A swimmer heading directly across a river that is 200 m wide reaches the opposite bank in 6 min 40 s. During this swim, she is swept downstream 480 m. How fast can she swim in still water

Answers

Answer 1

Answer:

The speed of the swimmer in stil water is 0.5 m/s

Explanation:

Given;

total time taken to swim across = 6 mins 40 s = (6 x 60s) + 40 s = 400 s

width of the river, = 200 m

Please find the image attached for explanation.

A Swimmer Heading Directly Across A River That Is 200 M Wide Reaches The Opposite Bank In 6 Min 40 S.

Related Questions

A 0.0780 kg lemming runs off a
5.36 m high cliff at 4.84 m/s. What
is its kinetic energy (KE) when it
is 2.00 m above the ground?

Answers

Answer:

0.913

Explanation:

k.e=1/2mv square

k.e=1/2×0.078g×23.4256m/s square

k.e=0.913J

The kinetic energy when the lemming is 2.00 m above the ground is approximately 2.56 J (Joules).

To calculate the kinetic energy (KE) of the lemming when it is 2.00 m above the ground, we need to consider the change in its potential energy (PE) as it falls.

The potential energy at a height h is given by:

PE = m g h

Where:

m is the mass of the lemming (0.0780 kg)

g is the acceleration due to gravity (9.8 m/s²)

h is the height above the ground

Given:

Height of the cliff (h) = 5.36 m

Velocity of the lemming (v) = 4.84 m/s

Height above the ground (h') = 2.00 m

The lemming will lose potential energy as it falls from the cliff, which is converted into kinetic energy. Therefore, the kinetic energy when it is 2.00 m above the ground is equal to the difference between its total initial kinetic energy and the potential energy at that height.

Initial potential energy at the top of the cliff:

PE_initial = m g h

Potential energy when it is 2.00 m above the ground:

PE_final = m * g * h'

The change in potential energy is given by:

ΔPE = PE_final - PE_initial

The kinetic energy (KE) when it is 2.00 m above the ground:

KE = ΔPE = -ΔPE (due to energy conservation)

Let's calculate the potential energy at the top of the cliff and when it is 2.00 m above the ground:

PE_initial = m ×g × h

= 0.0780 kg × 9.8 m/s² × 5.36 m

PE_initial ≈ 4.09 J

PE_final = m ×g × h'

= 0.0780 kg ×9.8 m/s² ×2.00 m

PE_final ≈ 1.53 J

The change in potential energy (ΔPE) is:

ΔPE = PE_final - PE_initial = 1.53 J - 4.09 J

ΔPE ≈ -2.56 J

Since the change in potential energy is equal to the kinetic energy, the kinetic energy when the lemming is 2.00 m above the ground is approximately 2.56 J (Joules).

To know more about kinetic energy

https://brainly.com/question/999862

#SPJ2

g you hang an object of mass m on a spring with spring constant k and find that it has a period of T. If you change the spring to one that has a spring constant of 2 k, the new period is

Answers

Answer:

a)   T = 2π [tex]\sqrt{\frac{m}{k} }[/tex],  b)  T ’= [tex]\frac{1}{\sqrt{2} } T[/tex]

Explanation:

a) A system formed by a mass and a spring has a simple harmonic motion with angular velocity

          w² = k / m

angular velocity and period are related

          w = 2π /T

     

we substitute

          4π²/ T² = k / m

           T = 2π [tex]\sqrt{\frac{m}{k} }[/tex]

b) We change the spring for another with k ’= 2 k, let's find the period

           T ’= 2π [tex]\sqrt{\frac{m}{k'} }[/tex]

           T ’= 2π [tex]\sqrt{ \frac{m}{2k} }[/tex]

           T ’= [tex]\frac{1}{\sqrt{2} } T[/tex]

LC-circuit of the radio receiver consists of variable capacitor (Cmin= 1 pF, Cmax=10 pF) and inductor
with inductance 1 µH. Determine the wavelength range of this radio receiver.

