9514 1404 393
Answer:
7.5 ft32.5 ft, 5 ft10.7 ftStep-by-step explanation:
a) The starting height is h(0) = 7.5 feet, the constant in the quadratic function.
The irrigation system is positioned 7.5 feet above the ground
__
b) The axis of symmetry for quadratic ax^2 +bx +c is x = -b/(2a). For this quadratic, that is x=-10/(2(-1)) = 5. This is the horizontal distance to the point of maximum height. The maximum height is ...
h(5) = (-5 +10)(5) +7.5 = 32.5 . . . feet
The spray reaches a maximum height of 32.5 feet at a horizontal distance of 5 feet from the sprinkler head.
__
c) The maximum distance will be √32.5 + 5 ≈ 10.7 ft.
The spray reaches the ground at about 10.7 feet away.
Answer:
7.5
32.5
5
maximum
10.7
Step-by-step explanation:
More math sorry. But I honestly don’t know any of these
Answer: A
Step-by-step explanation:
The main parent functions are x, and x raised to the power of something (examples: [tex]x^2, x^3, x^4[/tex], etc)
Find the standard normal area for each of the following (Round your answers to 4 decimal places.): Standard normal area a.P(1.26 < Z < 2.16) b.P(2.05 < Z < 3.05) c.P(-2.05 < Z < 2.05) d.P(Z > .55)
Answer:
The correct answer is:
(a) 0.0884
(b) 0.0190
(c) 0.9596
(d) 0.2921
Step-by-step explanation:
(a)
= [tex]P(1.26<Z<2.16)[/tex]
= [tex]P(Z<2.16)-P(Z<1.26)[/tex]
= [tex]0.9846-0.8962[/tex]
= [tex]0.0884[/tex]
(b)
= [tex]P(2.05<Z<3.05)[/tex]
= [tex]P(Z<3.05)-P(Z<2.05)[/tex]
= [tex]0.9989-0.9798[/tex]
= [tex]0.0190[/tex]
(c)
= [tex]P(-2.05<Z<2.05)[/tex]
= [tex]P(Z<2.05)-P(Z<-2.05)[/tex]
= [tex]0.9798-0.0202[/tex]
= [tex]0.9596[/tex]
(d)
= [tex]P(Z>0.55)[/tex]
= [tex]1-P(Z<0.55)[/tex]
= [tex]1-0.7088[/tex]
= [tex]0.2912[/tex]
The time spent waiting in the line is approximately normally distributed. The mean waiting time is 7 minutes and the standard deviation of the waiting time is 1 minute. Find the probability that a person will wait for more than 6 minutes. Round your answer to four decimal places.
Answer:
0.15866
Step-by-step explanation:
6-7/1
=-1
p(x>-1)=1-p(x<1)
=0.15866
When 50% of a number is added to the number, the results is 165
Answer:
this would look like
0.5x+x=165
1.5x=165
x=110
Hope This Helps!!!
5
12
of the pupils in Year 9 say their favourite colour is red.
There are 240 pupils in Year 9.
How many students said red is their favourite colour?
Answer:
100
Step-by-step explanation:
I assume you mean [tex]\frac{5}{12}[/tex] of the students in Year 9.
Basically, first you need to work out 1/12 of the students, which is just 240 divided by 12, equals 20.
So, we know 1/12 of 240 is 20, therefore, in order to work out 5/12, we must do 20 x 5, which is 100.
Solve for y.
5y – 10 = 10
y = [?]
What is y?
Answer:
y = [ 4 ]
Step-by-step explanation:
5y - 10 = 10
+10 +10
5y = 20
/5 /5
y = 4
hope this helps ! ^^
Answer:
[tex]5y-10=10[/tex]
[tex]Add ~10[/tex]
[tex]5y=10+10[/tex]
[tex]5y=20[/tex]
[tex]divide ~by ~5[/tex]
[tex]y=4[/tex]
[tex]ANSWER: y=4[/tex]
-----------------------------
HOPE IT HELPS
HAVE A GREAT DAY!!
what is the domain of f(x)
Answer:
Values of x
Step-by-step explanation:
The domain of a function is the set of all possible inputs for the function while the co-domain is the set of all possible outputs of the function.
In other words, domain is the set of x-values that you can put into any given equation while co-domain is the sex of f(x)-values that you get from substituting the values of x.
