Answer: the minimum sample size needed = 145
Step-by-step explanation:
Formula for sample size:
[tex]Sample \ size =(\dfrac{z^*\times standard\ deviation}{margin \ of \ error})^2[/tex]
, where z* = Critical z-value
Given: Standard deviation = 2.15
Margin of error = 0.35
Z* for 95% confidence = 1.96
Sample size = [tex](\frac{1.96\times2.15}{0.35})^2[/tex]
[tex]=(12.04)^2\\\\=144.9616\approx145[/tex]
Hence, the minimum sample size needed = 145
Determine the value of x.
1) 14.75
2)15.25
3)11.92
4)18.56
Find the value of x
(it needs to be 20 characters so don’t mind the extra ness ………..)
A manufacturer claims that the mean lifetime,u , of its light bulbs is 51 months. The standard deviation of these lifetimes is 7 months. Sixty bulbs are selected at random, and their mean lifetime is found to be 53 months. Can we conclude, at the 0.1 level of significance, that the mean lifetime of light bulbs made by this manufacturer differs from 51 months?
Perform a two-tailed test. Then fill in the table below.
Carry your intermediate computations to at least three decimal places, and round your responses as specified in the table. (If necessary, consult a list of formulas.)
the null hypothesis:
The alternative hypotehsis:
The type of test statistic (choose Z, t, Chi-square, or F)
The value of the test statistic (round to at least three decimal places:
Can we conclude that the mean lifetime of the bulbs made by this manufacture differ from 51 months?
Answer:
We reject H₀, and conclude thet the mean lifetime of the bulbs differ from 51 month
Step-by-step explanation:
Manufacturing process under control must produce items that follow a normal distribution.
Manufacturer information:
μ = 51 months mean lifetime
σ = 7 months standard deviation
Sample Information:
x = 51 months
n = 60
Confidence Interval = 90 %
Then significance level α = 10 % α = 0.1 α/2 = 0,05
Since it is a manufacturing process the distribution is a normal distribution, and with n = 60 we should use a Z test on two tails.
Then from z- table z(c) for α = 0,05 is z(c) = 1.64
Hypothesis Test:
Null Hypothesis H₀ x = μ
Alternative Hypothesis Hₐ x ≠ μ
To calculate z statistics z(s)
z(s) = ( x - μ ) / σ /√n
z(s) = ( 53 - 51 ) / 7 /√60
z(s) = 2 * 7.746 / 7
z(s) = 2.213
Comparing z(s) and z(c)
z(s) > z(c) then z(s) is in the rejection region
We reject H₀, and conclude thet the mean lifetime of the bulbs differ from 51 month
nd interest for a loan
To pay for an $18,900 truck, Joe made a down payment of $3600 and took out a loan for the rest. On the loan, he paid monthly payments of $338.67 for 4
years.
Answer: He will pay this amount, with interest, over a 4-year period payment that he must make After paying 20% as a down payment, they finance the Determine the monthly payments needed to amortize the loan and months, that payments can be made under each of the following options before the money runs out.
Step-by-step explanation:
thvuvugufugy i need help pls i beg
Answer:
A-10
B- -12
C-3.6
If you cant understand B is -12
A density graph is used to find the probability of a discrete random variable
taking on a range of values.
A. True
B. False
Answer:
False
Step-by-step explanation:
This is false because A density graph is not used to find the probability of a discrete random variable taking on a range of values. This is because you have to use a calculations instead of a graph. The correct how to calculate is: Determine a single event with a single outcome. Identify the total number of outcomes that can occur. Divide the number of events by the number of possible outcomes.
Therefore, it's B ( false).
how can i solve the following
2(x + 3) = x - 4
Answer:
x=-10
Step-by-step explanation:
2(x+3)=x-4
2*x+2*3=x-4
2x+6=x-4
2x-x=-4-6
x=-10
Answer:
[tex]x = - 10[/tex]
Step-by-step explanation:
Let's solve:
[tex]2(x+3)=x−4[/tex]
Step 1: Simplify both sides of the equation.
[tex]2(x+3)=x−4 \\ (2)(x)+(2)(3)=x+−4(Distribute) \\ 2x+6=x+−4 \\ 2x+6=x−4[/tex]
Step 2: Subtract x from both sides.
[tex]2x+6−x=x−4−x \\ x+6=−4[/tex]
Step 3: Subtract 6 from both sides.
