An electric dipole consists of a positive and a negative charge of equal magnitude. Consider an electric dipole with each charge having a magnitude of 1 × 10−6 C. The negative charge is located at (3 cm, 0) and the positive charge is located at (−3 cm, 0). Calculate the electric field from each charge at the points A through E, described below. Use symmetry as much as possible! Using the scale 1 cm = 105 N/C, draw the vector to represent the magnitude and direction of the electric field from each charge. (When entering angle values, enter a number greater than or equal to 0° and less than 360° measured counterclockwise from the +x-axis.) • A = (−13 cm, 0) • B = (−3 cm, 10 cm) • C = (0, 10 cm ) • D = (3 cm, 10 cm) • E = (13 cm, 0) For the negative charge:

Answers

Answer 1

Answer:

Explanation:

To find the electric field you use the equation for an electrostatic electric field:

[tex]E=k\frac{q_1q_2}{r^2}[/tex]

r: distance in which E is calculated, from each charge

In the of a dipole you have two contributions to E:

[tex]\vec{E}=\vec{E_1}+\vec{E_2}[/tex]

where E1 is the electric field generated by the first charge and E2 by the second one.

A. (-13 cm, 0):

First you calculate the vectors E1 and E2:

[tex]E_1=(8.98*10^9)\frac{(1*10^{-6}C)}{(-0.13-0.03)^2}\hat{j}\\\\E_1=350781.25N/C\\\\E_2=-(8.98*10^9)\frac{(1*10^{-6}C)}{(-0.13+0.03)^2}\hat{j}\\\\E_2=-989000N/C[/tex]

Then, you sum both contributions:

[tex]\vec{E}=-547218.75N/C\hat{j}[/tex]

B. (-3cm, 10cm):

[tex]r_1=\sqrt{(0.06)^2+(0.1)^2}=0.116m\\\\\theta=tan^{-1}(\frac{0.06}{0.1})=30.96\°\\\\r_2=0.1m\\\\E_1=(8.98*10^9Nm^2/C)\frac{(1.6*10^{-6}C)}{(0.116m)^2}[cos(30.96\°)\hat{i}+sin(30.96\°)\hat{j}]\\\\E_1=[-915646\hat{i}-549306.42\hat{j}]N/C\\\\\theta=(90-30.96)+180=239.04\°\\\\[/tex]

the last angle is calculated again because the vector direction is measured from the +x axis.

and for the second vector:

[tex]E_2=(8.98Nm^2/C)\frac{1.6*10^{-6}C}{(0.1m)^2}\hat{j}\\\\E_2=1436800N/C\hat{j}[/tex]

the total E is:

[tex]\vec{E}=[-915646\hat{i}+887493.58\hat{j}]N/C[/tex]

An Electric Dipole Consists Of A Positive And A Negative Charge Of Equal Magnitude. Consider An Electric

Related Questions

Mr. Dunn drives 64.8km from work at a speed of 48km/h. Mrs. Dunn drives 81.2km from work
at a speed of 58km/h. They both leave work at the same time. Show complete working to secure
full credits. [4]
i. Who arrives home first?
ii. How many minutes later is it before the second person gets home?
iii. A Coyote is chasing its meal (the Road Runner). Unfortunately, the Coyote has difficulty
adjusting to the Road Runner’s speed but we have a good idea of what it is.
plz help me i will mark you as brainliest

Answers

Answer:

i) Mr. Dunn arrives to home first.

ii) 3 min

Explanation:

i. To find who arrives first to home you calculate the time, by using the following formula:

[tex]t=\frac{x}{v}[/tex]

x: distance

v: velocity

Mr. Dunn:

[tex]t=\frac{64.8km}{48km/h}=1.35h[/tex]

Mrs. Dunn:

[tex]t=\frac{81.2km}{58km/h}=1.4h[/tex]

Hence, Mr. Dunn arrives to home first.

ii. To calculate the difference in minutes, you convert hours to minutes:

[tex]1.35h*\frac{60min}{1h}=81min\\\\1.40h*\frac{60min}{1h}=84min\\\\\Delta\ t=(84-81)min=3min[/tex]

the difference between the times is 3min

(i) Mr. Dunn takes less time so he arrives at home first.

(ii) The second person arrives 3 min late.

Time taken to arrive home:

(i) We have to calculate the time taken to reach home by Mr. Dunn and Mrs. Dunn.

t = x/v

where x is the distance

and v is the velocity

Time taken by Mr. Dunn:

distance x = 64.8 km

speed v  = 48 km/h

t = 64.8 / 48

t = 1.35 h

Time taken by Mrs. Dunn:

distance x = 81.2 km

speed v  = 58 km/h

t' = 81.2 / 58

t' = 1.4 h

Hence, Mr. Dunn arrives at home first.

(ii) To calculate the difference in minutes, you convert hours to minutes:

The time taken by Mr. Dunn in minutes is:

t = 1.35×60 = 81 minutes

The time taken by Mrs. Dunn in minutes is:

t' = 1.4×60 = 84 minutes

the difference between the times is 3min

Learn more about distance and time :

https://brainly.com/question/4199102?referrer=searchResults

Which element is malleable and ductile

Answers

Answer:

Gold, silver, platinum. Gold is the most malleable and ductile.

Explanation:

The elements which are malleable and ductile include the following:

CopperIronCobalt etc.

What is Malleability and Ductility?

Malleability is the ability of a substance to be hammered into thin sheets

while ductility involves the deformation of a substance without any

breakage occurring in it.

Transition metals are the group of elements which have both

characteristics and examples are listed above.