Hope it's clear
An adult soccer league requires a ratio of at least 2 women per 7 men on the roster. If 14 men are on the roster, how many women are needed to maintain that ratio?
Answer:
Atleast 4 women
Step-by-step explanation:
Ratio of
Women to men = 2 : 7
Number of women needed to maintain the ratio if there are 14 men on the roster :
The minimum number of women required :
(2 : 7) * number of men in roster
(2 / 7) * 14
2 * 2 = 4 women
Atleast 4 women are required to main the ratio
Write an equation that represents the line.
Answer:
Y = 2/3X + 4/3
Step-by-step explanation:
(1,2) (4,4)
M = 2/3
Y = 2/3X + b
4 = 8/3 + b
12 = 8 + 3b
4 = 3b
B = 4/3
Y = 2/3X + 4/3
Change 84cm into millimetres
Answer:
840 mm
Step-by-step explanation:
multiply by 10
Answer:
840 millimetres
Step-by-step explanation:
To convert cm to mm, multiply the value in cm by 10
84cm x 10 = 840 mm
Hope this helps! <3
find the Maclaurin series for f(x) using the definition of a Maclaurin series. [Assume that f has a power series expansion. Do not show that Rn(x) → 0.] Find the associated radius of convergence R. f(x) = 6(1 − x)−2 Step 1 The Maclaurin series formula is f(0) + f '(0)x + f ''(0) 2! x2 + f '''(0) 3! x3 + f (4)(0) 4! x4 + .
Answer:
= ∑ 6*n*x^n-1
Radius of convergence = 1
Step-by-step explanation:
f(x) = 6(1-x)^-2
Maclaurin series can be expressed using the formula
f(x) = f(0) + f '(0)x + f ''(0)/ 2! (x)^2 + f '''(0)/3! (x)^3 + f (4)(0) 4! x4 + .
attached below is the detailed solution
Radius of convergence = 1
The Maclaurin series for f(x) = 6 / (1 - x )^2 = ∑ 6*n*x^n-1 ( boundary ; ∞ and n = 1 )
helppppppppppppppppppppppppppppppppppppppp
Answer:
the total square footage = 194
1.88 x 194 = 364.72
Step-by-step explanation:
Area for triangle ends.
A = [tex]\frac{2.5 (8)}{2}[/tex] (Times two, because there are two ends.)
Base of prism = 8 x 10 = 80
Sides of prism = 2(10 x 4.7 ) = 94 (What's the 2? There's two of them)
Add all together : 10 + 10 + 80 + 94 = 194
1.88 x 194 = 364.72
Mark draws one card from a standard deck of 52. He receives $ 0.30 for a heart, $ 0.55 for a queen and $ 0.90 for the queen of hearts. How much should he pay for one draw
Answer
$0.1346
Explanation:
Find probability of each card and the value of each card and then add them together.
Probability of getting a heart = 13/52
Price of one heart =$0.30
Pay for one heart = 13/52×0.30=$0.075
Probability of getting a queen =4/52
Price of one queen =$0.55
Pay for one queen =4/52×$0.55=$0.0423
Probability of getting a queen of hearts =1/52
Price of one queen =$0.90
Pay for one queen =1/52×$0.90=$0.0173
Therefore the pay for one draw= $0.075+$0.0423+$0.0173=$0.1346
The slope of diagonal AB is ___ , and it’s equation is ___.
Answer:
The slope of diagonal AB is 0 and its equation is [tex]y=-2[/tex].
Step-by-step explanation:
Horizontal lines have zero slope. Since diagonal AB represents a horizontal line (same y-value regardless of x-value), the slope of diagonal AB is 0.
Horizontal lines can be expressed as [tex]y=n[/tex] where [tex]n[/tex] is some real number. In this case, diagonal AB sits on a line with only y-values of -2, and therefore the equation of the line the diagonal is on is [tex]\boxed{y=-2}[/tex].
verify that whether -2 and 3 are zeroes of the polynomial x^2-x=6
PLEASE HELP
Answer:
Both give remainder 0 for the polynomial
Step-by-step explanation:
p(-2) = (-2)² - (-2) - 6
= 6 - 6 = 0
p(3) = (3)² - 3 - 6
= 9 - 9 = 0
What is A∪ϕ and A∩ϕ for a set A?
Answer:
1 ans A second phi okay yed
21. The mean salary of twelve men is $58,000, and the
mean salary of eight women is $42,000. Find the
mean salary of all twenty people.
