Answer:
Eh whats the question? it takes 30 days for the assignemnt to be zero if that is the question.
Step-by-step explanation:
Answer:
points = 300 - 10 L
x = 300 - 10Y
x = points, Y = days late
Step-by-step explanation:
There are 4 routes from Danbury to Hartford and 6 routes from Hartford to Springfield. You need to drive from Danbury to Springfield for an important meeting. You don’t know it, but there are traffic jams on 2 of the 4 routes and on 3 of the 6 routes. Answer the following:
a. You will miss your meeting if you hit a traffic jam on both sections of the journey. What is the probability of this happening?
b. You will be late for your meeting if you hit a traffic jam on at least one, but not both sections of the trip. What is the probability of this?
c. What is the probability that you will hit no traffic jam?
Answer:
a. P) = 0.25
b. P) = 0.25
c. P) = 0.5
Step-by-step explanation:
a) 1/4 as 1/2 x 1/2 = 1/4 = 0.25 This becomes reduced as we are multiplying one complete probability journey by another complete probability journey.
b) see above as 1/2 x 1/4 and 1/4 x 1/2 = 2.5 = 1/4 = 0.25
or we can Set to 1 and 1 - 3/4 = 1/4. = 0.25.
c) 1/2 as half of the journeys have traffic jams so its 1 - 1/2 = 1/2 = 0.5
Simplify: (-2)^-3
a) 8
b) 1/8
c) -8
d) -1/8
Answer:
-1/8
Step-by-step explanation:
(-2)^-3
We know that a^-b = 1/a^b
1/(-2)^3
We know (-2)^3 = -8
1/(-8)
-1/8
Given a parametric curve
{x = 2 cost
{y = 4 sint 0 <= t <= π
a. Set up but do NOT evaluate an integral to find the area of the region enclosed by the curve and the x-axis.
b. Set up but do NOT evaluate an integral to find the area of the surface obtained by rotating the curve about the x-axis.
(a) The area of the region would be given by the integral
[tex]\displaystyle\int_0^\pi y(t)\left|x'(t)\right|\,\mathrm dt = 8 \int_0^\pi \sin^2(t)\,\mathrm dt[/tex]
(b) The area of the surface of revolution would be given by
[tex]\displaystyle\int_0^\pi y(t)\sqrt{x'(t)^2+y'(t)^2}\,\mathrm dt = 4\int_0^\pi\sin(t)\sqrt{4\sin^2(t)+16\cos^2(t)}\,\mathrm dt[/tex]
evaluate the expression when c= -4 and x=5
x-4c
Answer:
21
Step-by-step explanation:
Fill in x into 5 and c into -4
5-4(-4)
21
Answer: -11
Step-by-step explanation:
x=5
and
c=4
the equation written in numbers is:
5-4x4 which simplified equals 5-16
this equals 5-5-11 so it should be -11
rotation 90 degrees counterclockwise about the origin
I'm going to try my best to explain 90° rotation:
So, you know that if you rotate something 180°, it's completely flipped (think about spinning around half-way).
Or if you spin something 360°, you spin around the whole way and end up in the same spot that you did when you started.
Notice how 90 is actually 1/4 of 360.
So imagine spinning instead of 180, spinning half of that. so you barely rotate. That's exactly what you're doing to this shape here. and if you do it about the origin counterclockwise, the origin is (0,0) so I drew it in Quadrant III, as you can see in my attachment.
You can see that every point has been moved by 90°, I put all of the variables there so you could visualize it better!
I hope this helped, let me know if you have any questions! :)
please help i am stuck on this assignment
Answer:
answer
x = -13/ 15, 0
Step-by-step explanation:
15x^2 + 13 x = 0
or, x(15x + 13) = 0
either, x = 0
or, 15x + 13 = 0
x = -13/15
Answer:
The answer should be C...............
imma sorry if I'm wrong
A computer monitor is listed as being 22 inches. This distance is the diagonal distance across the screen. If the screen measures 12 inches in height, what is the actual width of the screen to the nearest inch?
22 inches
18.43 inches
25.05 inches
32.5 inches
Answer
The width of the screen is 18.43.
Explanation
Use the Pythagorean Theorem (a^2+b^2=c^2) to find the height.
In a right triangle, a and b are legs. In this instance, a and b would be the height and width of the computer monitor. Let's say the height is a and the width is b (you're trying to find b). The hypotenuse of a right triangle is c. For the computer monitor, c is the diagonal.
