Answer:
False
Explanation:
The Sun rotates in this same, right-hand-rule direction. All planetary orbits lie in nearly the same plane. All planetary orbits are nearly circular (eccentricity near zero).
Rate as Brainliest please
Brian Lara is a cricketer playing in the field on the second day of a cricket test-match. He exerts a forward force on the 0.145kg cricket ball, as he catches it, to bring it to rest from a speed of 38.2m/s. During the process, his hand recoils a distance of 0.135m. Determine the acceleration of the ball and the force which is applied to it by Brian Lara.
Answer:
a = -3984.6 m/s²
F = 577.76 N
Explanation:
The acceleration of the ball can be calculated by using the third equation of motion:
[tex]2as = v_f^2 - v_i^2\\[/tex]
where,
a = acceleration of ball = ?
s = distance covered = recoil distance = 0.135 m
vf = final speed = 0 m/s
vi = initial speed = 38.2 m/s
Therefore,
[tex]2(0.135\ m)a = (0\ m/s)^2-(38.2\ m/s)^2\\[/tex]
a = -3984.6 m/s²
here negative sign shows deceleration.
Now, for the force applied by Brian Lara will be equal in magnitude but opposite in direction of the force required to stop the ball:
[tex]F = -ma\\F = -(0.145\ kg)(-3984.6\ m/s^2)\\[/tex]
F = 577.76 N
sound wave of a wave length of 0.56 meters if its speed is 280 m/s what is the wave frequency
Answer:
500 Hz
Explanation:
Formula for finding wave frequency is,
f = c/λ
f = frequency
c = speed (m/s)
λ = wave length (m)
f = c/λ
f = 280/0.56
f = 500
∴ wave frequency is 500 Hz
what happens during subduction
Answer:
Subduction , Latin for "carried under," is a term used for a specific type of plate interaction. It happens when one lithospheric plate meets another—that is, in convergent zones —and the denser plate sinks down into the mantle.
3.
Two Cars, A and B, (starting, at the same time, from the same point) are moving
with average speeds of 40 km/h and 50 km/h, respectively, in the same direction.
Find how far will Car B be from Car A after 3 hours.
Answer:
car B will be 30 Km ahead of car A.
Explanation:
We'll begin by calculating the distance travelled by each car. This is illustrated below:
For car A:
Speed = 40 km/h
Time = 3 hours
Distance =?
Speed = distance / time
40 = distance / 3
Cross multiply
Distance = 40 × 3
Distance = 120 Km
For car B:
Speed = 50 km/h
Time = 3 hours
Distance =?
Speed = distance / time
50 = distance / 3
Cross multiply
Distance = 50 × 3
Distance = 150 Km
Finally, we shall determine the distance between car B an car A. This can be obtained as follow:
Distance travelled by car B (D₆) = 150 Km
Distance travelled by car A (Dₐ) = 120 Km
Distance apart =?
Distance apart = D₆ – Dₐ
Distance apart = 150 – 120
Distance apart = 30 Km
Therefore, car B will be 30 Km ahead of car A.