Answers

Answer:

the radio can tune wavelengths between 1.88 and 5.97 m

Explanation:

The signal that can be received is the one that is in resonance as the impedance of the LC circuit.

         X = X_c - X_L

         X = 1 / wC - w L

at the point of resonance the two impedance are equal so their sum is zero

         X_c = X_L

         1 / wC = w L

         w² = 1 / CL

         w = [tex]\sqrt{\frac{1}{CL} }[/tex]

let's look for the extreme values

C = 1  10⁻¹² F

         w = [tex]\sqrt{\frac{1}{ 1 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]

         w = [tex]\sqrt{1 \ 10^{18}}[/tex]

         w = 10⁹ rad / s

C = 10 10⁻¹² F

         w = [tex]\sqrt{\frac{1}{10 \ 10^{-12} \ 1 \ 10^{-6}} }[/tex]Ra 1/10 10-12 1 10-6

         w = [tex]\sqrt{0.1 \ 10^{18}}[/tex]Ra 0.1 1018

         w = 0.316 10⁹ rad / s

Now the angular velocity and the frequency are related

           w = 2π f

           f = w / 2π

the light velocity  is

           c = λ f

           λ = c / f

we substitute

          λ = c 2π/w

               

we calculate the two values

 C = 1 pF

          λ₁ = 3 10⁸ 2π / 10⁹

          λ₁= 18.849 10⁻¹ m

          λ₁ = 1.88 m

C = 10 pF

           λ₂ = 3 10⁸ 2π / 0.316 10⁹

           λ₂ = 59.65 10⁻¹ m

           λ₂ = 5.97 m

so the radio can tune wavelengths between 1.88 and 5.97 m

Increasing the surfactant concentration above the critical micellar concentration
will result in: Select one:
1.An increase in surface tension
2. A decrease in surface tension
3. No change in surface tension
4.None of the above​

Answers

Answer:

Explanation:no change in surface tension

An increase in the surfactant concentration above the critical micellar concentration will result in no change in surface tension.

In water-gas interface, surfactant reduces the surface tension of water by adsorbing at the liquid–gas interface.

Also, in oil-water interface, surfactant reduces the interfacial tension between oil and water by adsorbing at the oil-water interface.

The concentration of the surfactant can increase to a level called critical micellar concentration, which is an important characteristic of a surfactant.

As the concentration of the surfactant increases before critical micellar concentration, the surface tension changes strongly with an increase in the concentration of the surfactant. After reaching the critical micellar concentration, any further increase in the concentration will result in no change of the surface tension, that is the surface tension will be constant.

Thus, increasing the surfactant concentration above the critical micellar concentration will result in no change in surface tension.

Learn more here: https://brainly.com/question/15785205

A child throws a ball vertically upward to a friend on a balcony 28 m above him. The friend misses the ball on its upward flight but catches it as it is falling back to earth. If the friend catches the ball 3.0 s after it is thrown, at what time did it pass him on its upward flight

Answers

Answer:

[tex]t=1.9 sec[/tex]

Explanation:

From the question we are told that:

Height [tex]h=28m[/tex]

Time [tex]t=3s[/tex]

Generally the Newton's equation for Initial velocity upward is mathematically given by

 [tex]s=ut+\frtac{1}{2}at^2[/tex]

 [tex]28=3u-\frac{1}{2}*9.8*3^2[/tex]

 [tex]u=24.03m/s[/tex]

Generally the velocity at  elevation and depression occurs  as ball arrives and passes through S=28

 [tex]v=\sqrt{24.03-2*9.8*28}[/tex]

 [tex]v=5.35m/s and -5.35m/s[/tex]

Generally the Newton's equation for time to reach initial velocity  is mathematically given by

 [tex]v=u+at[/tex]

 [tex]5.35=24.03-9.8t[/tex]

 [tex]t=\frac{28.03-5.35}{9.8}[/tex]

 [tex]t=1.9 sec[/tex]

Who stated that man is an animal

Answers

aristotle is the answer to this question

Wind is caused by ___. the earth's tilt the Coriolis effect temperature differences humidity

Answers

I am guessing wind is caused by climate change in the atmosphere

Explanation:

wind is cause by climate change in the atmosphere that depends weather is is breezy really cold or rain and cold

Answer:

caused by the uneven heating of the Earth by the sun and the  own rotation.

