Alexander von Humboldt (1769-1859) was an influential figure in geography. All of the following are true except: He contrived how maps show where social deviance occurs so that the deviance can be understood, controlled, and negated.
The statement which is not true for Alexander von Humboldt is that he contrived how maps show where social deviance occurs so that the deviance can be understood, controlled, and negated. Alexander von Humboldt was a German geographer, geologist, and explorer, who is known for his contribution to the understanding of nature and how it works.The other statements are true in relation to Alexander von Humboldt:He stimulated geographical measurement and observation.He stimulated the adoption of measurement and observation in various expeditions and surveys throughout the world.His four-volume work, Cosmos, was so named because it implied order.
Learn more about social deviance here ;
https://brainly.com/question/7227485
#SPJ11
Currently, fossil fuels meet most of the energy needs of the United States. Research possible renewable energy sources, costs, and challenges for wide usage. Case to consider: Ice storms knocked out nearly half the wind-power generating capacity of Texas on Sunday as a rare deep freeze across the state locked up turbine towers in February 2021.
Would any specific renewable source will dominate as fossil fuels do today? If your answer is yes, which type of energy would be? What are the advantages and disadvantages of this renewable energy? Are we ready to count on renewable energy now? Would you be willing to pay a possible high price for renewable energy now?
Currently, fossil fuels dominate the energy sector in the United States, but there is a growing shift towards renewable energy sources. Several renewable energy sources have the potential to play a significant role in meeting the country's energy needs.
Wind Energy: Wind power has been one of the fastest-growing renewable energy sources. It is clean, abundant, and widely available. However, it is intermittent and dependent on wind patterns, as highlighted by the Texas ice storms. Advancements in wind turbine technology and grid integration are addressing some challenges. The cost of wind energy has been decreasing, and it has the potential to become a dominant renewable source. Solar Energy: Solar power is another promising renewable energy source. Solar panels generate electricity from sunlight and can be installed on rooftops, solar farms, and other suitable locations. Solar energy is abundant, environmentally friendly, and becoming more cost-effective. However, it is also intermittent and dependent on weather conditions. Hydropower: Hydropower harnesses the energy of flowing or falling water to generate electricity. It is a mature technology with a long history of use. Large-scale hydropower projects provide reliable and consistent energy, but they can have significant environmental and social impacts, such as the displacement of communities and alteration of ecosystems. Geothermal Energy: Geothermal power utilizes the Earth's heat to generate electricity and heat buildings. It is a constant and reliable source of energy. However, it is location-dependent, and the exploration and drilling costs can be high.
Biomass Energy: Biomass energy involves using organic matter, such as agricultural residues or dedicated energy crops, to produce heat or electricity. It has the advantage of utilizing waste materials and reducing greenhouse gas emissions. However, concerns exist regarding the sustainability of biomass feedstocks and potential competition with food production. It is difficult to predict which specific renewable energy source will dominate as fossil fuels do today. The most likely scenario is a diverse mix of renewable sources, as different regions and energy needs require tailored solutions. This mix would include a combination of wind, solar, hydropower, geothermal, and biomass energy.
Advantages of renewable energy include reduced greenhouse gas emissions, improved air quality, and long-term sustainability. However, challenges remain, such as intermittency, storage, grid integration, and initial investment costs. Technological advancements and supportive policies are crucial for overcoming these challenges.
Learn more about Solar Energy here:
https://brainly.com/question/29751882
#SPJ11
a fixed system of charges exerts a force of magnitude
A fixed system of charges exerts a force of magnitude that is proportional to the product of the charges' magnitudes and inversely proportional to the square of the distance between them. This force is known as the Coulomb force.
The force that a fixed system of charges exerts on another fixed system of charges is known as the Coulomb force, which is described by Coulomb's law, which is expressed as F = kq₁q₂/r², where F is the force, k is Coulomb's constant (9.0 x 10⁹ Nm²/C²), q₁ and q₂ are the two point charges, and r is the distance between them. This force is inversely proportional to the square of the distance between the charges, and it is proportional to the product of the charges' magnitudes.
Two point charges exert a force of 9.0 x 10⁹ N on one another. The charges have opposite signs, which indicates that they are of opposite polarity. The force between two point charges is described by Coulomb's law, which states that the force is proportional to the product of the charges and inversely proportional to the square of the distance between them.
Coulomb's law states that two charged objects will experience an electrical force between them proportional to the quantity of electric charge on each object and inversely proportional to the distance between them. The forces that two point charges exert on one another are proportional to the product of their magnitudes, and the magnitude of this force is also proportional to the inverse square of the distance between them.
Coulomb's law can be used to explain the behavior of electrostatic forces in situations where there are two or more charges present. The force on a charged particle due to other charged particles is simply the vector sum of the forces exerted by each individual charge on that particle.
In conclusion, a fixed system of charges exerts a force of magnitude that is proportional to the product of the charges' magnitudes and inversely proportional to the square of the distance between them. This force is known as the Coulomb force, and it is described by Coulomb's law. Coulomb's law is used to describe the behavior of electrostatic forces in situations where there are two or more charges present.
To know more about force visit:
brainly.com/question/30507236
#SPJ11