Read more about Transition metals here https://brainly.com/question/7102290

Suppose you wanted to use a non-reflecting layer for radar waves to make an aircraft invisible. What would the thickness of the layer be to avoid reflecting 2 cm radar waves. (You can neglect changes of wavelength in the layer for this problem.) Would there be any problems as the aircraft turn

Answers

Answer:

the thickness of the film for destructive interference is 1 cm

Explanation:

We can assume that the radar wave penetrates the layer and is reflected in the inner part of it, giving rise to an interference phenomenon of the two reflected rays, we must be careful that the ray has a phase change when

* the wave passes from the air to the film with a higher refractive index

* the wavelength inside the film changes by the refractive index

         λ = λ₀ / n

so the ratio for destructive interference is

            2 n t = m λ

            t = m λ / 2n

indicate that the wavelength λ = 2 cm, suppose that the interference occurs for m = 1, therefore it is thickness

            t = 1 2/2 n

            t = 1 / n

where n is the index of refraction of the anti-reflective layer. As they tell us not to take into account the change in wavelength when penetrating the film n = 1

            t = 1 cm

So the thickness of the film for destructive interference is 1 cm

Answer:

the thickness of the film for destructive interference is 1 cm

Explanation:

If A = (6i-8j) units, B = (-8i-3j) units, and C = (26i-19j) units, determine a and b
such that aA + bB + C = 0

Answers

Answer:

Explanation:

given equation

aA + bB + C = 0

Putting the given values

a(6i-8j) +b (-8i-3j) +(26i-19j) = 0

i ( 6a - 8b ) - j ( 8a + 3 b ) = - 26 i + 19 j

comparing the coefficients of i and j

6a - 8b = -26

8a + 3b = -19.

multiplying first equation by 4 and second equation by 3  

24a - 32 b = - 104

24a + 9b = -57

9b + 32b = -57 + 104

41 b = 47

b = 1.41

6 a - 8 x 1.41 = -26

6a = -14.72

a = - 2.45  

A car speeds up from 18.54 m/s to
29.52 m/s in 13.84 s.
The acceleration of the car is:

Answers

Answer:

.7934[tex]m/s^{2}[/tex]

Explanation:

Acceleration = change in velocity / change in time

A = 10.98[tex]m/s[/tex] / 13.84[tex]s[/tex]

A = .7934[tex]m/s^{2}[/tex]

Answer:0.8 m/s^2

Explanation:

initial velocity(u)=18.54m/s

Final velocity(v)=29.52m/s

Time(t)=13.84 sec

Acceleration =(v-u)/t

acceleration =(29.52-18.54)/13.84

Acceleration =10.98/13.34

Acceleration=0.8 m/s^2

Match these items.


1 . pls help


asteroids

between Mars and Jupiter

2 .

fission

ice, dust, frozen gases

3 .

energy

sun's atmosphere

4 .

fusion

ability to do work

5 .

corona

splitting atoms

6 .

comets

the combining of atomic nuclei to form one nucleus

Answers

Answer:

Here's your answer :

Asteroids - Between mars and JupiterFission - splitting atomsEnergy - Sun's atmosphereFusion - The combining of atomic nuclei to form one nucleusCorona - Ability to do workComets - Ice, dust, frozen gases

hope it helps!

An astronaut is being tested in a centrifuge. The centrifuge has a radius of 11.0 m and, in starting, rotates according to θ = 0.260t2, where t is in seconds and θ is in radians. When t = 2.40 s, what are the magnitudes of the astronaut's (a) angular velocity, (b) linear velocity, (c) tangential acceleration, and (d) radial acceleration?

Answers

Answer:

a) 1.248 rad/s

b) 13.728 m/s

c) 0.52 rad/s^2

d) 17.132m/s^2

Explanation:

You have that the angles described by a astronaut is given by:

[tex]\theta=0.260t^2[/tex]

(a) To find the angular velocity of the astronaut you use the derivative og the angle respect to time:

[tex]\omega=\frac{d\theta}{dt}=\frac{d}{dt}[0.260t^2]=0.52t[/tex]

Then, you evaluate for t=2.40 s:

[tex]\omega=0.52(2.40)=1.248\frac{rad}{s}[/tex]

(b) The linear velocity is calculated by using the following formula:

[tex]v=\omega r[/tex]

r: radius if the trajectory of the astronaut = 11.0m

You replace r and w and obtain:

[tex]v=(1.248\frac{rad}{s})(11.0m)=13.728\frac{m}{s}[/tex]

(c) The tangential acceleration is:

[tex]a_T=\alpha r\\\\\alpha=\frac{\omega^2}{2\theta}=\frac{(1.248rad/s)^2}{2(0.260(2.40s)^2)}=0.52\frac{rad}{s^2}[/tex]

(d) The radial acceleration is:

[tex]a_r=\frac{v^2}{r}=\frac{(13.728m/s)^2}{11.0m}=17.132\frac{m}{s^2}[/tex]

A 3.6 kg block moving with a velocity of 4.3 m/s makes an elastic collision with a stationary block of mass 2.1 kg.

(a) Use conservation of momentum and the fact that the relative speed of recession equals the relative speed of approach to find the velocity of each block after the collision. 1.1315 m/s (for the 3.6 kg block) 5.43 m/s (for the 2.1 kg block)

(b) Check your answer by calculating the initial and final kinetic energies of each block. 33.282 J (initially for the 3.6 kg block) J (initially for the 2.1 kg block) J (finally for the 3.6 kg block) J (finally for the 2.1 kg block) Are the two total kinetic energies the same?