So put in everything you know to find b; 12^2+b^2=22^2.
12^2 is 144 and 22^2 is 484. Now you have 144+b^2=484. When you simplify, you get b^2=340. When you simplify again, you find that b is about 18.43.
help with this please !
Answer:
c
Step-by-step explanation:
For which equation is (4, 3) a solution?
y=x+3
y=3 x-4
y= 2 x-5
y= 2 x-1
please say how you got your answer
Answer:
y = 2x - 5
Step-by-step explanation:
We can use trial and error to solve this.
4 = x and 3 = y
y = x + 3: 4 + 3 = 7 ≠ 3 (not what we want)
y = 3x + 4: (3 x 4) - 4 = 8 ≠ 3 (not what we want)
y = 2x - 5: (2 x 4) - 5 = 3 (what we want)
y = 2x - 1: (2 x 4) - 1 = 7 ≠ 3 (not what we want)
The answer is y = 2x - 5
Please help
A stamp collection consists of 10 albums each containing 42 pages. How many stamps are in the total collection if 40 stamps fit on a page?
(1) 92
(2) 820
(3) 1,680
(4) 2,080
(5) 16,800
Step-by-step explanation:
Total number of albums = 10 albums[tex] \; [/tex]Number of pages in each album = 42 pages Stamps fit on 1 page = 40 stampsAs total number of pages in each album is 42 pages, so
➝ Total number of pages in 10 albums = (42 × 10) pages
➝ Total number of pages in 10 albums = 420 pages
Now, as the number of stamps fit on 1 page is 40 stamps, so
➝ Stamps fit on 420 pages = (420 × 40) stamps
➝ Stamps fit on 420 pages = 16,800 stamps
Therefore, 16,800 stamps are in the total collection.
Solve 7 pleaseeeeeeeeeeeeeeeee
Answer:
5040
Step-by-step explanation:
I assume you really mean 7!
you understand what "!" means ?
n! = n×(n-1)×(n-2)×(n-3)×...×3×2×1
so,
7! = 7×6×5×4×3×2×1
now all you need is a calculator.
7! = 5040
A sample of 24 observations is taken from a population that has 150 elements. The sampling distribution of is _____. an. approximately normal because is always approximately normally distributed b. approximately normal because the sample size is large in comparison to the population size c. approximately normal because of the central limit theorem d. normal if the population is normally distributed
Answer:
d. normal if the population is normally distributed
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
In this question:
Sample size less than 30, so only will be normal if the population is normally distribution, and thus the correct answer is given by option d.
Use the discriminant to determine how many and what kind of solutions the quadratic equation 2x^2 - 4x = -2 has.
Answer:
We can use three solution and they are
(1)completing the square
(2)quadratic formula
(3) factorisation method
The quadratic equation 2x^2 - 4x = -2 has two values .
What is quadratic equation ?According to our definition, a quadratic equation is one with degree 2, implying that its maximum exponent is 2. A quadratic has the standard form y = ax2 + bx + c, where a, b, and c are all numbers and a cannot be zero. All of these are examples of quadratic equations: y = x^2 + 3x + 1.Kind of solutions -(1)completing the square
(2)quadratic formula
(3) factorization method
Given,
quadratic equation 2x^2 - 4x = -2
2x² - 4x + 2 =0
Now solve this equation by factor,
2x² - 4x + 2 = 0
2x² - ( 2+2)x +2 = 0
2x² - 2x -2x + 2 = 0
2x(x- 1 ) -2 ( x -1) = 0
(2x - 2) ( x- 1) =0
2x - 2 = 0 or x - 1 = 0
x = 1 or x = 1
So, this equation has 2 value of x.
Learn more about quadratic equation brainly.com/question/2263981 here
#SPJ2
HELP HELP HELP MATH⚠️⚠️⚠️⚠️⚠️
Find four consecutive integers with the sum of 2021
Answer:
This problem has not solution
Step-by-step explanation:
lets the integers be:
x
x+1
x+2
x+3
so:
x+(x+1)+(x+2)+(x+3)=2021
x+x+x+x+1+2+3=2021
4x+6=2021
4x=2021-6=2015
x=2015/4=503.75
x is not a integer
The volume of a cube is 2,744 m3. What is the side length of the cube?
Answer:
The length is 14 and the area is 196 cm².