Help differentiate this
Answer:
[tex]\displaystyle y' = 20x^3 + 6x^2 + 70x + 9[/tex]
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsExpand by FOILFunctionsFunction NotationCalculus
Derivatives
Derivative Notation
Derivative Property [Multiplied Constant]: [tex]\displaystyle \frac{d}{dx} [cf(x)] = c \cdot f'(x)[/tex]
Derivative Property [Addition/Subtraction]: [tex]\displaystyle \frac{d}{dx}[f(x) + g(x)] = \frac{d}{dx}[f(x)] + \frac{d}{dx}[g(x)][/tex]
Basic Power Rule:
f(x) = cxⁿ f’(x) = c·nxⁿ⁻¹Derivative Rule [Product Rule]: [tex]\displaystyle \frac{d}{dx} [f(x)g(x)]=f'(x)g(x) + g'(x)f(x)[/tex]
Step-by-step explanation:
Step 1: Define
Identify
[tex]\displaystyle y = (x^3 + 7x - 1)(5x + 2)[/tex]
Step 2: Differentiate
Product Rule: [tex]\displaystyle y' = \frac{d}{dx}[(x^3 + 7x - 1)](5x + 2) + (x^3 + 7x - 1)\frac{d}{dx}[(5x + 2)][/tex]Basic Power Rule [Derivative Property - Addition/Subtraction]: [tex]\displaystyle y' = (3x^{3 - 1}+ 7x^{1 - 1} - 0)(5x + 2) + (x^3 + 7x - 1)(5x^{1 - 1} + 0)[/tex]Simplify: [tex]\displaystyle y' = (3x^2+ 7)(5x + 2) + 5(x^3 + 7x - 1)[/tex]Expand: [tex]\displaystyle y' = 15x^3 + 6x^2 + 35x + 14 + 5(x^3 + 7x - 1)[/tex][Distributive Property] Distribute 5: [tex]\displaystyle y' = 15x^3 + 6x^2 + 35x + 14 + 5x^3 + 35x - 5[/tex]Combine like terms: [tex]\displaystyle y' = 20x^3 + 6x^2 + 70x + 9[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Derivatives
Book: College Calculus 10e
Find the difference.
(3x3−2x2+4x−8)−(5x3+12x2−3x−4)=
Answer:
-2x³ - 14x² + 7x - 4
General Formulas and Concepts:
Pre-Algebra
Distributive PropertyAlgebra I
Terms/CoefficientsStep-by-step explanation:
Step 1: Define
Identify
(3x³ - 2x² + 4x - 8) - (5x³ + 12x² - 3x - 4)
Step 2: Simplify
[Distributive Property] Distribute negative: 3x³ - 2x² + 4x - 8 - 5x³ - 12x² + 3x + 4Combine like terms (x³): -2x³ - 2x² + 4x - 8 - 12x² + 3x + 4Combine like terms (x²): -2x³ - 14x² + 4x - 8 + 3x + 4Combine like terms (x): -2x³ - 14x² + 7x - 8 + 4Combine like terms: -2x³ - 14x² + 7x - 4The five-number summary of a data set is: 0, 4, 6, 14, 17
An observation is considered an outlier if it is below:
An observation is considered an outlier if it is above:
Answer:
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
Step-by-step explanation:
0, 4, 6, 14, 17
inner quartile range of 0 - 17 is 1/2 of 17 subtracted from the higher number = 17 - 1/2 of 8.5 = 8.5 - 4.25 = 4.25 - 4.25 x 3
= 4.25 to 12.75 for inner quartile
inner quartile range is 12.75-4.25 = 8.5
We then 1.5 x 8.5 to show the outlier
= 12.75 meaning there is no outlier if is below.
Lower quartile fences = 4.25 - 1.5 = 2.75
or -1.5 x 8.5 (the range) = -12.75
Upper quartile fence = 12.75 + 1.5 = 14.25 x 8.5 = 121.125 this would be an outlier if it is 12.75 higher than 121.125 or 12.75 lower than 5.50.
Outlier therefore could only be values below - 12.75
or could only be values above + 121.125
An observation is considered an outlier if it exceeds a distance of 1.5 times the interquartile range (IQR) below the lower quartile or above the upper quartile. The values of the lower quartile - 1.5 x IQR and upper quartile + 1.5 x IQR are known as the inner fences.
