Answer:
The answer is in the explanation.
Explanation:
A solution is defined as the homogeneous mixture of a solute (In this case, NaCl) and the solvent (water).
To prepare 1L of the solution, the student can weigh the 3g of NaCl in the volumetric flask but need to add slowly water to dissolve the NaCl (That is very soluble in water). When all NaCl is dissolved the student must transfer the solution to the 1L volumetric flask. Then, you must add more water to the beaker until "Clean" all the solute of the beaker to transfer it completely to the volumetric flask.
Question 16(Multiple Choice Worth 5 points)
(04.01 LC) Which statement is true about the total mass of the reactants during a chemical change?
O It is destroyed during chemical reaction.
O It is less than the total mass of the products. O It is equal to the total mass of the products.
O It is greater than the total mass of the products.
Answer:
It is equal to the total mass of the products.
Explanation:
Hope this helps :)
What does the term spontaneous mean in chemical reactions?
A. Producing heat as a product
B. Occurring without added energy
C. Occurring only at high temperatures
D. Occurring in an aqueous solution
Answer:
B
Explanation:
Spontaneous in chemical reactions means without any external input.
Occurring without added energy. Hence, option B is correct.
What is a spontaneous reaction?A spontaneous reaction is a reaction that supports the formation of products under the conditions under which the reaction is happening.
Spontaneous Reaction- a reaction that favours the formation of products at the conditions under which the reaction is occurring.
A non-spontaneous reaction can be made spontaneous if it is inside a controlled environment, this is what happens in nuclear power plants that create atomic fusion and fission in chambers that are controlled to control different particles to create nuclear active rays.
Hence, option B is correct.
Learn more about the spontaneous reaction here:
brainly.com/question/23142328
#SPJ5
According to the Arrhenius equation, changing which factors will affect the
rate constant?
A. Temperature and the ideal gas constant
B. The activation energy and the constant A
C. The constant A and the temperature
D. Temperature and activation energy
Answer:
e−(Ea/RT): the fraction of the molecules present in a gas which have energies equal to or in excess of activation energy at a particular temperature
Answer:
D. Temperature and activation energy is the correct answer
Explanation:
^_^
What is different between margerine and butter in term of organic chemistry
Answer:
The most important difference between the two is that butter is derived from dairy and is rich in saturated fats, whereas margarine is made from plant oils. ... If the margarine contains partially hydrogenated oils, it will contain trans fat, even if the label claims that it has 0 g.
Explanation:
(⌒_⌒;)
When electrons in a molecule are not found between a pair of atoms but move throughout the molecule, this is called Group of answer choices
Answer:
delocalised electrons
Explanation:
they are called delocalised electrons because that can move freely in the molecule
Please help me ASAP I’ll mark Brainly
Answer:
1. Vacuole
2. chloroplast
3. Nucleus
4. Plasma membrane - cell membrane
5. Vacuole (same as #1 ?) could be vesicle
Explanation:
a sample of copper was heated at 275.1 C and placed into 272 g of water at 21.0 C. The temperature of the water rose at 29.7 C. How many grams of copper were in the sample
Answer:
104.8 g
Explanation:
From the question given above, the following data were obtained:
Initial temperature of copper (T꜀) = 275.1 °C
Mass of water (Mᵥᵥ) = 272 g
Initial temperature of water (Tᵥᵥ) = 21 °C
Equilibrium temperature (Tₑ) = 29.7 °C
Mass of copper (M꜀) =?
