6 pounds of strawberries and 1 pound of blueberries
I did the quiz
Find the missing side of the triangle. A. √321 yd B. √221 yd C. 3√38 yd D. √21 yd
Answer:
(B) [tex]\sqrt{221}[/tex] yards
Step-by-step explanation:
Since this is a right triangle, we can use the Pythagorean Theorem to find the length of x.
The Pythagorean Theorem states that [tex]a^2 + b^2 = c^2[/tex], where a and b are our legs and c is the hypotenuse.
We need to find c, and we already know a and b, so let's substitute.
[tex]10^2 + 11^2 = c^2\\\\100+121=c^2\\\\221=c^2\\\\c=\sqrt{221}[/tex]
Hope this helped!
Help plz! Jim is climbing a mountain that has a base 150 feet above sea level. If he climbs 233 feet then descends into a cave 64 feet, how far above sea level is Jim
Answer:
150+233-64=319
Jim is 319 ft above sea level.
Step-by-step explanation:
Please answer this correctly without making mistakes
Answer:
2 13/15 miles
Step-by-step explanation:
Hey there!
Well first we need to find the distance between Lancaster and Hillsdale and Lancaster to Silvergrove.
9 + 7 13/15
= 16 13/15
LS is just 14 miles.
Now we can do,
16 13/15 - 14
= 2 13/15 miles
Hope this helps :)
Determine whether Rolle's Theorem can be applied to f on the closed interval
[a, b].
f(x) = −x2 + 3x, [0, 3]
Yes, Rolle's Theorem can be applied.No, because f is not continuous on the closed interval [a, b].No, because f is not differentiable in the open interval (a, b).No, because f(a) ≠ f(b).
If Rolle's Theorem can be applied, find all values of c in the open interval
(a, b)
such that
f '(c) = 0.
(Enter your answers as a comma-separated list. If Rolle's Theorem cannot be applied, enter NA.)
c =
Answer:
Yes, Rolle's theorem can be applied
There is only one value of c such that f'(c) = 0, and this is c = 1.5 (or 3/2 in fraction form)
Step-by-step explanation:
Yes, Rolle's theorem can be applied on this function because the function is continuous in the closed interval (it is a polynomial function) and differentiable in the open interval, and f(a) = f(b) given that:
[tex]f(0)=-0^2+3\,(0)=0\\f(3)=-3^2+3\,(3)=-9+9=0[/tex]
Then there must be a c in the open interval for which f'(c) =0
In order to find "c", we derive the function and evaluate it at "c", making the derivative equal zero, to solve for c:
[tex]f(x)=-x^2+3\,x\\f'(x)=-2\,x+3\\f'(c)=-2\,c+3\\0=-2\,c+3\\2\,c=3\\c=\frac{3}{2} =1.5[/tex]
There is a unique answer for c, and that is c = 1.5
Rolle's theorem is applicable if [tex]f(a)=f(b)[/tex] and $f$ is differentiable in $(a,b)$
since it's polynomial function, it's always continuous and differentiable..
and you can easily check that $f(0)=f(-3)=0$
so it is applicable.
now, $f'(x)=-2x+3=0 \implies x=\frac32$
there is only once value (as you can imagine, the graph will be downward parabola)
What is the missing statement in step 10 of the proof?
Answer:
c/sin C = b/sin C
Step-by-step explanation:
Look at the statement in the previous step and the reason in this step.
c sin B = b sin C
Divide both sides by sin B sin C:
(c sin B)/(sin B sin C) = (b sin C)/(sin B sin C)
c/sin C = b/sin B
A random sample of 1003 adult Americans was asked, "Do you think televisions are a necessity or a luxury you could do without?" Of the 1003 adults surveyed, 521 indicated that televisions are a luxury they could do without. Construct and interpret a 95% confidence interval for the population proportion of adult Americans who believe that televisions are a luxury they could do without out.
Answer:
The 95% confidence interval is [tex]0.503 < p < 0.535[/tex]
The interpretation is that there is 95% confidence that the true population proportion lie within the confidence interval
Step-by-step explanation:
From the question we are told that
The sample size is n = 1003
The number that indicated television are a luxury is k = 521
Generally the sample mean is mathematically represented as
[tex]\r p = \frac{k}{n}[/tex]
[tex]\r p = \frac{521}{1003}[/tex]
[tex]\r p = 0.519[/tex]
Given the confidence level is 95% then the level of significance is mathematically evaluated as
[tex]\alpha = 100 - 95[/tex]
[tex]\alpha = 5\%[/tex]
[tex]\alpha = 0.05[/tex]
Next we obtain the critical value of [tex]\frac{ \alpha }{2}[/tex] from the normal distribution table, the value is
[tex]Z_{\frac{\alpha }{2} } = 1.96[/tex]
The margin of error is mathematically represented as
[tex]E = Z_{\frac{\alpha }{2} } * \sqrt{ \frac{\r p (1- \r p )}{n} }[/tex]
=> [tex]E = 1.96 * \sqrt{ \frac{ 0.519 (1- 0.519 )}{1003} }[/tex]
=> [tex]E = 0.016[/tex]
The 95% confidence interval is mathematically represented as
[tex]\r p -E < p < \r p +E[/tex]
=> [tex]0.519 - 0.016 < p < 0.519 + 0.016[/tex]
=> [tex]0.503 < p < 0.535[/tex]
Emily made a pot cream of pumpkin soup for thanksgiving dinner she put 5 cups of cream in the soup she poured the soup into 24 small bowl show much cream measured in oz is used for each small bowl of soup?
