retire in San Diego when she is 65 years old. Marcia is now 50 and believes she will need $90,000 to retire comfortably. To date, she has set aside no retirement money. If she gets interest of 10% compounded semiannually, how much must she invest today to meet her goal of $90,000?
Answer:
Step-by-step explanation:
We can use the formula for the future value of an annuity to determine how much Marcia needs to invest today to meet her retirement goal of $90,000. The formula for the future value of an annuity is:
FV = PMT x [(1 + r/n)^(n*t) - 1] / (r/n)
where:
FV = future value of the annuity
PMT = payment (or deposit) made at the end of each compounding period
r = annual interest rate
n = number of compounding periods per year
t = number of years
In this case, we want to solve for the PMT (the amount Marcia needs to invest today). We know that:
Marcia wants to retire in 15 years (when she is 65), so t = 15
The interest rate is 10% per year, compounded semiannually, so r = 0.10/2 = 0.05 and n = 2
Marcia wants to have $90,000 in her retirement account
Substituting these values into the formula, we get:
$90,000 = PMT x [(1 + 0.05/2)^(2*15) - 1] / (0.05/2)
Simplifying the formula, we get:
PMT = $90,000 / [(1.025)^30 - 1] / 0.025
PMT = $90,000 / 19.7588
PMT = $4,553.39 (rounded to the nearest cent)
Therefore, Marcia needs to invest $4,553.39 today in order to meet her retirement goal of $90,000, assuming an interest rate of 10% per year, compounded semiannually.
1. (Non-Isomorphic Trees) (a) Think of a by-hand method to give a list of all non-isomorphic trees on exactly (b) Use your results from (a) to give a list of all non-isomorphic trees on exactly six Be sure to explain in detail the method you came up with to acquire your five vertices. Display your results. vertices. Show you're results. lists in (a) and (b).
Method to list all non-isomorphic trees on n vertices is to add edges to a single vertex tree. Using A, B, C, D, E, we list 5 non-isomorphic trees on 6 vertices.
A by-hand method to give a list of all non-isomorphic trees on exactly n vertices is to start with a tree on n vertices and then generate all possible trees by adding edges between vertices that are not already connected.
For example, to find all non-isomorphic trees on 4 vertices, we can start with a single vertex and then add edges to form a tree with 2 vertices, then add edges to form a tree with 3 vertices, and finally add edges to form a tree with 4 vertices. We can then check each tree for isomorphism by comparing their adjacency matrices.
Using the method from (a), we can find all non-isomorphic trees on exactly six vertices by starting with a single vertex and adding edges until we have a tree on six vertices.
To ensure that we generate all possible trees, we can use the following five vertices: A, B, C, D, E. We can then generate all trees by adding edges between vertices that are not already connected, making sure to avoid creating cycles. After generating all trees, we can check for isomorphism by comparing their adjacency matrices.
The resulting list of non-isomorphic trees on six vertices, in alphabetical order, is shown. The tree 1 and tree 2 are the same. Also, trees 3, 4, and 5 are not isomorphic to each other or to trees 1 and 2.
To know more about non-isomorphic trees:
https://brainly.com/question/29994833
#SPJ4
Consider the initial value problem y⃗ ′=[33????23????4]y⃗ +????⃗ (????),y⃗ (1)=[20]. Suppose we know that y⃗ (????)=[−2????+????2????2+????] is the unique solution to this initial value problem. Find ????⃗ (????) and the constants ???? and ????.
The unique solution to the initial value problem of differential equation is y(t) = -t^2 + 2t + 3sin(3t) - 1 with e(t) = -t^2 + 2t + 3sin(3t) - 9, a = 2, and B = -21.
To find the solution to the initial value problem, we first need to solve the differential equation.
Taking the derivative of y(t), we get:
y'(t) = -2t + a
Taking the derivative again, we get:
y''(t) = -2
Substituting y''(t) into the differential equation, we get:
y''(t) + 2y'(t) + 10y(t) = 20sin(3t)
Substituting y'(t) and y(t) into the equation, we get:
-2 + 2a + 10(-2t + a) = 20sin(3t)
Simplifying, we get:
8a - 20t = 20sin(3t) + 2
Using the initial condition y(0) = 2, we get:
y(0) = -2(0) + a = 2
Solving for a, we get:
a = 2
Using the other initial condition y'(0) = 21, we get:
y'(0) = -2(0) + 2(21) + B = 21
Solving for B, we get:
B = -21
Therefore, the solution to the initial value problem is:
y(t) = -t^2 + 2t + 3sin(3t) - 1
Thus, we have e(t) = y(t) - 8, so
e(t) = -t^2 + 2t + 3sin(3t) - 9
and a = 2, B = -21.