NOTE:
Specific heat capacity of copper (C꜀) = 0.385 J/gºC
Specific heat capacity of water (Cᵥᵥ) = 4.184 J/gºC
Finally, we shall determine the mass of the copper in the sample. This can be obtained as follow:
Heat loss by copper = Heat gained by water
M꜀C꜀(T꜀ – Tₑ) = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
M꜀ × 0.385 (275.1 – 29.7) = 272 × 4.184(29.7 – 21)
M꜀ × 0.385 × 245.4 = 1138.048 × 8.7
M꜀ × 94.479 = 9901.0176
Divide both side by 94.479
M꜀ = 9901.0176 / 94.479
M꜀ = 104.8 g
Thus, the mass of the copper in the sample is 104.8 g
A buffer is prepared containing 0.75 M NH3 and 0.20 M NH4 . Calculate the pH of the buffer using the Kb for NH3. g
Answer:
pH=8.676
Explanation:
Given:
0.75 M [tex]NH_{3}[/tex]
0.20 M [tex]NH_{4}[/tex]
The objective is to calculate the pH of the buffer using the kb for [tex]NH_3[/tex]
Formula used:
[tex]pOH=pka+log\frac{[salt]}{[base]}\\[/tex]
pH=14-pOH
Solution:
On substituting salt=0.75 and base=0.20 in the formula
[tex]pOH=-log(1.77*10^{-5})+log\frac{0.75}{0.20}\\ =4.75+0.5740\\ =5.324[/tex]
pH=14-pOH
On substituting the pOH value in the above expression,
pH=14-5.324
Therefore,
pH=8.676
One main difference between the heating of gases on the one hand and solids or liquids on the other is that ___________________. One main difference between the heating of gases on the one hand and solids or liquids on the other is that ___________________. heating of gases depends not only on the temperature difference, but also on the process as well as the amount of gas present. heating of gases depends on temperature difference as well as the amount of gas present. specific heat is not defined for gases. heat cannot be exchanged with gases.
Answer:
heating of gases depends not only on the temperature difference, but also on the process as well as the amount of gas present.
Explanation:
The work done when a gas is heated does not only depends on the initial and final states of the gas but also on the process used to achieve the change of state of the gas.
Several processes can be applied in changing the state of a gas such as; adiabatic process, isobaric process, isochoric process and isothermal process.
Hence, the heating of a gas, depends not only on the temperature difference, as well as the amount of gas present according to the ideal gas laws but also on the process used to achieve the change of state.
A solution of hydrochloric acid had a hydrogen ion concentration of 1.0 mol/dm3
Water was added to hydrochloric acid until the ph increased by 1
What was the hydrogen ion concentration of the hydrochloric acid after had been added?
Answer:
pH = -log[H+]
Where [H+] = Hydrogen ion concentration
In this case,
[H+] = 1 × 10^(-2) = 10^(-2)
log{10^(-2)} = -2
-log{10^(-2)} = -(-2) = 2
pH = -log{10^(-2)} = 2
and hi.!!!
Answer:
0.1
Explanation:
Hydrogen ion concentration can be calculated using the formula [H+] = 10^-pH
pH can be concentrated using ph = -log[H+]
let's calculate the initial pH before anything was added: pH = -log(1) = 0
it increased by 1 so the final pH is 1.
Now we'll find the [H+] of a solution with a pH of 1:
concentration = 10^(-1) = 0.1
What is the best explanation for why solid sodium chloride CANNOT conduct electricity and why molten sodium chloride can?
Answer: See explanation
Explanation:
The explanation for why solid sodium chloride can't conduct electricity while molten sodium chloride can is explained below:
Ionic compounds that are in their solid state like sodium chloride have their ions fixed in position. Due to this reason, the able to move, therefore we can say that the solid ionic compounds cannot be able to conduct electricity.
On the other hand, ionic compounds in their molten state, are free to flow unlike when they're in their solid state and therefore we can say that molten sodium chloride can be able to conduct electricity.
A
(c) 2 C(s) + MnO2(s)
Mn(s) + 2 CO(g)
O combination reaction
O decomposition reaction
O combustion reaction
O single-displacement reaction
Answer: The reaction, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Explanation:
A chemical reaction in which one element of a compound is replaced by another element participating in the reaction.
For example, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex]
Here, the element manganese is replaced by carbon atom. As only one element gets replaced so, it is a single-displacement reaction.