[tex]x+6−6=−4−6 \\ x=−10[/tex]
The following set of data represents the ages of the women who won the Academy Award for Best Actress from 1980 - 2003:
31 74 33 49 38 61 21 41 26 80 42 29
33 35 45 49 39 34 26 25 33 35 35 28
Make frequency table using # of classes as per the following criteria:
i) if you are born in Jan, Feb, Mar: No of classes = 5
ii) if you are born in Apr, May, Jun: No of classes = 6
Answer:
Step-by-step explanation:
Given the data :
Using 6 classes :
Class interval ____ Frequency
21 - 30 _________ 6
31 - 40 _________ 10
41 - 50 _________ 5
51 - 60 _________ 0
61 - 70 _________ 1
71 - 80 _________ 2
What is the difference between a bar chart and a histogram?
Answer:
In simple terms, a bar chart is used in summarizing categorical data, where a histogram uses a bar of different heights, it is similar to the bar chart in many terms but the histogram groups the numbers into the ranges while representing the data.
bar chart is a graph in the form of boxes of different heights, with each box representing a different value or category of data, and the heights representing frequencies.
but,
Histogram is graphical display of numerical data in the form of upright bars, with the area of each bar representing frequency.
I will give BRAINLIEST to whoever answers correctly first!!!
Sophie wants to buy a pair of scissors that cost $1.82. If she gives the cashier a five dollar bill, how
much change should she get back?
Answer:
Sophie will get $3.18 back in change.
Step-by-step explanation:
You do 5.00-1.82 and you get 3.18, which is equal to the change that Sophie will get.
PLS HELP!! I NEED TO FIND THE SURFACE AREA OF THIS CYLINDER!!!!!
Answer:
Step-by-step explanation:
you have two disks, and one rectangle
area of the disk = π [tex]r^{2}[/tex]
47 π x 2 = 94 π (for the two disks....
rectangle area = L x W
width = 14
Length = 2*π*r = 14π
area = 14*14π = 196 π
total = 196 π + 94 π = 290 π
Answer:
The surface area of this cylinder is about 923.63 [tex]inches^{2}[/tex].
Step-by-step explanation:
The formula for the surface area of a cylinder is this :
[tex]A = 2\pi rh+2\pi r^{2}[/tex]
"R" is 7, and "h" is 14. Knowing these values, let's solve.
[tex]A = 2\pi rh+2\pi r^{2}[/tex] = 2 · π · 7 · 14 + 2 · π ·72 ≈ 923.62824
The surface area of this cylinder is about 923.63 [tex]inches^{2}[/tex].
Hope this helps, please mark brainliest! :)
Given that events A and B are independent with P(A) = 0.55 and P(B) = 0.72,
determine the value of P(AB), rounding to the nearest thousandth, if necessary.
Answer:
Step-by-step explanation:
For independent events,
P(AB)=P(A)orP(B)
= P(A)uP(B)
=P(A)×P(B)
= 0.55×0.72
P(AB)=0.396
please help I'm not good with word problems
Answer:
7 5/8
Step-by-step explanation:
5+2= 7 3/8+2/8=5/8 7+5/8=7 5/8
Mark the angles and sides of each pair of triangles to indicate that they are congruent. NO LINKS!!!
=========================================================
Explanation:
The order of the lettering is important because the order tells us how the letters pair up.
For DCB and CDJ, we have D and C as the first letters. So that means angle D and angle C are congruent between the triangles. I've marked this in red. The other angles are handled the same way.
The congruences for the segments are then built up from the angles.
While eating your yummy pizza, you observe that the number of customers arriving to the pizza station follows a Poisson distribution with a rate of 18 customers per hour. What is the probability that more than 4 customers arrive in a 10 minute interval
Answer:
0.1848 = 18.48% probability that more than 4 customers arrive in a 10 minute interval.
Step-by-step explanation:
In a Poisson distribution, the probability that X represents the number of successes of a random variable is given by the following formula:
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
In which
x is the number of sucesses
e = 2.71828 is the Euler number
[tex]\mu[/tex] is the mean in the given interval.
Rate of 18 customers per hour.
This is [tex]\mu = 18n[/tex], in which n is the number of hours.
10 minute interval:
An hour has 60 minutes, so this means that [tex]n = \frac{10}{60} = \frac{1}{6}[/tex], and thus [tex]\mu = 18\frac{1}{6} = 3[/tex]
What is the probability that more than 4 customers arrive in a 10 minute interval?