Determine the magnitude of the minimum acceleration at which the thief can descend using the rope. Express your answer to two significant figures and include the appropriate units.

Answers

Answer: hello your question is incomplete below is the missing part

A 69-kg petty thief wants to escape from a third-story jail window. Unfortunately, a makeshift rope made of sheets tied together can support a mass of only 58 kg.

answer:

To 2 significant Figures = 1.6 m/s^2

Explanation:

Calculate the magnitude of minimum acceleration at which the thief can descend

we apply the relation below

Mg - T = Ma  --- ( 1 )

M = 69kg

g = 9.81

T = 58 * 9.81

a = ? ( magnitude of minimum acceleration)

From equation 1

a = [ ( 69 * 9.81 ) - ( 58 * 9.81 ) ] / 69

  = 1.5639 m/s^2

To 2 significant Figures = 1.6 m/s^2

Page
E QON
1 What is force ? Write its unit and mention
any
three effects of the force.​

Answers

Force is a push or a pull that changes or trends to change the state of rest or uniform motion of an object or changes the direction or shape of an object. It causes objects to accelerate. SI unit is Newton.

1) Can change the state of an object : For example, pushing a heavy stone in order to move it.

2) May change the speed of an object if it is already moving. For example, catching a ball hit by a batsman.

3) May change the direction of motion of an object.

A 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

Answers

Answer:

3.6 KJ

Explanation: Given that a 70-kg boy is surfing and catches a wave which gives him an initial speed of 1.6 m/s. He then drops through a height of 1.60 m, and ends with a speed of 8.5 m/s. How much nonconservative work (in kJ) was done on the boy

The workdone = the energy.

There are two different energies in the scenario - the potential energy (P.E ) and the kinetic energy ( K.E )

P.E = mgh

P.E = 70 × 9.8 × 1.6

P.E = 1097.6 J

P.E = 1.098 KJ

K.E = 1/2mv^2

K.E = 1/2 × 70 × 8.5^2

K.E = 2528.75 J

K.E = 2.529 KJ

The non conservative workdone = K.E + P.E

Work done = 1.098 + 2.529

Work done = 3.63 KJ

Therefore, the non conservative workdone is 3.6 KJ approximately

A helicopter is ascending vertically witha speed of 5.40 m/s. At a height of 105 m above the earth a package is dropped from the helicopter. How much time does is take for the package to reach the ground

Answers

Answer: 5.21 s

Explanation:

Given

Helicopter ascends vertically with [tex]u=5.4\ m/s[/tex]

Height of helicopter [tex]h=105\ m[/tex]

When the package leaves the helicopter, it will have the same vertical velocity

Using equation of motion

[tex]\Rightarrow h=ut+\dfrac{1}{2}at^2\\\\\Rightarrow 105=-5.4t+0.5\times 9.8t^2\\\Rightarrow 4.9t^2-5.4t-105=0\\\\\Rightarrow t=\dfrac{5.4\pm \sqrt{5.4^2+4\times 4.9\times 105}}{2\times 4.9}\\\\\Rightarrow t=\dfrac{5.4\pm 45.68}{9.8}\\\\\Rightarrow t=5.21\ s\quad \text{Neglect negative value}[/tex]

So, package will take 5.21 s to reach the ground

ou charge a piece of aluminum foil (mass = 4.99 g) by touching it to a charged rod. The charged rod gives the aluminum foil a charge of 13 µC. Your professor brings a charged plate over and tells you to put the aluminum foil on top of the plate. To your surprise the aluminum foil hovers motionless in the air above it! Calculate the value of the electric field from the charged plate (assume it is a uniform field and the aluminum foil is a point charge).