An observation is an outlier if it falls more than above the upper quartile or more than below the lower quartile. The minimum value is so there are no outliers in the low end of the distribution. The maximum value is so there are no outliers in the high end of the distribution.
Solve the following system of equations
Answer:
Given Two equations :-
[tex]3x {}^{2} - 2 {y}^{2} = 57 .\: .\: .\: . \:(i) \\ - 2 {x}^{2} + 3 {y}^{2} = -23.\: .\: .\: . \:(ii)[/tex]
multiplying eq.(i) by 2 eq.(ii) by 3.[tex](3x {}^{2} - 2 {y}^{2} = 57 ) \times 2 .\: .\: .\: . \:(i) \\ ( - 2 {x}^{2} + 3{y}^{2} = - 23) \times 3.\: .\: .\: . \:(ii)[/tex]
[tex]6x {}^{2} - 4 {y}^{2} =114 .\: .\: .\: . \:(i) \\ - 6 {x}^{2} + 9 {y}^{2} = - 69.\: .\: .\: . \:(ii)[/tex]
[tex]0 + 5 {y}^{2} = 45 \\ 5y {}^{2} = 45 [/tex]
diving both sides by 5[tex] {y}^{2} = 9[/tex]
taking Square root[tex]y = + - 3[/tex]
placing this value of y² in eq. (i)3x²- 2×9 = 57
3x² - 18 = 57
adding 18 to both sides3x² = 57 + 18
3x²= 75
diving both sides by 3x² = 25
x = ± 5
So, the values of x are +5 and -5 and the values of y are +3 and -3Divide: (2n3+4n−9)÷(n+2).
Answer:
2n+2
_____
9 2n
Time Remaining 59 minutes 49 seconds00:59:49 PrintItem 1 Time Remaining 59 minutes 49 seconds00:59:49 At the end of Year 2, retained earnings for the Baker Company was $2,950. Revenue earned by the company in Year 2 was $3,200, expenses paid during the period were $1,700, and dividends paid during the period were $1,100. Based on this information alone, what was the amount of retained earnings at the beginning of Year 2?
Answer:
$2550
Step-by-step explanation:
Calculation to determine the amount of retained earnings at the beginning of Year 2
Using this formula
Beginning Retained Earnings + Revenue − Expenses − Dividends = Ending Retained Earnings
Let plug in the formula
Beginning Retained Earnings + $3,200 − $1,700 − $1,100 = $2950
Beginning Retained Earnings= $2,950-$400
Beginning Retained Earnings = $2,550
Therefore the amount of retained earnings at the beginning of Year 2 is $2550
Sarah invests £2000 for 2 years in a saving account. She earns 3% per annum in compound interest.
How much did Sarah have in her saving account after 2 years?
£
Use the formula:
A=P(1+r100)n
Where;
A = the amount of money accumulated after n years, including interest
P = the principal sum (the initial amount borrowed or invested)
r = the rate of interest (percentage)
n = the number of years the amount is borrowed or invested
Answer:
£2120.27
Step-by-step explanation:
A = P (1 + r100)
A = 2000 (1+ 0.03/365)^365(2)
A = 2000 ( 1.00008)^730
A = 2000 (1.060)
A = £2120.27
Determine the value of the missing letters in the sum of numbers
below:
ab1
+ ba
abb
49x
Answer:
a=2, b=3,x=6
Step-by-step explanation:
We are given that
We have to find the value of the missing letters in the sum of numbers.
From given sum
1+a+b=x ....(1)
b+b+b=9 .....(2)
a+a=4 ......(3)
From equation (2) we get
[tex]3b=9[/tex]
[tex]\implies b=3[/tex]
From equation (3) we get
[tex]2a=4[/tex]
[tex]a=4/2[/tex]
[tex]a=2[/tex]
Now, substitute the values in equation (1) we get
[tex]1+2+3=x[/tex]
[tex]x=6[/tex]
Therefore,
231+32+233=496
A rectangular prism has a volume of 60cm^3. What could the length, width and
height be? Explain how you know. "Recall, the formula for the volume of a prism
is V=lwh.
Can you guys help
rom each corner of a square piece of sheet metal 18 centimeters on a side,we remove a small square and turn up the edges to form an open box. Whatis the largest volume this box could have
Answer:
The volume is maximum when the height is 3 cm.
