Answer:
7.8% of the original volume.
Explanation:
From the given information:
Temperature [tex]T_1[/tex] = 22° C = 273 + 22 = 295° C
Pressure [tex]P_1[/tex] = 240 kPa
Temperature [tex]T_2[/tex] = 45° C
At initial temperature and pressure:
Using the ideal gas equation:
[tex]P_1V_1 =nRT_1[/tex]
making V_1 (initial volume) the subject:
[tex]V_1 = \dfrac{nRT_1}{P_1}[/tex]
[tex]V_1 = \dfrac{nR*295}{240}[/tex]
Provided the pressure maintained its rate at 240 kPa, when the temperature reached 45° C, then:
the final volume [tex]V_2[/tex] can be computed as:
[tex]V_2 = \dfrac{nR*318}{240}[/tex]
Now, the change in the volume ΔV = V₂ - V₁
[tex]\Delta V = \dfrac{nR*318}{240}- \dfrac{nR*295}{240}[/tex]
[tex]\Delta V = \dfrac{23nR}{240}[/tex]
∴
The required fraction of the volume of air to keep up the pressure at (240) kPa can be computed as:
[tex]= \dfrac{\dfrac{23nR}{240}}{ \dfrac{295nR}{240}}[/tex]
[tex]= {\dfrac{23nR}{240}} \times { \dfrac{240}{295nR}}[/tex]
[tex]= 0.078[/tex]
= 7.8% of the original volume.
ACCORDING TO NEWTON'S THIRD LAW EVERY ACTION HAS EQUAL AND OPPOSITE REACTION BUT THEN WHY DON'T WE FLY WHEN WE FART??
Answer:
Your fart only has so much force, not nearly enough to launch you into oblivion. Your fart and you still exert a force onto each other, so I guess, hypothetically, you could fly if you really, really try hard enough. Just make sure you don't try too hard and prolapse as a result :)