Answers

Answer:

The appropriate answer is "3761.69 N/C".

Explanation:

Given that:

Mass,

m = 4.99 g

or,

   = [tex]4.99\times 10^{-3} \ kg[/tex]

Charge,

q = 13 µC

or,

  = [tex]13\times 10^{-6} \ C[/tex]

As we know,

⇒ [tex]F=mg=Eq[/tex]

then,

⇒ [tex]E=\frac{mg}{q}[/tex]

By putting the values, we get

        [tex]=\frac{4.99\times 10^{-3}\times 9.8}{13\times 10^{-6}}[/tex]

        [tex]=3761.69 \ N/C[/tex]

An object with mass m = 0.56 kg is attached to a string of length r = 0.72 m and is rotating with an angular velocity ω = 1.155 rad/s. What is the centripetal force acting in the object?

Answers

Answer:

The centripetal force is 0.54 N.

Explanation:

mass, m = 0.56 kg

radius, r = 0.72 m

angular speed, w = 1.155 rad/s

The centripetal force is given by

[tex]F = m r w^2\\\\F =0.56\times 0.72\times 1.155\times 1.155\\\\F = 0.54 N[/tex]

Determine the tension in the string that connects M2 and M3.

Answers

therefore mass m1=4.8 kg and the tension in the horizontal spring T2=10N.

HOPE IT HELPS YOU

PLEASE Mark me as brainliest.

☺️☺️☺️☺️☺️☺️☺️☺️☺️☺️✌️✌️✌️✌️✌️✌️✌️✌️❤️❤️❤️

A police car in hot pursuit goes speeding past you. While the siren is approaching, the frequency of the sound you hear is 5500 Hz. When the siren is receding away from you, the frequency of the sound is 4500 Hz. Use the Doppler formula to determine the velocity of the police car. Use vsound=330 m/s.
What is the velocity v of the police car ?

Answers

Vs = 34m/s
I don’t have an explanation my apologies.

When a police car in hot pursuit goes speeding past you, the velocity v of the police car is 33 m/s.

What is the Doppler formula?

The formula is used when there exists a Doppler shift. The Doppler shift is due to the relative motion of sound waves between the source and observer.

The frequency increase by the Doppler effect is represented by the formula

f' = [tex]\dfrac{v-v_{o} }{v-v_{s} }[/tex]× f

Given the frequency of source f' is 5500 Hz . Velocity of the observer v₀  is 0.

Substituting the value into the equation will give us the velocity of the police car.

[tex]5500 = \dfrac{330}{330-v} \times f[/tex]...........(1)

When the car is receding, the frequency of the receiving signal f = 4500 Hz.

[tex]4500 = \dfrac{330}{330+v} \times f[/tex]..........(2)

Solving both equation, we get the velocity of a police car.

v = 33 m/s

Therefore, the velocity v of the police car is 33 m/s.

Learn more about Doppler equation.

https://brainly.com/question/15318474

#SPJ2

A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30.08 as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp.

Answers

Answer:

2.55 m/s

Explanation:

A 3.00-kg crate slides down a ramp. the ramp is 1.00 m in length and inclined at an angle of 30° as shown in the figure. The crate starts from rest at the top, experiences a constant friction force of magnitude 5.00 N, and continues to move a short distance on the horizontal floor after it leaves the ramp. Use energy methods to determine the speed of the crate at the bottom of the ramp.