This is:
[tex]P(X > 4) = 1 - P(X \leq 4)[/tex]
In which:
[tex]P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex]
Then
[tex]P(X = x) = \frac{e^{-\mu}*\mu^{x}}{(x)!}[/tex]
[tex]P(X = 0) = \frac{e^{-3}*3^{0}}{(0)!} = 0.0498[/tex]
[tex]P(X = 1) = \frac{e^{-3}*3^{1}}{(1)!} = 0.1494[/tex]
[tex]P(X = 2) = \frac{e^{-3}*3^{2}}{(2)!} = 0.2240[/tex]
[tex]P(X = 3) = \frac{e^{-3}*3^{3}}{(3)!} = 0.2240[/tex]
[tex]P(X = 4) = \frac{e^{-3}*3^{4}}{(4)!} = 0.1680[/tex]
[tex]P(X \leq 4) = P(X = 0) + P(X = 1) + P(X = 2) + P(X = 3) + P(X = 4)[/tex] = 0.0498 + 0.1494 + 0.2240 + 0.2240 + 0.1680 = 0.8152[/tex]
And
[tex]P(X > 4) = 1 - P(X \leq 4) = 1 - 0.8152 = 0.1848[/tex]
0.1848 = 18.48% probability that more than 4 customers arrive in a 10 minute interval.
Express it in slop-intercept form
Answer:
y = ½x -3
Step-by-step explanation:
_____________________
According to the national association of home builders the mean price of an existing single family home in 2018 was $395,000. A real estate broker believes that existing home prices in her neighborhood are lower.
Answer:
[tex]H_o:\mu = 395000[/tex]
[tex]H_a:\mu < 395000[/tex]
Step-by-step explanation:
Given
[tex]\mu = 395000[/tex] -- mean price
Required
Determine the null and alternate hypotheses
From the question, we understand that the mean price is:
[tex]\mu = 395000[/tex]
This represents the null hypothesis
[tex]H_o:\mu = 395000[/tex]
The belief that the home prices are lower represents the alternate hypothesis
Lower means less than
So, the alternate hypothesis is:
[tex]H_a:\mu < 395000[/tex]
Derive the equation of the parabola with a focus at (0, 1) and a directrix of y = -1.
Answer:
The equation of the parabola is y = x²/4
Step-by-step explanation:
The given focus of the parabola = (0, 1)
The directrix of the parabola is y = -1
A form of the equation of a parabola is presented as follows;
(x - h)² = 4·p·(y - k)
We note that the equation of the directrix is y = k - p
The focus = (h, k + p)
Therefore, by comparison, we have;
k + p = 1...(1)
k - p = -1...(2)
h = 0...(3)
Adding equation (1) to equation (2) gives;
On the left hand side of the addition, we have;
k + p + (k - p) = k + k + p - p = 2·k
On the right hand side of the addition, we have;
1 + -1 = 0
Equating both sides, gives;
2·k = 0
∴ k = 0/2 = 0
From equation (1)
k + p = 0 + 1 = 1
∴ p = 1
Plugging in the values of the variables, 'h', 'k', and 'p' into the equation of the parabola, (x - h)² = 4·p·(y - k), gives;
(x - 0)² = 4 × 1 × (y - 0)
∴ x² = 4·y
The general form of the equation of the parabola, y = a·x² + b·x + c, is therefore;
y = x²/4.
(2104ft)(1 yd/3 ft)(1 football field/100 yds
9514 1404 393
Answer:
7 1/75 football fields
Step-by-step explanation:
Multiply it out. The units of feet and yards cancel, leaving football fields.
= (2104·1·1)/(3·100) football fields ≈ 7.0133... football fields
= 7 1/75 football fields
A shipping carton is in the shape of a triangular prism. The base area of the triangle is 6 inches squared and the the height of the prism is 15 inches. how many cubic inches of space are in the carton?