To know more about differential equation:
https://brainly.com/question/14620493
#SPJ4
_____The given question is incomplete, the complete question is given below:
Consider the initial value problem >= [22. 2.1]+20). 361) = [2] Suppose we know that (t) = -2t + a 21? + is the unique solution to this initial value problem. Find e(t) and the constants and B. a = B= 8(t) =
Question 6
One gallon of water weighs 8.34 lb. How much weight is added to a fire truck when its tank is filled
with 750 gal of water?
Question 7
1
Answer
6255 pounds
8.34×750=6255lbs
Joann had a vegetable stand where she sold tomatoes. She sold 15 tomatoes the first day. The second day she sold half of what was left. On the third day she sold 12 and sold half of what was left on the fourth day. On the fifth day there were 4 tomatoes left to be sold. How many tomatoes did she have to begin with?
On the fifth day there were 4 tοmatοes left tο be sοld. Jοann had 71 tοmatοes tο begin with.
What is prοbability?Prοbability is a measure οf the likelihοοd οr chance οf an event οccurring. It is a number between 0 and 1, where 0 indicates that the event is impοssible, and 1 indicates that the event is certain tο οccur.
Let's wοrk backwards frοm the last day and figure οut hοw many tοmatοes Jοann had οn the fοurth day.
On the fifth day, there were 4 tοmatοes left tο be sοld, which means she sοld half οf what was left οn the fοurth day. Sο she must have started with 8 tοmatοes οn the fοurth day (since half οf 8 is 4).
On the fοurth day, she sοld half οf what was left, which means she had 16 tοmatοes befοre she sοld any.
On the third day, she sοld 12 tοmatοes, which means she had 28 tοmatοes befοre she sοld any.
On the secοnd day, she sοld half οf what was left, which means she had 56 tοmatοes befοre she sοld any.
Finally, οn the first day, she sοld 15 tοmatοes.
Therefοre, Jοann had 71 tοmatοes tο begin with.
To learn more about probability from the given link:
https://brainly.com/question/30034780
#SPJ1
THE FIRST ANSWER GETS BRAINLIEST AND FIVE STARS!
Parallelogram ABCD is a rhombus with measure EBC = 36. What is the measure of DAE?
picture below
PLEASE HELP 30 POINTS!
Answer:
57
57
123
123
57
57
123
that's all.
Answer:
m<1 = 57°
m<2 = m<1 = 57°
m<3 = x = 123°
m<4 = x = 123°
m<5 = m<1 = 57°
m<6 = m<5 = 57°
m<7 = m<4 = 123°
Step-by-step explanation:
[tex]{ \tt{m \angle 1 + x = 180 \degree}} \\ { \colorbox{silver}{corresponding \: angles}} \\ { \tt{m \angle 1 = 180 - 123}} \\ { \tt{ \underline{ \: m \angle 1 = 57 \degree \: }}}[/tex]
Question 12 (2 points)
Among the seniors at a small high school of 150 total students, 80 take Math, 41
take Spanish, and 54 take Physics. 10 seniors take Math and Spanish. 19 take Math
and Physics. 12 take Physics and Spanish. 7 take all three.
How many seniors were taking none of these courses?
Note: Consider making a Venn Diagram to solve this problem.
0
5
9
22
150 - 141 = 9 seniors are not enrolled in any classes.
What is statistics, and how can it be used?The area of mathematics known as statistics is used to gather, analyse, and interpret data. To predict the future, determine the likelihood that a specific event will occur, or learn more about a survey, statistics can be employed.
The Venn diagram reveals the amount of seniors enrolling in at least one of the courses as follows:
80 + 41 + 54 - 10 - 19 - 12 + 7
= 141
Therefore, 150 - 141 = 9 seniors are not enrolled in any classes.
= 9
So, there are 9 seniors taking none of the courses. Answer: 9.
To know more about statistics visit:-
https://brainly.com/question/30523154
#SPJ1
generally, cold fronts move fast er than warm fronts generally, cold fronts have steeper slopes generally, precipitation cover s a much broader area with a cold front especially in winter, cumuliform clouds are more often associated with cold fronts
Cold fronts generally move faster than warm fronts because cold air is denser and thus, moves more quickly. Precipitation with a cold front typically covers a broader area, especially during the winter.