Solution:

The work done by friction is given as:

[tex]W_f=F_f\Delta S\\\\Where\ F_f\ is\ the \ frictional\ force=-5N(the\ negative \ sign\ because\ it\\acts\ opposite\ to \ direction\ of\ motion),\Delta S=slope\ length=1\ m\\\\W_f=F_f\Delta S=-5\ N*1\ m=-5J[/tex]

The work done by gravity is:

[tex]W_g=F_g*s*cos(\theta)\\\\F_g=force\ due\ to\ gravity=mass*acceleration\ due\ to\ gravity=3\ kg*9.81\\m/s^2, s=1\ m, \theta=angle\ between\ force\ and\ displacement=90-30=60^o\\\\W_g=3\ kg*9.81\ m/s^2*1\ m*cos(60)=14.72\ J\\\\The\ Kinetic\ energy(KE)=W_f+W_g=14.72\ J-5\ J=9.72\ J\\\\Also, KE=\frac{1}{2} mv^2\\\\9.72=\frac{1}{2} (3)v^2\\\\v=\sqrt{\frac{2*9.72}{3} } =2.55\ m/s[/tex]

the 200 g baseball has a horizontal velocity of 30 m/s when it is struck by the bat, B, weighing 900 g, moving at 47 m/s. during the impact with the bat, how many impules of importance are used to find the final velocity of the bat

Answers

Solution :

Given :

Mass of the baseball, m = 200 g

Velocity of the baseball, u = -30 m/s

Mass of the baseball after struck by the bat, M = 900 g

Velocity of the baseball after struck by the bat, v = 47 m/s

According to the conservation of momentum,

[tex]Mv+mu=Mv_1+mv_2[/tex]

(900 x 47) + (200 x -30)  = (900 x [tex]v_1[/tex]) + (200 x [tex]v_2[/tex])

36300 =  (900 x [tex]v_1[/tex]) + (200 x [tex]v_2[/tex])

[tex]9v_1 + 2v_2 = 363[/tex] ..............(i)

[tex]9v_1 = 363 - 2v_2[/tex]

[tex]v_1=\frac{363 - 2v_2}{9}[/tex]

The mathematical expression for the conservation of kinetic energy is

[tex]\frac{1}{2}Mv^2+\frac{1}{2}mu^2 = \frac{1}{2}Mv_1^2+\frac{1}{2}mv_2^2[/tex]

[tex]\frac{1}{2}(900)(47)^2+\frac{1}{2}(200)(-30)^2 = \frac{1}{2}(900)v_1^2+\frac{1}{2}(200)v_2^2[/tex]    ................(ii)

[tex]$(9)(14)^2+(2)(-30)^2 = (9)v_1^2+2v_2^2$[/tex]  

[tex]21681 = 9v_1^2+2v_2^2[/tex]

Substituting (i) in (ii)

[tex]21681= 9\left( \frac{363-2v_2}{9}\right)^2+2v_2^2[/tex]

[tex](363-2v_2)^2+18v_2^2=195129[/tex]

[tex](363)^2+18v_2^2-2(363)(2v_2)+(363)^2-195129=0[/tex]

[tex]22v_2^2-145v_2-63360=0[/tex]

Solving the equation, we get

[tex]v_2=96 \ m/s, -30 \ m/s[/tex]

The negative velocity is neglected.

Therefore, substituting 96 m/s for [tex]v_2[/tex] in (i), we get

[tex]v_1=\frac{363-(2 \times 96)}{9}[/tex]

     = 19

Thus, only impulse of importance is used to find final velocity.

A parallel-plate capacitor is connected to a battery of electric potential difference V. If the plate separation is decreased, do the following quantities increase, decrease, or remain the same: (a) the capacitor’s capacitance, (b) the potential difference across the capacitor, (c) the charge on the capacitor, (d) the energy stored by the capacitor, (e) the magnitude of the electric field between the plates, and (f ) the energy density of that electric field?

Answers

Answer:

a) increases.

b) remains the same.

c) increases.

d) increases.

e) increases.

f) increases.