Thus, we can conclude that [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Explain why caffeine can be extracted from the tea leaves into hot water and how you extracted the aqueous solution and isolated the crude caffeine.
Answer:
The hot water dissolves the flavor and color components.
Explanation:
Caffeine can be extracted from the tea leaves into hot water because the hot water dissolves the flavor and color components away from the solid vegetable. This is an example of a solid-liquid extraction. We can extracted the aqueous solution and isolated the crude caffeine by converting the components of caffeine into their calcium salts which are insoluble in water. Then the caffeine can be extracted from the water by using methylene chloride.
There is a type of algae that lives in the cells of corals. These algae process carbon through photosynthesis and pass it on to corals in the form of glucose, a sugar that provides the energy corals need to survive and function. Corals offer protection for the algae and also produce wastes that the algae need for photosynthesis.
Warmer water temperatures caused by global warming disrupt photosynthesis in the algae, causing a poisonous build-up that threatens corals. This causes corals to force the algae out of their cells.
Answer:
Explanation:
Sample Response: If global warming continues, corals will continue to expel the algae from their cells to avoid poisonous buildup. This will cause corals to die. Without corals, the algae are not protected and cannot perform photosynthesis. This will cause the algae to die as well.
Identify the most oxidized compound. Group of answer choices CH3CH2CHO CH3CH2CH3 CH3CH2CH2OH CH3CH2OCH3 CH3CH2COOH
Answer:
Huh!?
Explanation:
explain me please
Match the description with the type of precipitation being described.
1. Its formation requires very strong updrafts
2. Its formation requires falling through a layer of above freezing air
3. Precipitation from cumuliform clouds is typically of this nature
4. Precipitation from stratus clouds is typically of this nature
Options:
a. Hail
b. Drizzle
c. Shower
d. Freezing Rain
Answer:
1. Its formation requires very strong updrafts = a. Hail
2. Its formation requires falling through a layer of above-freezing air = d. Freezing Rain
3. Precipitation from cumuliform clouds is typically of this nature = c. Shower
4. Precipitation from stratus clouds is typically of this nature = Drizzle
Explanation:
Hail formation requires very strong updrafts, these updrafts are the upward moving air created in a thunderstorm. This period of noticeable thunderstorms creates hails.
Freezing rain requires the presence of warm air, it requires falling through a layer of above-freezing air to the colder air below to produce an ice coating on anything it drops on.
Showers are produced by cumuliform clouds which look like cotton balls. Since cumuliform clouds precipitate too, these clouds can have fluctuating rain in a day in the form of showers.
Drizzle which raises low visibility is considered a type of liquid precipitation since it also falls from a cloud. Drizzle which is obviously smaller in diameter when compared to that of raindrops, however, is common with stratus clouds.
You want to quickly set up a temporary water bath in your lab with a volume of 10.0 L and a temperature of 37.0°C. You only have hot water from your hot water faucet (temperature = 61.0°C) and cold water from your cold water faucet (temperature = 22.0°C). What volume of hot water (in liters) must you mix with cold water to get 10.0 L of 37.0°C water? Assume the specific heat of the water is 4.184 J/g・K and that the water has a density of 1.00 g/mL.
Answer:
Volume of hot water required = 3.85L
Explanation:
Suppose volume of hot Then volume of water required cold water = = x L (10.0-x) L
Heat given by hot water (Q₁)
= mass of hot water x heat capacity of water X AT
= x L * 4.184 * J / g. к x(61.0-37.0) °℃.
And Heat absorbed by cold water (Q₂) = (10.0-x) L x 4.184 J/g*k x(37+0 -220) C
Since energy is consumed, Q₁ = Q2.
i.e. X*l *4.184*J/g*k*24C = (10.0-x)L x 184 5
24 x 15 (10.0-x) = 150. - 15x
x = 150. (24+15) = 3.846
So, volume of hot water required. = 3.85 L
When the temperature of the water increases the water becomes hot.
According to the question the volume of hot water required = 3.85L.