Answer:
each bowl can contain 5/3 oz. of soup.
Step-by-step explanation:
1 cup = 8 oz.
8 oz.
5 cups x -------------- = 40 oz.
1 cup
to get the measurement of each bowl,
40 oz. divided into 24 bowls.
therefore, each bowl can contain 5/3 oz. of soup.
Drag the ruler over each side of the triangle to find its length. The length of AB is . The length of BC is . ASAP Drag the protractor over each angle to find its measure. The measure of angle C is . The measure of angle B is .
Answer:
Drag the ruler over each side of the triangle to find its length.
The length of AB is
✔ 5
.
The length of BC is
✔ 4
.
Drag the protractor over each angle to find its measure.
The measure of angle C is
✔ 90°
.
The measure of angle B is
✔ 36.9°
.
Step-by-step explanation:
The length of sides AB and BC of the triangle will be 5 units and 4 units. And the measure of angle C and angle B of the triangle will be 90° and 37°.
What is a right-angle triangle?It's a form of a triangle with one 90-degree angle that follows Pythagoras' theorem and can be solved using the trigonometry function.
Drag the ruler over each side of the triangle to find its length.
The length of side AB of the triangle is 5 units.
The length of side BC of the triangle is 4 units.
Drag the protractor over each angle to find its measure.
The measure of angle C of the triangle is 90°.
The measure of angle B of the triangle is 37°.
The length of sides AB and BC of the triangle will be 5 units and 4 units.
And the measure of angle C and angle B of the triangle will be 90° and 37°.
More about the right-angle triangle link is given below.
https://brainly.com/question/3770177
#SPJ2
Which option is correct and how would one solve for it?
Answer:
-3/5, -1, -5/3, -3, -7
Step-by-step explanation:
Let x go from 1 to 5
x =1 (1+2)/(1-6) = 3/-5 = -3/5
x =2 (2+2)/(2-6) = 4/-4 = -1
x =3 (3+2)/(3-6) = 5/-3 = -5/3
x =4 (4+2)/(4-6) = 6/-2 = -3
x =5 (5+2)/(5-6) = 7/-1 = -7
.... i repost bec brainly would not allow me to make it lager
that is all i can do
Answer:
Hey there!
Richard has 480 dollars.
Giving 1/4 of the money to his brother would mean giving 120 dollars to his brother.
Richard has 480-120, or 360 dollars left.
Giving 1/3 of the money left would be giving 120 dollars to his sister.
His sister and brother both got 120 dollars from Richard.
Hope this helps, and let me know if you need more help. :)
A researcher wishes to determine whether people with high blood pressure can lower their blood pressure by performing yoga exercises. A treatment group and a control group are selected. The sample statistics are given below. Construct a 90% confidence interval for the difference between the two population means, Would you recommend using yoga exercises? Treatment Group Control Group n1 = 100 n2 = 100 1 = 178 2 = 193 s1 = 35 s2 = 37
Answer:
90% confidence interval for the difference between the two population means
( -23.4166 , -6.5834)
Step-by-step explanation:
Step(i):-
Given first sample size n₁ = 100
Given mean of the first sample x₁⁻ = 178
Standard deviation of the sample S₁ = 35
Given second sample size n₂= 100
Given mean of the second sample x₂⁻ = 193
Standard deviation of the sample S₂ = 37
Step(ii):-
Standard error of two population means
[tex]se(x^{-} _{1} -x^{-} _{2} ) = \sqrt{\frac{s^{2} _{1} }{n_{1} }+\frac{s^{2} _{2} }{n_{2} } }[/tex]
[tex]se(x^{-} _{1} -x^{-} _{2} ) = \sqrt{\frac{(35)^{2} }{100 }+\frac{(37)^{2} }{100 } }[/tex]
[tex]se(x^{-} _{1} -x^{-} _{2} ) = 5.093[/tex]
Degrees of freedom
ν = n₁ +n₂ -2 = 100 +100 -2 = 198
t₀.₁₀ = 1.6526
Step(iii):-
90% confidence interval for the difference between the two population means
[tex](x^{-} _{1} - x^{-} _{2} - t_{\frac{\alpha }{2} } Se (x^{-} _{1} - x^{-} _{2}) , x^{-} _{1} - x^{-} _{2} + t_{\frac{\alpha }{2} } Se (x^{-} _{1} - x^{-} _{2})[/tex]
(178-193 - 1.6526 (5.093) , 178-193 + 1.6526 (5.093)
(-15-8.4166 , -15 + 8.4166)
( -23.4166 , -6.5834)
If 2y = 6 - 3x, find y when x = 0
Answer:
2y= 6-3x when x=0
2y= 6-3(0)
2y= 6-0
2y= 6
y= 6/2
y= 3
#i'm indonesian
#hope it helps.