Answers

Answer:

a) Velocity of the block of mass 3.6 kg after collision = 1.13 m/s

Velocity of the block of mass 2.1 kg after collision = 5.43 m/s

b) Initial energy of the 3.6 kg block = 33.282 J

Final energy of the 3.6 kg block = 2.3 J

Initial energy of the 2.1 kg block = 0J

Final energy of the 2.1 kg block = 30.96 J

The two total kinetic energies are the same = 33.30 J

Explanation:

Check the attached files for the complete solution and explanations.

An ideal spring is fixed at one end. A variable force F pulls on the spring. When the magnitude of F reaches a value of 30.8 N, the spring is stretched by 17.7 cm from its equilibrium length. Calculate the additional work required by F to stretch the spring by an additional 12.4 cm from that position.

Answers

Answer:

[tex]W=5.16 J[/tex]  

Explanation:

Using the Hooke's law we can find the elasticity constant:

[tex]F=-k\Delta x[/tex]

[tex]30.8=-k*0.177[/tex]

[tex]k=|-\frac{30.8}{0.177}|[/tex]

[tex]k=174 N/m[/tex]

Now, we know that the work done is equal to the elastic energy, so we will have:

[tex]W=\frac{1}{2}k(x_{2}^{2}-x_{1}^{2})[/tex]

x2 is the final distance (x2 = 0.177+0.124 = 0.301 m)

x1 is the initial distance (x1 = 0.177 m)

[tex]W=\frac{1}{2}*174(0.301^{2}-0.177^{2})[/tex]

[tex]W=5.16 J[/tex]    

I hope it helps you!

When a high‑energy photon passes near a heavy nucleus, a process known as pair production can occur. As a result, an electron and a positron (the electron's antiparticle) are produced. In one such occurrence, a researcher notes that the electron and positron fly off in opposite directions after being produced, each traveling at speed 0.941c. The researcher records the time that it takes for the electron to travel from one position to another within the detector as 15.7 ns. How much time would it take for the electron to move between the same two positions as measured by an observer moving along with the positron?

Answers

Answer:

1.47*10^{-8}s

Explanation:

You first calculate the distance traveled by the electron:

[tex]x=vt\\\\x=(0.941(3*10^8m/s))(15.7*10^{-9}s)=4.43m[/tex]

Next, you calculate the relative speed as measure by an observer in the positron, of the electron:

[tex]u'=\frac{u+v}{1+\frac{uv}{c^2}}\\\\u'=\frac{0.941c+0.941c}{1+\frac{(0.941)^2c^2}{c^2}}\\\\u'=0.99c[/tex]

with this relative velocity you calculate the time:

[tex]t=\frac{x}{u'}\\\\t=\frac{4.43m}{0.99c}=1.47*10^{-8}s[/tex]

(20) A rocket is launched vertically. At time t = 0 seconds, the rocket’s engine shuts down. At the time, the rocket has reached an altitude of 500m and is rising at a velocity of 125 m/s. Gravity then takes over. The height of the rocket as a function of time is h(t)=-9.8/2 t^2+125t+500,t>0. Using your function file from HW2A: Generate a plot of height (vertical axis) vs. time (horizontal axis) from 0 to 30 seconds. Include proper axis labels. Find the maximum height and the time at which it occurs: Analytically, showing your steps and equations. This part should be done entirely in the write-up: no coding Using the data cursor on the plot. Using the MAX function on your data from part (a) Using FMINSEARCH on your m file Comment on the differences between the methods. How closely does each method match the "true" (analytical) value? Find the time when the rocket hits the ground: Analytically, showing your equations. This part should be done entirely in the write-up: no coding Using the data cursor on the plot. Using FZERO on your m file Comment on the differences between the methods in each of part (B) and (C). How closely does each method match the "true" (analytical) value? Use a quantitative comparison to make your argument.

Answers

Answer:

Explanation:

Given that,

h(t) = -9.8t² / 2 + 125t + 500

for t > 0.

At t = 0, the rocket is at height h = 500m, at a velocity of Vo = 125m/s.

We want to find the maximum height reached by rocket

Using mathematics maxima and minima

let find the turning point when dh/dt = 0

dh/dt = -9.8t + 125

dh / dt = 0 = -9.8t + 125

9.8t = 125

t = 125 / 9.8

t = 12.76s

Let find the turning point to know if this time t = 12.76 is maximum or minimum point

Let find d²h / dt²

d²h / dt² = -9.8

Since, d²h/dt² < 0, then, at t = 12.76s is the maximum points.

Then, the maximum height reached is

h =  -9.8t² / 2 + 125t + 500

h =  -9.8(12.76)² / 2 + 125(12.76) + 500

h = -797.80 + 1595 + 500

h = 1297.2 m

The maximum height reached is 1297.2 m

From the attachment, the maximum height is 1297.2m at t = 12.76sec.

Comment, the result are the same for both the analysis aspect and the graphical aspect.

The current in the wires of a circuit is 60 milliamps. If the resistance of the circuit were doubled (with no change in voltage), then it’s new current would be _____ milliamps

Answers

Answer:30

Explanation:

Current=60 milliamps

Current=(voltage)/(resistance)

60=(voltage)/(resistance)

Doubling the resistance means multiplying both sides by 1/2

60x1/2=(voltage)/(resistance) x 1/2

30=(voltage)/2(resistance)

Therefore the resistance would be 30 milliamp if we double the resistance

which one of the following statements is true? A.in an elastic collision,only momentum is conserved B. in any collision,both momentum & kinetic energy are conserved C.in an inelastic collision,both momentum & kinetic energy are conserved D.in an elastic collision,only kinetic energy is conserved ​

Answers

Answer:

option C is correct

................