Suppose volume of hot Then the volume of water required cold water is [tex]x L (10.0-x) L[/tex]
All the data are given in the question, which is as follows:-
Heat has given by hot water (Q₁)The formula we are going to use is as follows:-
= mass of hot water x heat capacity of water X AT
= [tex]x L * 4.184 *(61.0-37.0) ^oC[/tex]
The heat absorbed by cold water (Q₂) = [tex](10.0-x) L *4.184 *(37+0 -220) ^oC[/tex]
Since energy is consumed, Q₁ = Q2.
[tex]X*l *4.18424C = (10.0-x)L * 184 524 * 15 (10.0-x) = 150. - 15xx = 150. (24+15) = 3.846[/tex]
Hence, the volume of hot water required is = 3.85 L
For more information, refer to the link:-
https://brainly.com/question/2817451
Water has a density of 1.00 g/mL. If you put an object that has a density of 0.79 g/mL into water, it will sink to the
bottom.
ANSWER:
True
False
Answer:
False
Explanation:
An object with a density greater than 1.00g/mL (greater than the density of water) will sink. An object with a density less than the density of water, will float.
If the water has a density of 1.00 g/mL. If you put an object that has a density of 0.79 g/mL into water, it will sink to the bottom, this statement is false.
What is density?The density of an actual content is its mass per unit volume. The most common symbol for density is d, but the Latin letter D can also be used.
Three of an object's most fundamental properties are mass, volume, and density. Mass describes how heavy something is, volume describes its size, and density is defined as mass divided by volume.
The density of something is a measure of how heavy it is in relation to its size. When an artifact is more dense than water, it plunges; when an object is less dense than water, it floats.
Density is a property of a substance that is independent of the amount of substance.
As in the given scenario, water is having density 1 g/mL and object in having density less then it so it will float on water.
Thus, the given statement is false as the material will not sink, rather it will float on water.
For more details regarding density, visit:
https://brainly.com/question/15164682
#SPJ2
What is the percent nitrogen in each of the following compounds?
(a) NaNO 3
(b) NH 4 C1
(c) N 2 H4
(d) N20
Answer:
N 2 H4
Explanation:
A calorimeter measures the ______ involved in reactions or other processes by measuring the ______ of the materials _____ in the process. The calorimeter is _______ to prevent transfer of heat to outside the device.
Answer:
heat; temperature; surrounding; insulated.
Explanation:
A calorimeter can be defined as a scientific instrument or device designed and developed for measuring the heat involved in reactions or other processes, especially by taking the measurement of the temperature of the materials surrounding the process.
Basically, a calorimeter is insulated using materials with very high level of resistivity so as to prevent heat transfer to the outside of the device (calorimeter). Some of the components that make up a simple calorimeter are thermometer, an interior styrofoam cup, an exterior styrofoam cup, cover, etc.
Additionally, a calorie refers to the amount of heat required to raise the temperature of a gram of water by one degree Celsius (°C).
3. Does entropy increase or decrease in the following processes?
A. Complex carbohydrates are metabolized by the body, converted into simple sugars.
Answer: Increase
es-lesund
B. Steam condenses on a glass surface.
Answer:
decreare
-->
MgCl2(s)
C. Mg(s) + Cl2(g)
correct
Answer:
Answer:
hope it helps much as you can
I have an unknown volume of gas held at a temperature of 115 K in a container with a pressure of 60atm. If by increasing the temperature to 225 K and decreasing the pressure to 30. atm causes the volume of the gas to be 29 liters, how many liters of gas did I start with?
SHOW YOUR WORK
Explanation:
here is the answer to your question.
c) Solar energy is the source of all forms of energy.give reasons
Answer:
All energy is made by the sun because without the sun there would be no humans to produce other energy
Explanation:
We use many different forms of energy here on earth, but here’s the thing: almost all of them originate with the sun, not just light and heat (thermal) energy! The law of conservation of energy says that energy can’t be created or destroyed, but can change its form. And that’s what happens with energy from the sun—it changes into lots of different forms:
Plants convert light energy from the sun into chemical energy (food) by the process of photosynthesis. Animals eat plants and use that same chemical energy for all their activities.