The side length of the cube is 14 meters.
We have,
Volume of Cube = 2744 m³
To find the side length of a cube when given its volume, you can use the formula:
Side length = ∛(Volume)
So, substitute this value into the formula to calculate the side length:
Side length = ∛(2,744)
= ∛ 14 x 14 x 14
= 14 m
Therefore, the side length of the cube is 14 meters.
Learn more about Volume of cube here:
https://brainly.com/question/29275443
#SPJ2
Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
(a) f (x, y) = x^2 - y^2; x^2 + y^2 = 1
Max of 1 at (plusminus 1, 0), min of - 1 at (0, plusminus l)
(b) f (x, y) = 3x + y; x^2 + y^2 = 10
Max of 10 at (3, 1), min of - 10 at (- 3, - 1)
(c) f (x, y) = xy; 4x^2 + y^2 = 8
Max of 2 at plusminus (1, 2), min of - 2 at plusminus (l, - 2)
Answer:
a) f(x,y) = - 1 minimum at P ( 0 ; -1 )
b) f (x,y) = 10 maximum at P ( 3 , 1 ) and f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) Max f ( x , y ) = 2 for points P ( 1, 2 ) and T ( -1 , -2 )
Min f ( x , y ) = -2 for points Q ( 1 , - 2 ) and R ( -1 , 2 )
Step-by-step explanation:
A) f(x,y) = x² - y² subject to x² + y² = 1 g(x,y) = x² + y²- 1
δf(x,y)/ δx = 2*x δg(x,y)/ δx = 2*x
δf(x,y)/ δy = - 2*y δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ* δg(x,y)/ δx
2*x = λ*2*x
δf(x,y)/ δy = λ* δg(x,y)/ δy
- 2*y = λ*2*y
Then, solving
2*x = λ*2*x x = λ*x λ = 1
- 2*y = λ*2*y y = - 1
x² + y²- 1 = 0 x² + ( -1)² - 1 = 0 x = 0
Point P ( 0 ; -1 ) ; then at that point
f(x,y) = x² - y² f(x,y) = 0 - ( -1)² f(x,y) = - 1 minimum
b) f( x, y ) = 3*x + y g ( x , y ) = x² + y² = 10
δf(x,y)/ δx = 3 δg(x,y)/ δx = 2*x
δf(x,y)/ δy = 1 δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ 3 = 2* λ *x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ 1 = 2*λ * y (2)
x² + y² - 10 = 0 (3)
Solving that system
From ec (1) λ = 3/2*x From ec (2) λ = 1/2*y
Then (3/2*x ) = 1/2*y 3*y = x
x² + y² = 10 ⇒ 9y² + y² = 10 10*y² = 10
y² = 1 y ± 1 and
y = 1 x = 3 P ( 3 , 1 ) y = - 1 x = -3 Q ( - 3 , - 1 )
Value of f( x , y ) at P f (x,y) = 3*x + y f (x,y) = 3*(3) +1
f (x,y) = 10 maximum at P ( 3 , 1 )
Value of f( x , y ) at Q f (x,y) = 3*x + y f (x,y) = 3*(- 3) + ( - 1 )
f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) f( x, y ) = xy g ( x , y ) = 4*x² + y² - 8
δf(x,y)/ δx = y δg(x,y)/ δx = 8*x
δf(x,y)/ δy = x δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ y = λ *8*x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ x = λ *2*y (2)
4*x² + y² - 8 = 0 (3)
Solving the system
From ec (1) λ = y/8*x and From ec (2) λ = x/2*y Then y/8*x = x/2*y
2*y² = 8*x² y² = 4*x²
Plugging that value in ec (3)
4*x² + 4*x² - 8 = 0
8*x² = 8 x² = 1 x ± 1 And y² = 4*x²
Then:
for x = 1 y² = 4 y = ± 2
for x = -1 y² = 4 y = ± 2
Then we get P ( 1 ; 2 ) Q ( 1 ; - 2)
R ( - 1 ; 2 ) T ( -1 ; -2)
Plugging that values in f( x , y ) = xy
P ( 1 ; 2 ) f( x , y ) = 2 R ( - 1 ; 2 ) f( x , y ) = - 2
Q ( 1 ; - 2) f( x , y ) = -2 T ( -1 ; -2 ) f( x , y ) = 2
Max f ( x , y ) = 2 for points P and T
Min f ( x , y ) = -2 for points Q and R
Would you kindly help me.Im having a hard time understanding and I've been crying a lot trying to understand it
Marissa constructed a figure with these views.