Explanation:

a)

Since the capacitance of a parallel-plate  depends only on geometric constants and the dielectric between the plates, we can use the following expression to asess the value of the capacitance:

       [tex]C = \epsilon_{0}*\frac{A}{d} (1)[/tex]

       where ε₀ = permitivitty of  free space

                   A = area of one of the plates

                   d=  plate separation

As we can see, if the plate separation is decreased, the value of the capacitance must increase.

b)  

Per definition the capacitance explains the relationship between the charge on one of the conductors, and the potential difference between them, as follows:

        [tex]C = \frac{Q}{V} (2)[/tex]

Assuming that the capacitor remains connected to the battery when the plate separation is decreased, since the voltage can't change (as it must hold the same voltage than previously since it's directly connected to the battery) the potential difference between plates must remain the same.

c)

From B, we know that V in (2) must remain constant. Since we know from (1) that C must increase, this means from (2) that Q must increase too.

d)

The energy stored in the electric field between the plates can be expressed as follows in terms of the capacitance C and the potential difference V:

       [tex]U = \frac{1}{2}* C*V^{2} (3)[/tex]

From (1) in a) and from b) we know that the capacitance C must increase whilst V must remain the same, so U in (3) must increase also.

e)

In the capacitor the magnitude of the Electric field between the plates is constant, and is related to the potential difference between them by the following linear relationship:

       [tex]V = E*d (4)[/tex]

Since we know that V must remain the same, if the distance d decreases, the electris field E must increase in the same ratio in order to keep the equation balanced.

f)

The energy density of the electric field is defined as the energy stored between plates by unit volume, as follows:

       [tex]u = \frac{U}{v} = \frac{\frac{1}{2}* C*V^{2}}{A*d} =\frac{1}{2}* \epsilon_{0}*\frac{A*V^{2} }{A*d*d} = \frac{1}{2} *\epsilon_{0}*E^{2} (5)[/tex]

Since it's proportional to the square of  the electric field, and we know from e) that the magnitude of the electric field must increase, u must increase too.

A golf ball is dropped from rest from a height of 8.40 m. It hits the pavement, then bounces back up, rising just 5.60 m before falling back down again. A boy then catches the ball when it is 1.40 m above the pavement. Ignoring air resistance, calculate the total amount of time that the ball is in the air, from drop to catch.

Answers

Answer:

t1= 8.40/10 =.84 s

t2 = 5.60/10 = .56s

t3= 1.4/10 = .14s

total time = 1.54 sec

A 55 kg person is in a head-on collision. The car's speed at impact is 12 m/s. Estimate the net force on the person if he or she is wearing a seat belt and if the air bag deploys.

Answers

1.244 m per second the person driving will go

Your car breaks down in the middle of nowhere. A tow truck weighing 4000 lbs. comes along and agrees to tow your car, which weighs 2000 lbs., to the nearest town. The driver of the truck attaches his cable to your car at an angle of 20 degrees to horizontal. He tells you that his cable has a strength of 500 lbs. He plans to take 10 secs to tow your car at a constant acceleration from rest in a straight line along a flat road until he reaches the maximum speed of 45 m.p.h. Can the driver carry out the plan

Answers

Answer:

F = 1010 Lb

the tension on the cable is greater than its resistance, which is why the plan is not viable

Explanation:

For this exercise we can use the kinematic relations to find the acceleration and with Newton's second law find the force to which the cable is subjected.

          v = v₀ + a t

how the car comes out of rest v₀ = 0

          a = v / t

let's reduce to the english system

          v = 45 mph (5280 ft / 1 mile) (1h / 3600) = 66 ft / s

let's calculate

          a = 66/10

          a = 6.6 ft / s²

now let's write Newton's second law

X axis

         Fₓ = ma

with trigonometry

         cos 20 = Fₓ / F

         Fₓ = F cos 20

we substitute

          F cos 20 = m a

          F = m a / cos20

          W = mg

          F = [tex]\frac{W}{g} \ \frac{a}{cos 20}[/tex]

let's calculate

          F = [tex]\frac{2000}{32} \ \frac{6.6 }{cos20}[/tex](2000/32) 6.6 / cos 20

          F = 1010 Lb

Under these conditions, the tension on the cable is greater than its resistance, which is why the plan is not viable.

what change occurs to the mass of an object when a unbalanced

Answers

Answer:

The mass decreases

Explanation:

Just smart

1000 grams of water is heated from 0 degree to 200 degree . The specific heat of water is 4186 j/kg.°C. Estimate the change in entropy of the water.​

Answers

Answer:2

Explanation:

Human vision cuts off on the red side of the spectrum at about 675 nm. What is the energy of a photon (in J) of this wavelength?