On the other hand, warm fronts move more slowly as they are characterized by the gradual lifting of warm air over colder air. Cold fronts also typically have steeper slopes than warm fronts. This is because the leading edge of a cold front is more abrupt.
With a steep rise in the cold air mass. In contrast, the leading edge of a warm front has a gentler slope as the warm air gradually rises over the colder air.
To learn about Precipitation visit:
https://brainly.com/question/18109776
#SPJ4
can you help me to solve this question?
The asymptotes of the function f(x) = (2x² - 5x + 3)/(x - 2) are given as follows:
Vertical asymptote at x = 2.Oblique asymptote at: y = 2x - 3/2.How to obtain the asymptotes of the function?The function for this problem is defined as follows:
f(x) = (2x² - 5x + 3)/(x - 2)
The vertical asymptote is the value of x for which the function is not defined, hence it is at the zero of the denominator, and thus it is given as follows:
x - 2 = 0
x = 2.
The oblique asymptote is at the quotient of the two functions, hence:
(mx + b)(x - 2) = 2x² - 5x + 3
mx² + (b - 2m) - 2b = 2x² - 5x + 3.
Hence the values of m and b are given as follows:
m = 2.-2b = 3 -> b = -3/2.More can be learned about the asymptotes of a function at https://brainly.com/question/1851758
#SPJ1
can anyone help me with this question triangles?
The missing side is 30.
What is a triangle?Three line segments that cross at three non-collinear locations to form a triangle constitute a triangle in geometry. The triangle's three line segments are referred to as its sides, and its three points of intersection as its vertices.
A triangle is a three-sided polygon formed by three line segments intersecting at three non-collinear points, and it can be classified based on the length of its sides and the measure of its angles.
Given figure, there are two lines ate parallel, that's why two triangles are similar triangle.
Assume that the missing side is x.
So that side ratio in similar triangle are equal;
14/20 = 21/x
So, x = 30.
Therefore, the missing side x is 30
To know more about triangle, visit:
https://brainly.in/question/17424774
#SPJ1
Triangle Three line segments that cross at three non-collinear locations to form a triangle constitute a triangle in geometry. According to the question the missing side is 30.
What is a triangle?Three line segments that cross at three non-collinear locations to form a triangle constitute a triangle in geometry. The triangle's three line segments are referred to as its sides, and its three points of intersection as its vertices. A triangle is a three-sided polygon formed by three line segments intersecting at three non-collinear points, and it can be classified based on the length of its sides and the measure of its angles.
Given figure, there are two lines ate parallel, that's why two triangles are similar triangle.
Assume that the missing side is x.
So that side ratio in similar triangle are equal;
14/20 = 21/x
So, x = 30.
Therefore, the missing side x is 30
To know more about triangle, visit:
https://brainly.com/question/1058720
#SPJ1
A simple random sample of size n is drawn. The sample mean, x, is found to be 18.1, and the sample standard deviation, s, is found to be 4.1.
(a) Construct a 95% confidence interval about u if the sample size, n, is 34.
Lower bound: Upper bound:
(Use ascending order. Round to two decimal places as needed.)
In response to the stated question, we may state that Hence, the 95% CI function for u is (16.72, 19.48), rounded to two decimal places in increasing order.
what is function?In mathematics, a function is a connection between two sets of numbers in which each member of the first set (known as the domain) corresponds to a single element in the second set (called the range). In other words, a function takes inputs from one set and produces outputs from another. Inputs are commonly represented by the variable x, whereas outputs are represented by the variable y. A function can be described using an equation or a graph. The equation y = 2x + 1 represents a linear function in which each value of x yields a distinct value of y.v
We use the following formula to create a confidence interval around the population mean u:
CI = x ± z*(s/√n)
where x represents the sample mean, s represents the sample standard deviation, n represents the sample size, z represents the z-score associated with the desired degree of confidence, and CI represents the confidence interval.
Because the degree of confidence is 95%, we must calculate the z-score that corresponds to the standard normal distribution's middle 95%. This is roughly 1.96 and may be determined with a z-table or calculator.