HELP ASAP EXTRA POINTS
Answer:
a triangular pyramid
Can the following two triangles be proven congruent through AAS?
A. Yes, since three pairs of angles are congruent, ∠C≅∠V
∠
C
≅
∠
V
, ∠B≅∠W
∠
B
≅
∠
W
, and ∠A≅∠U
∠
A
≅
∠
U
, the triangles are congruent through AAS.
B.No, since ∠C≅∠V
∠
C
≅
∠
V
, ∠B≅∠W
∠
B
≅
∠
W
, and a pair of included sides are congruent, AC⎯⎯⎯⎯⎯⎯⎯⎯≅UV⎯⎯⎯⎯⎯⎯⎯⎯⎯
A
C
¯
≅
U
V
¯
, the triangles aren’t congruent through AAS.
C.Yes, since two pairs of angles are congruent,∠C≅∠V
∠
C
≅
∠
V
and ∠B≅∠W
∠
B
≅
∠
W
, and a pair of non-included sides are congruent, AC⎯⎯⎯⎯⎯⎯⎯⎯≅UV⎯⎯⎯⎯⎯⎯⎯⎯⎯
AC¯≅UV¯, the triangles are congruent through AAS.
D.No, since only two pairs of angles are congruent, the triangles aren’t congruent through AAS.
Answer:
C. YES
Step-by-step explanation:
If two angles and the non-included side of one triangle are equal to the corresponding angles and side of another triangle, the triangles are congruent.
Find the L. C. M in division method of the following
a) 18,27
b) 21,38
Answer:
hope it will be helpful to you.....
A public opinion survey is administered to determine how different age groups feel about an increase in the minimum wage. Some of the results are shown in the table below.
For Against No Opinion
21-40 years 20 5
41-60 years 20 20
Over 60 years 55 15 5
The survey showed that 40% of the 21 - 40 year-olds surveyed are against an increase, and 15% of the entire sample surveyed has no opinion. How many 21 - 40 year-olds surveyed are for an increase? How many 41 - 60 year-olds are against an increase?
Answer:
25 ; 35
Step-by-step explanation:
Given :
____________For __ Against __ No Opinion
21-40 years _________20 _______5
41-60 years ___20 ______________20
Over 60 years _55____ 15________ 5
Given that :
40% of 21-40 are against
Then :
40% = 20
To a obtain 100% of 21 - 40
40% = 20
100% = x
Cross multiply
0.4x = 20
x = 20/0.4
x = 50
100% of 21 - 40 = 50 people
For = 50 - (20 + 5)
= 50 - 25
= 25
2.)
Total who have no opinion :
(5 + 20 + 5) = 30
30 = 15%
Total number surveyed will be , x :
30 = 15%
x = 100%
Cross multiply :
0.15x = 30
x = 30/0.15
x = 200
Number of 41 - 60 against an increase, y:
(25 + 20 + 5 + 20 + y + 20 + 55 + 15 + 5) = 200
165 + y = 200
y = 200 - 165
y = 35
A three-year interest rate swap has a level notional amount of 300,000. Each settlement period is one year and the variable rate is the one-year spot interest rate at the beginning of the settlement period. One year has elapsed and the one-year spot interest rate at the start of year 2 is 4.45%.
Time to Maturity 1 2 3 4 5
Price of zero coupon bond with Maturity value 1 0.97 0.93 0.88 0.82 0.75
Calculate the net swap payment by the payer at the end of the second year.
A. −400
B. −300
C. −200
D. −100
E. 0
Hint : Find the swap rate R using the table and then use R and the one-year spot rate at the start of year 2 to find the net swap payment at the end of year 2.
Answer:
A. -400
Step-by-step explanation:
We solve for the swap rate
R = (1-p3)/(p1+p2+p3)
R = 1-0.88/0.97+0.93+0.88
= 0.12/2.78
= 0.04317
Remember 4.45% is the one year spot rate for the second option
Net swap
= 300000*0.04317-300000*0.0445
= 12951-13350
= -399
This is approximately -400
So the net swap payment at the end of the second year is option a, -400
if 8km=5miles.how many miles are in 56m?