51
Step-by-step explanation:
uajdnensjdkalsnnamakksls
15 POINTS! PLEASE HELP! BRAINLIEST!
What is the probability of flipping a coin 15 times and getting heads 6 times? Round your answer to the nearest tenth of a percent. O A. 19.6% O B. 9.2% O C. 4.2% O D. 15.3% SUBMIT
Answer:
D. 15.3%Step-by-step explanation:
Total number of outcomes:
2¹⁵ = 32768Number of combinations of getting 6 heads:
15C6 = 15!/6!(15-6)! = 5005Required probability is:
P(6 heads out of 15 flips) = 5005/32768 = 0.1527... ≈ 15.3%Correct choice is D
Answer:
option D
Step-by-step explanation:
Total sample space
= [tex]2^{15}[/tex]
Number of ways 6 heads can emerge in 15 flips
= [tex]15C_6[/tex]
Probability:
[tex]=\frac{15C_6}{2^{15}}[/tex] [tex]= 0.1527[/tex]
Probability to the nearest percent : 15.3%
HELP PLEASE!!! HELP HELP
Answer:
f(-3) = -1/3
Step-by-step explanation:
-3 is less than -2 so we use the first function 1/x
f(-3) = 1/-3
Answer:
-1/3
Step-by-step explanation:
-3 is less than -2, so use the first one, 1/x and substitute -3 in
1/(-3)=-1/3
Please help meeeeeee!!
Find x so that m || n. Show your work.
Solution:-Since m || n, 4x – 23 = 2x + 17 by the Converse of alternate exterior angles theorem.
Solve for x.
[tex]\sf{4x-23=2x+17}[/tex]
[tex]\sf{4x-2x-23=2x-2x+17}[/tex]
[tex]\sf{2x-23=17}[/tex]
[tex]\sf{2x-23+23=17+23}[/tex]
[tex]\sf{2x=40}[/tex]
[tex]\sf{\frac{2x}{2}={\frac{40}{2}}}[/tex]
[tex]\sf{x={\color{magenta}{20}}}[/tex]
========================#Hope it helps!
(ノ^_^)ノ
What is the quotient when (-12x9 + 3x7 + 24x6) is divided by 6x?
Chris was given 1/3 of the 84 cookies in the cookie jar. He ate 3/4 of the cookies that he was given. How many cookies did Chris eat?
Answer:
21 cookies
Step-by-step explanation:
First we know that Chris was given a third of 84 cookies so we can start working on this problem by figuring out what a third of 84 is. We can do this by multiplying 84 by 1/3 or just dividing by 3, which gives us: 84/3 = 28
So now we know that Chris was given 28 cookies, we can figure out what 3/4 of that is to work out how many cookies he ate. 28 x (3/4) = 21 cookies.
Chris ate 21 cookies.
Hope this helped!
Answer:
21 cookies
Step-by-step explanation:
1/3 × 84 = 28
3/4 × 28 = 21
Helpp please… due at 12:00
Answer:alternate exterior angles
Step-by-step explanation:
Since they’re on the outside of the parallel lines that makes them exterior
14.
Find the domain of
x ¹ -2 / x + 1
Answer:
?????????????????????????
Consider the following two functions: f(x) = -.25x+4 and g(x)= .5x-1. State:
a. The y-intercept, x-intercept and slope of f(x)
b. The y-intercept, x-intercept and slope of g(x)
c. Determine the point of intersection. State your method used.
Answer:
f(x)= -25x+4
y-inter x=0
y= -25(0)+4
=4
x-inter y=0
0= -25x+4
-4= -25x
x=4/25
pls i need this one n i pass the class pls pls help me
9514 1404 393
Answer:
x = 5
Step-by-step explanation:
The two triangles are similar by the ASA theorem. The ratio of long side to short side in each right triangle is the same:
x/3 = 7.5/4.5
x = 3(7.5/4.5) . . . . multiply by 3
x = 5
Which of the following correctly names a side of the triangle below?
A. ZC
B. B
С. АВ
D. AABC
Answer:
C. [tex]\frac{}{AB}[/tex]
Step-by-step explanation:
You can solve this in two ways, firstly by eliminating all the wrong answers, and secondly by just knowing that the horizontal line in [tex]_[/tex][tex]\frac{}{AB}[/tex] means that we are talking about a line.
This is how we solve this question by using the eliminating process.
(A. ∠C) is not the right answer because the ∠ sign lets us know that this answer represents an angle, not a line
(B. B) is not the right answer because it represent a point, not a line (in math we use a singular capital letter to represent points)
(D. ΔABC) is not the right answer because the Δ sign lets us know that the answer represents a triangle, not a line.
Therefore, the only option left is C. [tex]\frac{}{AB}[/tex]