Answer:

C- in an inelastic collision, both momentum & kinetic energy are conserved

Explanation:

Took the test

Why does current flow in a coil when a magnet is pushed in and out of the coil ?

Answers

Answer:

So the induced current opposes the motion that induced it (from Lenz's Law). When we pull the magnet out, the left hand end of the coil becomes a south pole (to try and hold the magnet back). Therefore the induced current must be flowing clockwise.

hope this helps u...

You expend 1000 W of power in moving a piano 5 meters in 5 seconds. How much force did you exert?

Answers

Answer:B

Explanation:

Power=1000 watts

Time=5 seconds

Distance=5 meters

Force=(power x time) ➗ distance

Force=(1000 x 5) ➗ 5

Force=5000 ➗ 5

Force=1000

Force=1000N

Answer:1,000

Explanation:

ape.x

Two charged particles are accelerated through a uniform electric field and zero magnetic field, then enter a region with zero electric field and a uniform magnetic field. The particles start at rest from the same position (but at different times; they do not interact with each other). They have identical charges, but different masses. Particle 2 has a cyclotron radius 1.5 times as large as that of particle 1. Find ratio m2/m1

Answers

Answer:

Explanation:

In magnetic field , charged particle will have circular path . Let the radius of their circular path be r₁ and r₂ . Let their velocity at the time of entering magnetic field be v₁ and v₂ .

The velocity with which they will come out of electric field can be measured from following equation

Eq = 1/2 m v²  , E is electric field , q is charge on the particle , m is mass and v is velocity .

v² = 2Eq / m

radius of circular path can be measured by the following expression

m v² / r = Bqv

2Eq / r = Bqv

r = 2Eq / Bqv

= 2E / Bv

r² = 4E² / B²v²

= 4E²m / B²x 2Eq

since E , B and q are constant

r² = K . m

r₂² / r₁² = m₂ / m₁

1.5²

m₂ / m₁ = 1.5²

= 2.25

Derive the equation relating the total charge Q that flows through a search coil (Conceptual Example 29.3) to the magnetic-field magnitude B. The search coil has N turns, each with area A, and the flux through the coil is decreased from its initial maximum value to zero in a time Δt. The resistance of the coil is R, and the total charge is Q=IΔt, where I is the average current induced by the change in flux.

Answers

Answer:

Q= NBA/R

Explanation:

Check attachment for derivation

The equation relating the total charge, magnitude, turns, time will be "[tex]\frac{NBA}{R}[/tex]".

Magnetic field

According to the question,

Resistance = R

Total charge = Q

Current = I

Number of turns = N

Time = Δt

and,

Q = IΔt ...(equation 1)

We know the flux,

→ [tex]\Phi[/tex] = NBA

Emf induced,

   ε = [tex]\frac{- \Delta \Phi}{\Delta t}[/tex]

Δ[tex]\Phi[/tex] = [tex]\Phi_2 - \Phi_1[/tex]

then,

   ε = [tex]\frac{NBA}{\Delta t}[/tex]

As we know, Voltage (V) = iR

then, ε = [tex]\frac{NBA}{\Delta t}[/tex] = iR

         i = [tex]\frac{NBA}{R \Delta t}[/tex]

Hence, by applying the values in "equation 1"    

→ Q = iΔt

      = [tex]\frac{NBA}{R \Delta t}[/tex] × Δt

      = [tex]\frac{NBA}{R}[/tex]

Thus the response above is correct.

Find out more information magnetic field here:

https://brainly.com/question/14411049

What spectacles are required for reading purposes by a person whose near point is 2.0m

Answers

Answer:Convex lens spectacles is required for reading purpose..

Explanation:

I don't say you have to mark my ans as brainliest but if it has really helped you please don't forget to thank me...

Two wires, both with current out of the page, are next to one another. The wire on the left has a current of 1 A and the wire on the right has a current of 2 A. We can say that:

A. The left wire attracts the right wire and exerts twice the force as the right wire does.
B. The left wire attracts the right wire and exerts half the force as the right wire does.
C. The left wire attracts the right wire and exerts as much force as the right wire does.
D. The left wire repels the right wire and exerts twice the force as the right wire does.
E. The left wire repels the right wire and exerts half the force as the right wire does.
F. The left wire repels the right wire and exerts as much force as the right wire does.

Answers

Answer:

C. The left wire attracts the right wire and exerts as much force as the right wire does.

Explanation:

To know what is the answer you first take into account the magnetic field generated by each current, for a distance of d:

[tex]B_1=\frac{\mu_oI_1}{2\pi d}=\frac{\mu_o}{2\pi d}(1A)\\\\B_2=\frac{\mu_oI_2}{2\pi d}=\frac{\mu_o}{2\pi d}(2A)=2B_1\\\\[/tex]

Next, you use the formula for the magnetic force produced by the wires:

[tex]\vec{F_B}=I\vec{L}\ X \vec{B}[/tex]

if the direction of the L vector is in +k direction, the first wire produced a magnetic field with direction +y, that is, +j and the second wire produced magnetic field with direction -y, that is, -j (this because the direction of the magnetic field is obtained by suing the right hand rule). Hence, the direction of the magnetic force on each wire, produced by the other one is:

[tex]\vec{F_{B1}}=I_1L\hat{k}\ X\ B_2(-\hat{j})=I_1LB_2\hat{i}=(2A^2)\frac{L\mu_o}{2\pi d}\hat{i}\\\\\vec{F_{B2}}=I_2L\hat{k}\ X\ B_2(\hat{j})=I_2LB_1\hat{i}=-(2A^2)\frac{L\mu_o}{2\pi d}\hat{i}[/tex]

Hence, due to this result you have that:

C. The left wire attracts the right wire and exerts as much force as the right wire does.

The friends now feel prepared for a homework problem. Consider a cylinder initially filled with 9.30 10-4 m3 of ideal gas at atmospheric pressure. An external force is applied to slowly compress the gas at constant temperature to 1/6 of its initial volume. Calculate the work that is done. Note that atmospheric pressure is 1.013 105 Pa

Answers

Answer:

Explanation:

Initial volume of gas V₁ = 9.30 x 10⁻⁴ m³

final volume V₂ = 1 / 6 x  9.30 x 10⁻⁴

= 1.55 x 10⁻⁴ m³

Atmospheric pressure P = 1.013 x 10⁵ Pa .

temperature T .

PV = n RT

nRT = 1.013 x 10⁵ x 9.3 x 10⁻⁴

= 94.21

work done in isothermal process

= 2.303 nRT log V₁ / V₂

= 2.303 x 94.21 log 6

= 168.83 J .

Modified Newtonian dynamics(MoND)proposes that, for small accelerations, Newton’s second law, F = ma, approaches the form F = ma2/a0, where a0 is a constant.

(a) (10 points) Show how such a modified version of Newton’s second law can lead to flat rotation curves, without the need for dark matter.
(b) (10 points) Alternatively, propose a new law of gravitation to replace F = GMm/r2 at distances greater than some characteristic scale r0 so that again, you can explain the observed flat rotation curved of galaxies without dark matter.

Answers

Answer:

Explanation:

The two pictures attached here shows the solution to the two questions from the problem. thank you and I hope it helps you

In a shipping company distribution center, an open cart of mass 50 kg is rolling to the left at a speed of 5 m/s. You can ignore friction between the cart and the floor. A 15 kg package slides down a chute that makes an angle of 27 degrees below the horizontal. The package leaves the chute with a speed of 3 m/s, and lands in the cart after falling for 0.75 seconds. The package comes to a stop in the cart after 4 seconds. What is:a) the speed of the package just before it lands in the cart

Answers

Answer:

Explanation:

The package leaves the chute with a speed of 3 m/s, and lands in the cart after falling for 0.75 seconds . During .75 second duration . package undergoes free fall due to which additional vertical velocity is added

velocity added = a x t

= 9.8 x .75

= 7.35 m /s

Total vertical velocity

= 3 sin27 + 7.35

= 8.71 m /s

Horizontal component = 3 cos 27

= 2.67 m /s

If v be the resultant velocity of these components

v² = 2.67² + 8.71²

v² = 7.13 + 75.86

v = 9.11 m /s .

What is the major difference between herbal and conventional medicines

Answers

Most importantly, the main difference between herbal medicines and conventional medicines is that herbal medicines each contain a combination of chemicals, as opposed to a single pharmacologically active substance.

A 25kg box in released on a 27° incline and accelerates down the incline at 0.3 m/s2. Find the friction force impending its motion? What is the coefficient of kinetic friction?
A block is given an initial speed of 3m/s up a 25° incline. Coefficient of friction

Answers

Answer:

a)  μ = 0.475 , b)   μ = 0.433

Explanation:

a) For this exercise of Newton's second law, we create a reference system with the x-axis parallel to the plane and the y-axis perpendicular to it

X axis

     Wₓ - fr = m a

the friction force has the expression

     fr = μ N

y Axis

     N - [tex]W_{y}[/tex] = 0

let's use trigonometry for the components the weight

     sin 27 = Wₓ / W

     Wₓ = W sin 27

     cos 27 = W_{y} / W

     W_{y} = W cos 27

     N = W cos 27

     W sin 27 - μ W cos 27 = m a

     mg sin 27 - μ mg cos 27 = m a

      μ = (g sin 27 - a) / (g cos 27)

      very = tan 27 - a / g sec 27

      μ = 0.510 - 0.0344

      μ = 0.475

b) now the block starts with an initial speed of 3m / s. In Newton's second law velocity does not appear, so this term does not affect the result, the change in slope does affect the result

         μ = tan 25 - 0.3 / 9.8 sec 25

         μ = 0.466 -0.03378

         μ = 0.433

You would like to know whether silicon will float in mercury and you know that can determine this based on their densities. Unfortunately, you have the density of mercury in units of kilogram-meter^3 and the density of silicon in other units: 2.33 gram-centimeter^3. You decide to convert the density of silicon into units of kilogram-meter^3 to perform the comparison.
By which combination of conversion factors will you multiply 2.33 gram-centimeter^3 to perform the unit conversion?

Answers

Answer:

Explanation:

To convert gram / centimeter³ to kg / m³

gram / centimeter³

= 10⁻³ kg / centimeter³

= 10⁻³  / (10⁻²)³ kg / m³

= 10⁻³ / 10⁻⁶ kg / m³

= 10⁻³⁺⁶ kg / m³

= 10³ kg / m³

So we shall have to multiply be 10³ with amount in gm / cm³ to convert it into kg/m³

2.33 gram / cm³

= 2.33 x 10³ kg / m³ .

Distributions of electric charges in a cell play a role in moving ions into and out of a cell. In this situation, the motion of the ion is affected by two forces: the electric force due to the non-uniform charge distribution in the cell membrane, and the resistive force (viscosity) due to colliding with the fluid molecules. In order to begin our analysis of this, let's consider a toy model in which the ion is moving in response to electric forces alone.