Heat energy from the sun causes changing weather patterns that produce wind. Wind turbines then convert wind power into electrical energy.
Hydroelectricity is electrical energy produced from moving water, and water flows because heat energy from the sun causes evaporation that keeps water moving through the water cycle.
Right now, much human activity uses energy from fossil fuels such as coal, oil, and natural gas. These energy sources are created over very long periods of time from decayed and fossilized living matter (animals and plants), and the energy in that living matter originally came from the sun through photosynthesis.
solar panel shows what is the ultimate source of energy
Classify each of the following as either macroscopic, microscopic or particulate:
a. a red blood cell.
b. a sugar molecule.
c. baking powder.
Answer:
Classify each of the following as either macroscopic, microscopic or particulate:
a. a red blood cell.
b. a sugar molecule.
c. baking powder.
Explanation:
a. A red blood cell is a microscopic particle.
It can be viewed under a microscope.
b. A sugar molecule is also a microscopic substance.
It can be viewed under a microscope.
c. Baking powder is macroscopic substance.
Calculate the moment of inertia of a CH³⁵CL₃ molecule around a rotational axis that contains the C-H bond. The C-Cl bond length is 177pm and the HCCl angle is 107⁰f
Answer:
The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".
Explanation:
According to the question,
[tex]R_{C-Cl} = 177 \ pm[/tex]
or,
[tex]=1.77\times 10^{-10} \ m[/tex]
[tex]\alpha = 107^{\circ}[/tex]
[tex]m_{Cl}=34.97 \ m.u[/tex]
or,
[tex]=34.97\times 1.66\times 10^{-27}[/tex]
[tex]=5.807\times 10^{-26} \ kg[/tex]
The moment of inertia around the rotational axis will be:
⇒ [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]
By putting the values, we get
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]
[tex]=4.991\times 10^{-45} \ kg.m^2[/tex]
Copper reacts with sulfuric acid to yield copper(II) sulfate, water, and sulfur dioxide.
a. True
b. False
Answer:
B. False
Explanation:
Water does NOT react too copper. Copper does not react with water because the oxygen in water is locked into a compound with one part oxygen and two parts hydrogen. Copper oxide is a compound from the two elements copper and oxygen. Everything else listed does but since water is on this list it is false.
The data shows the number of years that 30 employees worked for an insurance company before retirement. is the population mean for the number of years worked, and % of the employees worked for the company for at least 10 years. (Round off your answers to the nearest integer.)
Answer:
14
73%
Explanation:
The mean Number of years worked :
. (sum of service years) / employees in the
(8+13+15+3+13+28+4+12+4+26+29+3+10+3+17+13+15+15+23+13+12+1+14+14+17+16+7+27+18+24) /
(417 / 30)
= 13.9 years
= 14 years
The percentage of employees who have worked for atleast 10 years :
Number of employees with service years ≥ 10 years = 22 employees
Total number of employees
Percentage (%) = (22 / 30= * 100% = 0.7333 * 100% = 73.33% = 73%
the ability of organism to sense changes in its body is an example of
Answer:
the ability of organism to sense changes in its body is an example of responsiveness.Hope it is helpful to you
1 or 2 topics or two lessons should be explained in an illustrated childrens book minimum of 10 pages must have 3 or more sentences
Answer:
Yes because same topic are long
Draw the major product that is obtained when (2S,3S)-2-Bromo-3-phenylbutane is treated with sodium ethoxide.
Answer:
Explanation:
The mechanism of the reaction is shown in the diagram below. From the reaction, when (2S,3S)-2-Bromo-3-phenylbutane undergoes a reaction with sodium ethoxide (ETONa), the E2 elimination reaction is put into place. Here, the H and the leaving group are antiperiplanar to one another and the reaction mechanism proceeds to form an isomeric (E)-2-phenyl-2butane as the major product.