Answers

Answer:

The energy of a photon is 2.94x10⁻¹⁹ J.

Explanation:

The energy of the photon is given by:

[tex] E = \frac{hc}{\lambda} [/tex]  

Where:

h: is Planck's constant = 6.62x10⁻³⁴ J.s

c: is the speed of light = 3.00x10⁸ m/s

λ: is the wavelength = 675 nm

Hence, the energy is:

[tex] E = \frac{hc}{\lambda} = \frac{6.62 \ccdot 10^{-34} J.s*3.00 \cdot 10^{8} m/s}{675 \cdot 10^{-9} m} = 2.94 \cdot 10^{-19} J [/tex]

Therefore, the energy of a photon is 2.94x10⁻¹⁹ J.

I hope it helps you!

turn this scentence to repirted speach.

i ate icecream
She said that..........​

Answers

Answer:

dhfhffuththt9tr8tujtngigjtjrjrjrurur

Fvhjgxvbbdfhj if Dan kf xdhgxzsf

An 8.50 kg point mass and a 14.5 kg point mass are held in place 50.0 cm apart. A particle of mass (m) is released from a point between the two masses 12.0 cm from the 8.50 kg mass along the line connecting the two fixed masses.Find the magnitude of the acceleration of the particle.

Answers

Answer:

[tex]a=2.8*10^{-9}m/s[/tex]

Explanation:

From the question we are told that:

First Mass [tex]m=8.50kg[/tex]

2nd Mass [tex]m=14.5kg[/tex]

Distance

[tex]d_1=50=>0.50m\\\\d_2=>12cm=>0.12m[/tex]

Generally the Newtons equation for Gravitational force is mathematically given by

[tex]F_n=\frac{Gm_nm}{(r_n)^2}[/tex]

Therefore

Initial force on m

[tex]F_1=\frac{Gm_1m}{(r_1)^2}[/tex]

Final force on m

[tex]F_2=\frac{Gm_2m}{(r_2)^2}\\\\F=\frac{Gm_1m}{(r_1)^2}-\frac{Gm_2m}{(r_2)^2}[/tex]

Acceleration of m

[tex]a=\frac{F}{m}\\\\a=\frac{Gm_1}{r_1^2}-\frac{Gm_2}{r_2^2}[/tex]

[tex]a=6,67*10^{-11}{\frac{8.5}{0.12}}-\frac{14.5}{0.50}[/tex]

[tex]a=2.8*10^{-9}m/s[/tex]

A 1 500-kg car rounds an unbanked curve with a radius of 52 m at a speed of 12.0 m/s. What minimum coefficient of friction must exist between the road and tires to prevent the car from slipping

Answers

Explanation:

The centripetal force [tex]F_c[/tex] on the car must equal the frictional force f in order to avoid slipping off the road. Let's apply Newton's 2nd law to the y- and x-axes.

[tex]y:\:\:\:\:N - mg = 0[/tex]

[tex]x:\:\:F_c = f \Rightarrow \:\:\:m \dfrac{v^2}{r} = \mu N[/tex]

or

[tex]m \dfrac{v^2}{r} = \mu mg[/tex]

Solving for [tex]\mu[/tex],

[tex]\mu = \dfrac{v^2}{gr} = \dfrac{(12.0\:\frac{m}{s})^2}{(9.8\:\frac{m}{s^2})(52\:m)} = 0.28[/tex]

can anyone answer this fast pls

Answers

i believe the answer would be 4.5. because it wouldnt be c or d. and 2 seems too small.

13. What type of lens bends light outwards and away from a point?
concave

Answers

Answer:

No,it isn't concave. The correct answer is convex lens.