Charges in a cell membrane are distributed along the opposite sides of the membrane approximately uniformly. This leads to an (on the average) constant electric field inside the membrane. A simple model that gives this kind of field is two large parallel plates close together. The field between the plates is approximately constant pointing from the negative to the parallel plate. This results in a charge feeling a constant force anywhere between the plates (sort of like flat-earth gravity turned sideways). Outside of the plates the electric fields from the two plates cancel and there is no force.

2. The electric field between the plates (inside the membrane) is about 107 N/C and the thickness of the membrane is about 7 nm. Estimate:

2.1 The electric force on the ion when it is in the center of the channel.
F = N

Explain your reasoning.



2.2 The acceleration of the ion when it is in the center of the channel.
a = nm/s2
Explain your reasoning.



2.3 The magnitude of the change in the ion's potential energy as it crosses from one side of the plates to the other.
U = J
Explain your reasoning.



2.4 The kinetic energy the ion would gain as it crosses from one side of the plates to the other.
KE = J
Explain your reasoning.

Could you explain 2.3!

Answers

Answer:

An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element. Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers.Explanation:

An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element.

What is atom?

Every solid, liquid, gas, and plasma is composed of neutral or ionized atoms. Atoms are extremely small; typical sizes are around 100 picometers.

Each atom is made up of a nucleus and one or more electrons that are linked to it. One or more protons and a significant number of neutrons make up the nucleus. Only the most prevalent type of hydrogen is neutron-free.

Atoms that are neutral or ionized make up every solid, liquid, gas, and form of plasma. Atoms are incredibly tiny, measuring typically 100 picometers across. The nucleus of an atom contains more than 99.94% of its mass.

Therefore, An atom is the smallest constituent unit of ordinary matter that constitutes a chemical element.

To learn more about atom, refer to the link:

https://brainly.com/question/1566330

#SPJ2

Official (Closed) - Non Sensitive
MEF Tutorial 2 Q3
A train with a maximum speed of 29.17 m/s has an
acceleration rate of 0.25 m/s2 and a deceleration
rate of 0.7 m/s2. Determine the minimum running
time, if it starts from rest at one station and stops
at the next station 7 km away.​

Answers

Answer:

The minimum running time is 319.47 s.

Explanation:

First we find the distance covered and time taken by the train to reach its maximum speed:

We have:

Initial Speed = Vi = 0 m/s    (Since, train is initially at rest)

Final Speed = Vf = 29.17 m/s

Acceleration = a = 0.25 m/s²

Distance Covered to reach maximum speed = s₁

Time taken to reach maximum speed = t₁

Using 1st equation of motion:

Vf = Vi + at₁

t₁ = (Vf - Vi)/a

t₁ = (29.17 m/s - 0 m/s)/(0.25 m/s²)

t₁ = 116.68 s

Using 2nd equation of motion:

s₁ = (Vi)(t₁) + (0.5)(a)(t₁)²

s₁ = (0 m/s)(116.68 s) + (0.5)(0.25 m/s²)(116.68 s)²

s₁ = 1701.78 m = 1.7 km

Now, we shall calculate the end time and distance covered by train, when it comes to rest on next station.

We have:

Final Speed = Vf = 0 m/s    (Since, train is finally stops)

Initial Speed = Vi = 29.17 m/s     (The train must maintain max. speed for min time)

Deceleration = a = - 0.7 m/s²

Distance Covered to stop = s₂

Time taken to stop = t₂

Using 1st equation of motion:

Vf = Vi + at₂

t₂ = (Vf - Vi)/a

t₂ = (0 m/s - 29.17 m/s)/(- 0.7 m/s²)

t₂ = 41.67 s

Using 2nd equation of motion:

s₂ = (Vi)(t₂) + (0.5)(a)(t₂)²

s₂ = (29.17 m/s)(41.67 s) + (0.5)(- 0.7 m/s²)(41.67 s)²

s₂ = 607.78 m = 0.6 km

Since, we know that the rest of 7 km, the train must maintain the maximum speed to get to the next station in minimum time.

The remaining distance is:

s₃ = 7 km - s₂ - s₁

s₃ = 7 km - 0.6 km - 1.7 km

s₃ = 4.7 km

Now, for uniform speed we use the relation:

s₃ = vt₃

t₃ = s₃/v

t₃ = (4700 m)/(29.17 m/s)

t₃ = 161.12 s

So, the minimum running time will be:

t = t₁ + t₂ + t₃

t = 116.68 s + 41.67 s + 161.12 s

t = 319.47 s

Two forces are applied on a body. One produces a force of 480-N directly forward while the other gives a 513-N force at 32.4-degrees above the forward direction .Find the magnitude and direction(relative to forward direction of the resultant force that these forces exert on the body)​

Answers

Answer:

F = (913.14 , 274.87 )

|F| = 953.61 direction 16.71°

Explanation:

To calculate the resultant force you take into account both x and y component of the implied forces:

[tex]\Sigma F_x=480N+513Ncos(32.4\°)=913.14N\\\\\Sigma F_y=513sin(32.4\°)=274.87N[/tex]

Thus, the net force over the body is:

[tex]F=(913.14N)\hat{i}+(274.87N)\hat{j}[/tex]

Next, you calculate the magnitude of the force:

[tex]F=\sqrt{(913.14N)+(274.87N)^2}=953.61N[/tex]

and the direction is:

[tex]\theta=tan^{-1}(\frac{274.14N}{913.14N})=16.71\°[/tex]

While watching a movie a spaceship explodes and there is a loud bang and flash of light. What is wrong with this scene? Explain how you know using evidence and scientific reasoning from the lesson.