Step-by-step explanation:
let the side of the removed potion is x.
length of the box = 18 - 2 x
width of the box = 18 - 2 x
height = x
Volume of box
V = Length x width x height
[tex]V = (18 - 2 x)^2 \times x\\\\V = x(324 + 4x^2 - 72 x)\\\\V = 4 x^3 - 72 x^2 + 324 x \\\\\frac{dV}{dx} = 12 x^2 - 144 x + 324 \\\\So,\\\\ \frac{dV}{dx} =0\\\\x^2 - 12 x + 27 = 0 \\\\x^2 -9 x - 3 x + 27 =0\\\\x (x - 9) - 3 (x -9) = 0\\\\x = 3, 9[/tex]
Now
[tex]\frac{d^2V}{dx^2}=24 x - 144 \\\\Put x = 3 \\\\\frac{d^2V}{dx^2}=24\times 3 - 144 = - 72\\\\Put x = 9\\\\\frac{d^2V}{dx^2}=24\times 9 - 144 = 72\\[/tex]
So, the volume is maximum when x = 3 .
Solve the given system by the substitution method.
3x + y = 14
7x - 4y = 20
Answer:
(4, 2 )
Step-by-step explanation:
Given the 2 equations
3x + y = 14 → (1)
7x - 4y = 20 → (2)
Rearrange (1) making y the subject by subtracting 3x from both sides
y = 14 - 3x → (3)
Substitute y = 14 - 3x into (2)
7x - 4(14 - 3x) = 20 ← distribute parenthesis and simplify left side
7x - 56 + 12x = 20
19x - 56 = 20 ( add 56 to both sides )
19x = 76 ( divide both sides by 19 )
x = 4
Substitute x = 4 into (3) for corresponding value of y
y = 14 - 3(4) = 14 - 12 = 2
solution is (4, 2 )
Answer:
[tex]3x + y = 14 \\ y = 14 - 3x \\ substitute \: y \: into \: equation \: 2\\ 7x - 4(14 - 3x) = 20 \\ 7x - 56 + 12x = 20 \\ 19x = 76 \\ x = \frac{76}{19} =4 \\ y = 14 - 3( 4 ) = 2 \\ [/tex]
Find the perimeter of a rectangular tile with length 1/5ft and width 3/14ft
Answer:
[tex]\frac{29}{35}[/tex] ft (29/35 ft)
Step-by-step explanation:
1. LCDPerimeter: [tex]2w+2l[/tex]
[tex]2(\frac{1}{5})+2(\frac{3}{14})=\frac{2}{5} +\frac{6}{14}[/tex]
Since [tex]\frac{6}{14} = \frac{3}{7}[/tex], the LCD would be 35
2. SolvingNew equation: [tex]\frac{14}{35} +\frac{15}{35} =\frac{29}{35}[/tex]
[tex]\frac{29}{35}[/tex]
Hope this helped! Please mark brainliest :)
We are testing a new drug with potentially dangerous side effects to see if it is significantly better than the drug currently in use. If it is found to be more effective, it will be prescribed to millions of people.
1.
a. What does it mean in context to make a type I error in this situation?
b. What does it mean in context to make a type Il error in this situation?
c. Which error do you think is worse? Now we are testing to see whether taking a vitamin supplement each day has significant health benefits. There are no (known) harmful side effects of the supplement.
2.
a. What does it mean in context to make a type I error in this situation?
b. What does it mean in context to make a type Il error in this situation?
c. Which error do you think is worse? For a given situation, what should you do if you think that committing a type l error is much worse than committing a type Il error?
A. Increase the significance level.
B. Decrease the significance level.
C. Nothing, just be careful to take a good sample.
Answer:
1) a) accepting the new drug is better based on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) Accepting and using the current drug in use when it is not as effective as the new drug
c) Type 1 error
2) a) rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) Increase the significance level ( A )
Step-by-step explanation:
1)
a) To make a type 1 error in this situation is accepting the new drug is better and prescribing it to the millions of people based only on its effectiveness when in reality the drug ain't better than the drug in current use because of its side effects
b) A type II error in context is :Accepting and using the current drug in use when it is not as effective as the new drug
c) Type I error
2)
a) Type 1 error is rejecting the vitamin supplement based on not knowing the harmful side effects
b) Accepting the Vitamin supplement based on just health benefits it portrays without comparison with other supplement.
c) Type II error
3) If committing a type 1 error is much worse
Increase the significance level