Explanation:

A lens is a piece of transparent material bound by two surfaces of which at least one is curved. A lens bound by two spherical surfaces bulging outwards is called a bi-convex lens or simply a convex lens. A single piece of glass that curves outward and converges the light incident on it is also called a convex lens.

Convex lens is the answer.

See the attached diagram.

A train starts from rest and accelerates uniformly until it has traveled 5.6 km and acquired a forward velocity of The train then moves at a constant velocity of for 420 s. The train then slows down uniformly at until it is brought to a halt. The acceleration during the first 5.6 km of travel is closest to which of the following?

a. 0.19 m/s^2
b. 0.14 m/s^2
c. 0.16 m/s^2
d. 0.20 m/s^2
e. 0.17 m/s^2

Answers

Answer:

The acceleration during the first 5.6 km of travel is closest to 0.16 m/s²    

Option c) 0.16 m/s² is the correct answer.

Explanation:

Given the data in the question;

since the train starts from rest,

Initial velocity; u = 0 m/s

final velocity; v = 42 m/s

distance covered S = 5.6 km = ( 5.6 × 1000 )m = 5600 m

acceleration a = ?

From the third equation of motion;

v² = u² + 2as

we substitute in our values

( 42 )² = ( 0 )² + [ 2 × a × 5600 ]

1764 = 0 + [ 11200 × a ]

1764 = 11200 × a

a = 1764 / 11200

a = 0.1575 ≈ 0.16 m/s²          { two decimal place }

Therefore, The acceleration during the first 5.6 km of travel is closest to 0.16 m/s²    

Option c) 0.16 m/s² is the correct answer.

Other Questions
What is the approximate sector area of a sector defined by minor arc CB? Could someone please help me with this??? Assume you are analyzing the market opportunity of a distance learning company, Learnmore, that creates education courses delivered over the Internet for the Fortune 1000 corporate market. Assume that the overall size of the distance learning market is $25 billion. The overall market can be broken down into three major market segments: Corporate, College, and Elementary/High School, each of which accounts for a third of the market. Within the Corporate market, there are two market niches: Fortune 1000, which accounts for 60% of the market, and all others, which together account for 40% of the market. What is Learnmore's realistic market opportunity, approximately Twelve skateboards have 48 wheels. What is the value of the ratio of skateboards to wheels, in simplest form? A. 1/4 B. 4/12 C. 12/48 D. 16/20 2. Angay isang genre na gumagamit ng mahika atiba pang supernatural na penomena bilang punong elementong plota, tema, at/o ganapan.A. Pabula B. DramaC. Pantasya D. Mga Tula How many poles will there be in a stack of telephone piles if there are 58 in the first layer, 57 in the second, 56 in the third, and so on, with 12 in the top layer? Simplify the expression 2 (2 + 4y) + 3x.PLS ANSWER ASAP DUE 9:20 Names for persons, places, things, qualities, feelings, concepts, activities,and measures are Transformation en voz pasiva o activa PLS HELP Find the value of x.A. 4B. 2C. 7D. 14 What kind of phrase is "a former drug-addict"? Sam Smith, a former drug-addict who recently spoke to the youth group, excels at motivating young people. Options: prepositional phrase participial phrase appositive phrase gerund phrase infinitive phrase absolute phrase I need help on this question. I hope you can help! what is the future of globalization ? -3(4x-6)=7-12x(solve)(show work) Solve unit rate problems- in a soccer league the ratio of boys to girls is 4 to 6 there are a total of 50 players in the soccer league determine how many girls play in the soccer league A.30B.20C.10D.50 HELP PLEASE I"LL GIVE 50 POINTS. what is the ratio in simplest form between the length of a side in MNO and the length of it's corresponding side in XYZ Find the area of the triangle. round your answer to the nearest tenth Which river system helped the worlds earliest known civilization develop? A technical machinist is asked to build a cubical steel tank that will hold of water. Calculate in meters the smallest possible inside length of the tank. Round your answer to the nearest . If a ladder reaches 10 feet up on a wall while the base is 3 feet away how tall is the ladder