Answers

Well if the ship was in space their shouldn’t be a loud bang. Because you can’t hear anything in space

A cobalt-60 source with activity 2.60×10-4 Ci is embedded in a tumor that has
mas 0.20 kg. The source emits gamma photons with average energy 1.25 MeV.
Half the photons are absorbed in the tumor, and half escape.
i. What energy is delivered to the tumor per second? [4 marks]
ii. What absorbed dose, in rad, is delivered per second? [2 marks]
iii. What equivalent dose, in rem, is delivered per second if the RBE for
these gamma rays is 0.70? [2 marks]
Page 6 of 7
iv. What exposure time is required for an equivalent dose of 200 rem? [2
marks]
B. A laser with power output of 2.0 mW at a wavelength of 400 nm is projected
onto a Calcium metal. The binding energy is 2.31 eV.
i. How many electrons per second are ejected? [6 marks]
ii. What power is carried away by the electrons? [4 marks]
C. A hypodermic needle of diameter 1.19 mm and length 50 mm is used to
withdraw blood from a patient? How long would it take for 500 ml of blood to be
taken? Assume a blood viscosity of 0.0027 Pa.s and a pressure in the vein of
1,900 Pa. [10 marks]
D. A person with lymphoma receives a dose of 35 gray in the form of gamma
radiation during a course of radiotherapy. Most of this dose is absorbed in 18
grams of cancerous lymphatic tissue.
i. How much energy is absorbed by the cancerous tissue? [2 marks]
ii. If this treatment consists of five 15-minute sessions per week over the
course of 5 weeks and just one percent of the gamma photons in the
gamma ray beam are absorbed, what is the power of the gamma ray
beam? [4 marks]
iii. If the gamma ray beam consists of just 0.5 percent of the photons
emitted by the gamma source, each of which has an energy of 0.03
MeV, what is the activity, in Curies, of the gamma ray source? [4 marks]
E. A water heater that is connected across the terminals of a 15.0 V power supply
is able to heat 250 ml of water from room temperature of 25°C to boiling point
in 45.0 secs. What is the resistance of the heater? The density of water is 1,000
kg/m2 and the specific heat capacity of water is 4,200 J/kg/°C. [10 marks]

Answers

Answer:

A i. E = 9.62 × 10⁻⁷ J/s

ii. The absorbed dose is 4.81 × 10⁻⁶ Gy

iii. The equivalent dose is  3.37 × 10⁻⁴ rem/s

iv.  t = 593471.81 seconds

B. i. 4.025 × 10¹⁵/s

ii. 0.512 mW

C. 7218092.2 seconds

D. i. 6.3 × 10⁻¹ J

ii. 1.4 × 10⁻² W

iii. 1.57 × 10³ Curie

E. 0.129 Ω

Explanation:

The given parameters are;

Mass of tumor = 0.20 kg

Activity of Cobalt-60 = 2.60 × 10⁻⁴ Ci

Photon energy = 1.25 MeV

(i) The energy, E, delivered to the tumor is given by the relation;

[tex]E = \frac{1}{2}\left (Number \, of \, decay / seconds \right )\times \left (Energy \, of \, photon \right )[/tex]

[tex]E = \frac{1}{2}\left (2.6\times 10^{-4}Ci )\times \left (\frac{3.70\times 10^{10}decays/s}{1 Ci} \right )\times 1.25\times 10^{6}eV\times \frac{1.6\times 10^{-19}J}{1eV}[/tex]

E = 9.62 × 10⁻⁷ J/s

(ii) The equation for absorbed dose is given as follows;

Absorbed dose, D, in Grays Gy = (Energy Absorbed Joules J)/Mass kg

Therefore, absorbed dose = (9.62 × 10⁻⁷ J/s)/( kg) = 4.81 × 10⁻⁶ Gy

1 Gray = 100 rad

4.81 × 10⁻⁷ Gy = 100 × 4.81 × 10⁻⁶ = 4.81 × 10⁻⁴ rad/s

(iii) Equivalent dose, H, is  given by the relation;

H = D × Radiation factor, [tex]w_R[/tex]

∴ H = 0.7 × 4.81 × 10⁻⁴ rad/s = 3.37 × 10⁻⁴ Sv = 3.37 × 10⁻⁴ rem/s

(iv) The exposure time required for an equivalent dose of 200 rem is given as follows;

[tex]\dot{H} = \dfrac{H}{t}[/tex]

Therefore;

[tex]t= \dfrac{200}{{3.37 \times 10^{-4}} } = 593471.81 \, s[/tex]

∴ t = 6.9 days

B. The number of electrons ejected is given by the relation;

[tex]N = \frac{P}{E} = \frac{P \times \lambda}{hc}[/tex]

[tex]N = \dfrac{2.0 \times 10^{-3} \times 400 \times 10^{-9}}{6.626 \times 10^{-34} \times 3 \times 10^8} = 4.025 \times 10^{15}/s[/tex]

(ii) The power carried by the electron

The energy carried away by the electrons is given by the relation;

[tex]KE_e = hv - \Phi[/tex]

[tex]KE_e = \frac{6.626 \times 10^{-34} \times 3 \times 10^8}{400 \times 10^{-9}} - 2.31 \times \frac{1.6 \times 10 ^{-19} }{1}[/tex]

[tex]KE_e = 4.9695 \times 10^{-19} - 3.696 \times 10 ^{-19} = 1.2735 \times 10^{-19} J[/tex]

Power, P[tex]_e[/tex], carried away by the electron = 4.025 × 10¹⁵ × 1.2735 × 10⁻¹⁹ = 0.512 mW

C. The given parameters are;

d = 1.19 mm, ∴ r = 1.19/2 = 0.595 × 10⁻³ m

l = 50 mm = 5 × 10⁻³ m

V = 500 ml = 5 × 10⁻⁴ m³

η = 0.0027 Pa

p = 1,900 Pa.