Answer:
89.6 miles
Step-by-step explanation:
[tex]\frac{8}{5}[/tex] = [tex]\frac{x}{56}[/tex]
5x = 448
x=89.6
Step-by-step explanation:
if 8km=5
x =56km
5x=8×56
5x=448
x=89.6 miles
Find the indicated side of the
right triangle.
45
у
9
45
х
x = [?]
Enter
Answer:
9
Step-by-step explanation:
Please help solve
-5<14-4x≤3
Answer:
Interval notation (-5,3]
Unit: Decimals
Progress
The movement of the progress bar may be uneven becouse questions can be worth more or less (including zero) depending on your answer.
Which digit is in the thousandths place in the number 48.5302?
O 3
O 5
O 2
O 0
Submit
Pass
Don't know answer
Answer:
0
Step-by-step explanation:
48.5302
The number just to the left of the decimal point is the ones place. The 8 is in the ones place. Every place to the left is 10 times greater than the previous one, and every place to the right is 10 times smaller than the previous one.
48.5302
4 - tens place - 4 tens means 40
48.5302
8 - ones place - 8 ones means 8
48.5302
5 - tenths place - 5 tenths means 0.5
48.5302
3 - hundredths place - 3 hundredths means 0.03
48.5302
0 - thousandths place - 0 thousandths means 0.000
48.5302
2 - ten-thousandths place - 2 ten-thousandths means 0.0002
Answer: 0
:
The width of a rectangle is 5 cm more than triple its length. The perimeter of the
rectangle is 240 cm. What is the length and width of the rectangle?
9514 1404 393
Answer:
length: 28.75 cmwidth: 91.25 cmStep-by-step explanation:
Let L represent the length of the rectangle. Then the width is W=5+3L, and the perimeter is ...
P = 2(L+W)
240 = 2(L +(5 +3L))
120 = 5 +4L
115 = 4L
115/4 = L = 28.75 . . . . cm
W = 5+3L = 5 +3(28.75) = 91.25 . . . . cm
The length and width of the rectangle are 28.75 cm and 91.25 cm.
the cost of 10 oranges is $6. what is the cost of an orange ?
Answer Choices:
$0.40
$0.60
$4
$6
Answer:
$0.60
Step-by-step explanation:
To find the cost of 1 orange, divide the $6 by 10:
6/10 = 0.6
Hope it helps (●'◡'●)
2. Find the area of a trapezium shaped field with a base of 45m, top is 35m and with a height of 55m applying the formula for trapezium = 0.5x b+axh
Given:
Base=
Top (a) =
Height =
3. Find the area of a Parallelogram shaped field where the base measures 19m and with a h of 37m.
Applying the formula for parallelogram=bxh
Given:
Base=
Height=
pahelp po thanks
Answer:
2. 2200 m²
3. 703 m²
Step-by-step explanation:
2. Given,
Base (b) = 45m
Top (a) = 35m
Height (h) = 55m
Area = (a+b)*h/2
= (45+35)*55/2
= 85*55/2 = 2200 m²
3. Given,
Base (b) = 19m
Height (h) = 37m
Area = b*h
= 19*37
= 703 m²
(The * sign represents the multiplication sign)
Answered by GAUTHMATH
Answer:
2. area = 2200 m²
3. area = 703 m²
Step-by-step explanation:
2. Find the area of a trapezium shaped field with a base of 45m, top is 35m and with a height of 55m applying the
formula for trapezium = 0.5 * (b+a) * h
Given:
Base= 45 m
Top (a) = 35 m
Height = 55 m
area = 0.5 * (b+a) * h
area = 0.5 * (45 m + 35 m) * 55 m
area = 2200 m²
3. Find the area of a Parallelogram shaped field where the base measures 19m and with a h of 37m.
Applying the formula for parallelogram = b * h
Given:
Base= 19 m
Height= 37 m
area = b * h
area = 19 m * 37 m
area = 703 m²
PLEASE HELP SOON Find the value of x. Round to the nearest tenth. 27° х 34° 11 X = ? [?] 9 Law of Sines: sin A sin C sin B b a Enter
The picture of the problem has been attached below :
Answer:
13.5
Step-by-step explanation:
Applying the sine rule to solve for x
SinA /a = SinB / b = SinC/ c
Sin 34 / x = Sin 27/11
Cross multiply :
11 * sin34 = x * sin 27
6.1511219 = 0.4539904x
Divide both sides by 0.4539904
6.1511219/0.4539904 = x
13.549 = x
x = 13.5