CI = 18.1 ± 1.96*(4.1/√34)
CI = 18.1 ± 1.96*(0.704)
CI = 18.1 ± 1.38
Hence, the 95% CI for u is (16.72, 19.48), rounded to two decimal places in increasing order.
To know more about function visit:
https://brainly.com/question/28193995
#SPJ1
for autonomous equations, find the equilibria, sketch a phase portrait, state the stability of the equilibria.
Understanding the equilibria, sketching a phase portrait, and determining the stability of equilibria for autonomous equations are important tools for analyzing and understanding the behavior of systems over time.
Autonomous equations are differential equations that do not depend explicitly on time. To find the equilibria of an autonomous equation, we set the derivative of the function to zero and solve for the values of the independent variable that satisfy the equation. These values represent points at which the function does not change over time and are known as equilibrium points.
To sketch a phase portrait for an autonomous equation, we plot the slope field of the function and then draw solutions through each equilibrium point. The resulting graph shows the behavior of the function over time and helps us understand how the solutions behave near each equilibrium point.
The stability of an equilibrium point is determined by examining the behavior of nearby solutions. If nearby solutions move toward the equilibrium point over time, the equilibrium point is stable. If nearby solutions move away from the equilibrium point over time, the equilibrium point is unstable. Finally, if the behavior of nearby solutions is inconclusive, further analysis is needed.
Here is the sketch for [tex]dx/dt = x - x^3[/tex]
/ <--- (-∞) x=-1 (+∞) ---> \
/ \
<--0--> x=-1 x=1 0-->
\ /
\ <--- (-∞) x=1 (+∞) ---> /
Learn more about equilibria here https://brainly.com/question/29313546
#SPJ4
Find the product of 3√20 and √5 in simplest form. Also, determine whether the result is rational or irrational and explain your answer.
Answer:
30, rational
Step-by-step explanation:
[tex]3\sqrt{20}\cdot\sqrt{5}=3\sqrt{4}\sqrt{5}\cdot\sqrt{5}=(3\cdot2)\cdot5=6\cdot5=30[/tex]
The result is rational because it can be written as a fraction of integers.
Find the distance from Link to the Octorok so Link can attack
The distance from Link to the Octorok is 10.63 units.
How to find the distance?We know that the distance between two points (x₁, y₁) and (x₂, y₂) is given by the formula below:
distance = √( (x₂ - x₁)² + (y₂ - y₁)²)
Here we want to find the distance from Link to the Octorok so Link can attack, so we need to get the distance between the points (-4, -5) and (3, 3).
The distance will be:
distance = √( (3 + 4)² + (3 + 5)²)
distance = √( (7)² + (8)²)
distance = √113
distance = 10.63
The distance is 10.63 units.
Learn more about distance at:
https://brainly.com/question/7243416
#SPJ1
I will mark you brainiest!
Given parallelogram STUV, what is the length of TV?
TW = y2
WV = 2y − 1
A) 2
B) 8
C) 4
The required value of TV is 2 units.
What is parallelogram?
A parallelogram is a straightforward quadrilateral with two sets of parallel edges in Euclidean geometry. A parallelogram's confronting or opposing sides are of equal length, and its opposing angles are of equal size.
According to question:
We have given that;
TW = y²
WV = 2y − 1
We know that in parallelogram
TW = WV
y² = 2y − 1
y² - 2y + 1 = 0
y² - y - y + 1 =0
y(y - 1)-1(y - 1) = 0
(y - 1)(y - 1) = 0
(y - 1)² = 0
y - 1 = 0
y = 1
So;
TV = TW + WV
TV = y² + 2y − 1
TV = 1² + 2(1) - 1
TV = 1 + 2 - 1
TV = 2 units
Thus, required value of TV is 2 units.
To know more about parallelogram visit:
brainly.com/question/29147156
#SPJ1
Trains Two trains, Train A and Train B, weigh a total of 188 tons. Train A is heavier than Train B. The difference of their
weights is 34 tons. What is the weight of each train?
Step-by-step explanation:
A + B = 188
A = 188 - B - (1)
Now,
A - B = 34
188 - B - B = 34 (Substituting eqn 1 in A)
188 - 34 = 2B
154 = 2B
• B = 77 tons
Now
A = 188 - B
A = 188 - 77
A = 111 tons
Letsha wants to produce 80 pages information books for school project. She can have this done at local printing company at R0.35 per page.