[tex]\dfrac{V}{t} = \dfrac{\pi }{8} \times \dfrac{P/l}{\eta } \times r^4[/tex]

[tex]t = \dfrac{8\times \eta\times V\times l }{\pi \times P \times r^4}[/tex]

[tex]t = \dfrac{8\times 0.0027 \times 5 \times 10^{-4} \times 5 \times 10^{-2} }{\pi \times 1900 \times (0.595 \times 10^{-4} )^4}[/tex]

t = 7218092.2 seconds

D) i. Energy absorbed is given by the relation;

E = m×D

Where:

D = 35 Gray = 35 J/kg

m = 18 g = 18 × 10⁻³ kg

∴ E = 35 × 18 × 10⁻³ = 6.3 × 10⁻¹ J

ii. Total time for treatment = 15 × 5 = 75 minutes

Energy absorbed = 6.3 × 10⁻¹ × 100 = 63 J

Power = Energy(in Joules)/Time (in seconds)

∴ Power = 63/(75×60) = 1.4 × 10⁻² W

iii. Whereby the power is provided by 0.5% of the photons emitted by the source, we have;

[tex]P_{source}= \frac{P_{beam}}{0.005} =\frac{0.0014}{0.005} =0.28 \, W[/tex]

1 MeV = 1.60218 × 10⁻¹³ J

0.03 MeV = 0.03 × 1.60218 × 10⁻¹³ J = 4.80654 × 10⁻¹⁵ J/photon

Therefore, the number of disintegration per second = 0.28 J/s ÷  4.80654 × 10⁻¹⁵ J/photon = 5.83 × 10¹³ disintegrations per second

1 Curie = 3.7 × 10¹⁰  disintegrations per second

Hence, 5.83 × 10¹³ disintegrations per second = (5.83 × 10¹³)/(3.7 × 10¹⁰) Curie

= 1.57 × 10³ Curie

E. The parameters given are;

Density of water = 1000 kg/m³

Volume of water = 250 ml = 0.00025 m³

Initial temperature, T₁, = 25°C

Final temperature, T₂, = 100°C

Change in temperature, ΔT = 100 - 25 = 75°

Specific heat capacity of the water = 4200 J/kg/°C

Mass of water = Density × Volume = 1000 × 0.00025 = 0.25 kg

∴ Heat supplied = 4200 × 0.25 × 75 = 78,750 J

Time to heat the water = 45.0 sec

Therefore, power = Energy/time = 78750/45 = 1750 W

The formula for electrical power = I²R =VI = V²/R

Therefore, where V = 15.0 V, we have;

15²/R = 1750

R = 15²/1750 = 0.129 Ω.

The resistance of the heater = 0.129 Ω.

Other Questions
Simplify the expression. (2x5)42x2016x2016x92x625 An explanation of the relationships among particular phenomena.1.function2.ideal type3.symbol4.latent function 5.theory6.dsyfunctional Which is the best description of Napoleon Bonaparte? Barcel empez a pintar en Mallorca, Espaa. Mir, as como como Jackson Pollock y sus viajes a Europa, Estados Unidos y frica fueron una gran influencia en sus obras. Barcel prefiri seguir la pintura tradicional, pero experiment mucho con diferentes materiales y actitudes. What type of art did Barcel paint that showed the influence of Mir? Expresionista Abstracta Cubista Surrealista Lena is 10 years old. She asks her dad how old he is. He tells her that the lcm of their ages is 14 times the hcf of their ages. She knows that her dad is at least 30 years old but younger than 45. Work out how old her dad is. -2 x (-7) = 24 divided by (-3) = Which cross section is formed when a cube is sliced in a way such that the plane passes through the cube parallel to one of the bases? A. a rectangle B. a square C. a triangle that is not equilateral D. a parallelogram that is not a rectangle How can most Japanese identify as both Shinto and Buddhist simultaneously? also if you copyright something I will report you Solve for y: 4.02y + 16 = 0 During the scene at the Morningside Heights apartment, how does Nick initially react to the behavior of the other characters? How does he end up behaving differently from the way he acted back home, and why is this significant? The table shows the travelling time to work of 50 people.-Travelling time (t)in minutes-0 Oxygen has an atomic number of 8. What information does the atomic number provide? Question 3 options:Oxygen has 8 protons.Oxygen has 8 neutrons.Oxygen has 8 protons and 8 electrons.Oxygen has 8 protons and 8 neutrons. en sus origenes la cultura hispana se formo de la union de the area of the base of a triangular prism is 4.5 and the lenght of the prism is 5. what is the volume of the prism (If tan A=)PLZ ANSWER IT FAST... Which of the Bill of Rights places restrictions on national and state governments?Select one:a. 2ndb. 5thC. 14thd. 1st A right triangle is shown below.Which measurement is the closest to the value of x? Water pollution gizmo worksheet answer How many grams are in a kilogram Which of the following is an example of conduction?A. The sun heating the groundB. The ground heating the air C. The hot air rising and cold air falling