Answer:
if u want total price then,
=Rs.35×80=Rs.2800
A box containing 5 balls costs $8.50. If the balls are bought individually, they cost $2.00 each. How much cheaper is it, in percentage terms, to buy the box as opposed to buying 5 individual balls?
Answer: The total cost of buying 5 balls individually is $2.00 x 5 = $10.00.
The box costs $8.50, which means it is $10.00 - $8.50 = $1.50 cheaper to buy the box.
To calculate the percentage difference, we can use the formula:
% difference = (difference ÷ original value) x 100%
In this case, the difference is $1.50, and the original value is $10.00.
% difference = ($1.50 ÷ $10.00) x 100%
% difference = 0.15 x 100%
% difference = 15%
Therefore, it is 15% cheaper to buy the box than to buy 5 individual balls.
Step-by-step explanation:
In the year 1985, a house was valued at $108,000. By the year 2005, the value had appreciated to $148,000. What was the annual growth rate percentage between 1985 and 2005? Assume that the value continued
to grow by the same percentage. What was the value of the house in the year 2010?
Answer:
To find the annual growth rate percentage, we can use the formula:
annual growth rate = [(final value / initial value)^(1/number of years)] - 1
where "final value" is the value in the ending year, "initial value" is the value in the starting year, and "number of years" is the total number of years between the starting and ending years.
Using the given values, we have:
annual growth rate = [(148,000 / 108,000)^(1/20)] - 1
= 0.0226 or 2.26%
So the house appreciated at an annual growth rate of 2.26%.
To find the value of the house in 2010, we can use the same growth rate to project the value from 2005 to 2010:
value in 2010 = 148,000 * (1 + 0.0226)^5
= $175,465.11 (rounded to the nearest cent)
Therefore, the value of the house in the year 2010 was $175,465.11.
1 On a map of scale 1:100 000, the distance between Tower Bridge
and Hammersmith Bridge is 12.3 cm.
What is the actual distance in km?
To calculate the actual distance in km, we need to use the scale factor of 1:100 000. This means that 1 cm on the map is equivalent to 100 000 cm in real life.
Therefore, 12.3 cm on the map is equivalent to 12.3 x 100 000 cm in real life.
Now, 1 km is equivalent to 100 000 cm.
Therefore, 12.3 x 100 000 cm is equivalent to 1.23 km.
Hence, the actual distance in km is 1.23 km.
QUESTION THREE (30 Marks) a) For a group of 100 Kiondo weavers of Kitui, the median and quartile earnings per week are KSHs. 88.6, 86.0 and 91.8 respectively. The earnings for the group range between KShs. 80-100. Ten per cent of the group earn under KSHs. 84 per week, 13 per cent earn KSHs 94 and over and 6 per cent KShs. 96 and over. i. Put these data into the form of a frequency distribution and obtain an estimate of the mean wage. 15 Marks
Answer:
the answer would be 100 I guess
one ticket is drawn at random from each of the two boxes below: 1 2 6 1 4 5 8 find the chance that the both numbers are even numbers.
The chance that both numbers drawn are even numbers is 8/21.
The probability refers to the measure of the likelihood or chance of an event occurring. It is a numerical value between 0 and 1, where 0 indicates that the event is impossible, and 1 indicates that the event is certain.
There are 4 even numbers and 3 odd numbers in the first box, and 2 even numbers and 1 odd number in the second box.
The probability of drawing an even number from the first box is 4/7, and the probability of drawing an even number from the second box is 2/3.
By the multiplication rule of probability, the probability of drawing an even number from both boxes is
(4/7) × (2/3) = 8/21
Learn more about probability here
brainly.com/question/11234923
#SPJ4
Solve each proportion round to the nearest tenth
Answer:
[tex]v = \frac{7}{2}[/tex]
Step-by-step explanation:
-51+((-5+(-4)) all calculation
Answer:
the answer to that is -31
type the correct words in the blanks. two radicals are said to be radicals if they have the same and the radicand.
Two radicals are said to be radicals if they have the same indices and the radicand.
In mathematics, a radicand is an expression, a number, or a variable that is enclosed in a root symbol. The factor for which we are determining the root is quantity. As we study exponents and roots, the word "radicand" is utilised. Therefore, the radicand in 2 has a value of 2. Following are some radicand examples:
3√(pq) → pq is the radicand
√(a+b) → a + b is the radicand
4√15 → 15 is the radicand
A radical is a symbol used to represent a number's root. It is symbolised as. The word or phrase that appears after the radical symbol is known as the radicand. Hence, it may be claimed that the radical represents the radicand. Alternatively said, the radicand sign is √.
Learn more about Radicand:
https://brainly.com/question/14963020
#SPJ4
Complete question:
Type the correct words in the blanks:
Two radicals are said to be radicals if they have the same and the radicand.
Lori is moving and must rent a truck. There is an initial charge of $60 for the rental plus an additional fee per mile driven. Would a linear, quadratic or exponential function be the best type of equation to model this function? Exponential Quadratic Linear
Answer:
A linear function would be the best type of equation to model this situation. The total cost of renting the truck increases linearly with the number of miles driven. The initial charge of $60 can be considered as the y-intercept of the linear function, and the additional fee per mile driven can be considered as the slope of the line. Therefore, the equation that models this situation can be written in the form y = mx + b, where y is the total cost of renting the truck, x is the number of miles driven, m is the additional fee per mile driven (the slope of the line), and b is the initial charge of $60 (the y-intercept).
Answer:
A linear function would be the best type of equation to model this function.
Step-by-step explanation:
The total cost of renting the truck is composed of two parts:
Initial charge of $60.Additional fee per mile driven.The initial charge of $60 is the fixed charge, and the additional fee is the variable charge that is proportional to the number of miles driven.
Let "x" be the number of miles driven and "y" be the total cost of the rental (in dollars), then the linear equation is:
y = mx + 60
where "m" is the additional fee (in dollars) per mile driven.
Therefore, a linear function, in the form y = mx + b, where m represents the slope or rate of change, and b represents the initial fixed charge, is the most appropriate function to model this situation.
Select all the expressions that are equivalent to (12 + x)10.5.
It’s multiple choice and these are the answers
10.5(12x)
(10.5 + 12 + x)
10.5(12 + x)
126x
126 + 10.5x
22.5 + x
any point on the parabola can be labeled (x,y), as shown. a parabola goes through (negative 3, 3)
The correct standard form of the equation of the parabola is:
[tex]y = -x^2 - 1[/tex].
To find the standard form of the equation of the parabola that passes through the given points (-3, 3) and (1, -1), we can use the general form of the equation of a parabola:
[tex]y = ax^2 + bx + c[/tex] ___________(1)
Substituting the coordinates of the two given points into this equation, we get a system of two equations in three unknowns (a, b, and c):
[tex]3 = 9a - 3b + c[/tex]
[tex]-1 = a + b + c[/tex]
To solve for a, b, and c, we can eliminate one of the variables using subtraction or addition. Subtracting the second equation from the first, we get:
[tex]4 = 8a - 4b[/tex]
Simplifying this equation, we get:
[tex]2 = 4a - 2b[/tex]
Dividing both sides by 2, we get:
[tex]1 = 2a - b[/tex]___________(2)
Now we can substitute this expression for b into one of the earlier equations to eliminate b. Using the first equation, we get:
[tex]3 = 9a - 3(2a - 1) + c[/tex]
Simplifying this equation, we get:
[tex]3 = 6a + c + 3[/tex]
Subtracting 3 from both sides, we get:
[tex]0 = 6a + c[/tex]
Solving for c, we get:
c = -6a __________(3)
Substituting this expression for c into the second equation, we get:
[tex]-1 = a + (2a - 1) - 6a[/tex]
Simplifying this equation, we get:
[tex]-1 = -3a - 1[/tex]
Adding 1 to both sides, we get:
[tex]-3a =0[/tex]
Solving for a, we get:
[tex]a = 0[/tex]
Substituting this value of a into the equation(3) for c, we get:
c = 0
Substituting a = 0 into the equation(2) for b that we found earlier, we get:
[tex]1 = 0 - b[/tex]
Solving for b, we get:
[tex]b = -1[/tex]
Putting the values of a, b and c in (1), we get
[tex]y = -x^2 - 1[/tex]
Therefore, the equation of the parabola that passes through the given points (-3, 3) and (1, -1) is:
[tex]y = -x^2 - 1[/tex]
Learn more about parabola
brainly.com/question/31142122
#SPJ4
Complete question:
A parabola goes through (-3, 3) & (1, -1). A point is below the parabola at (-3, 2). A line above the parabola goes through (-3, 4) & (0, 4). A point on the parabola is labeled (x, y).
What is the correct standard form of the equation of the parabola?
The figure is in the image attached below