Answer:
[tex] \boxed{y = 3}[/tex]
Step-by-step explanation:
Given, x = 0
[tex] \mathsf{2y = 6 - 3x}[/tex]
plug the value of x
⇒[tex] \mathsf{2y = 6 - 3 \times 0}[/tex]
Multiply the numbers
⇒[tex] \mathsf{2y = 6 - 0}[/tex]
Calculate the difference
⇒[tex] \mathsf{2y = 6}[/tex]
Divide both sides of the equation by 2
⇒[tex] \mathsf{ \frac{2y}{2} = \frac{6}{2} }[/tex]
Calculate
⇒[tex] \mathsf{y = 3}[/tex]
Hope I helped!
Best regards!
Gavin goes to the market and buys one rectangle shaped board. The length of the board is 16 cm and width of board is 10 cm. If he wants to add a 2 cm wooden border around the board, what will be the area of the rectangle board?
Answer:
The answer is 216
Step-by-step explanation:
if there is a 2 cm border, that means that the sides will both become 2 centimeters longer. so (16+2)*(10*2) = 18*12 = 216.
You’ve been contracted to wallpaper a wall 10 feet wide and 12 feet high with a square window with 3 foot sides. How many square feet of wallpaper do you need to cover the wall if you were to exclude the opening for the window? _____ square feet
Answer:
111 ft²
Step-by-step explanation:
wall: 10 x 12 = 120
window: 3 x 3 = 9
wall - window = area to wallpaper
120 - 9 = 111
111 ft²
Answer:
111 sq ft
Step-by-step explanation:
wall: 10 x 12 = 120
window: 3 x 3 = 9
wall - window = area to wallpaper
120 - 9 = 111
111 ft²
I need help on this question
Answer:
Figure G.
Step-by-step explanation:
Let's check through the values and calculate the radius and area for all the circle.
For circle R
Diameter = 2 feet
Radius= 1 feet
Area= πr²
Area= 3.14*1
Area= 3.14 feet²
CircleS
Diameter= 4 feet
Radius= 2 feet
Area= πr²
Area= 3.14*2²
Area= 12.56 feet²
Circle T
Diameter= 8 feet
Radius= 4 feet
Area = π r²
area= 3.14*4²
Area=50.24 feet²
Circle U
Diameter= 12 feet
Radius= 6 feet
Area = π r²
area= 3.14*6²
Area=113.04 feet²
The values of the radius and Area all match the graph in figure G
Express the function F in the form f∘g. (Enter your answers as a comma-separated list. Use non-identity functions for f(x) and g(x).)
F(x) = (x − 1)4
Answer:
[tex]f(x) = x^{4}[/tex], [tex]g(x) = x-1[/tex]
Step-by-step explanation:
Let be [tex]F(x) = f\circ g (x) = (x-1)^{4}[/tex], then expression for [tex]f(x)[/tex] and [tex]g(x)[/tex] are, respectively:
[tex]f(x) = x^{4}[/tex] and [tex]g(x) = x-1[/tex]
Mark each of the following as true or false and explain how you know.
true false false true...is the quick answer
Remember that negatives are always less than positive numbers.
In a factory there are 100 units of a certain product, 5 of which are defective. We pick three units from the 100 units at random. What is the probability that none of them are defective
Answer:
Probability of picking all three non-defective units
= 7372/8085 (or 0.911812 to six decimals)
Step-by-step explanation:
Let
D = event that the picked unit is defective
N = event that the picked unit is not defective
Pick are without replacement.
We need to calculate P(NNN) using the multiplication rule,
P(NNN)
= 97/100 * 96/99 * 95/98
=7372/8085
= 0.97*0.969697*0.9693878
= 0.911812
The probability that none of the picked products are defective is;
P(None picked is defective) = 0.856
We are told that 5 are defective out of 100.This means the number of good products that are not defective are 95.
Probability of the first picked product not being defective is written as; P(First picked not defective) = 95/100Since the good ones have been picked, there will be 99 left of which the good ones are now 94. Thus, probability of second one not being defective = 94/99Since two good ones have been picked, there will be 98 left and 93 good ones left. Thus, probability of third one not being defective = 93/98Finally, Probability of none of the three being defective is;95/100 × 94/99 × 93/98 = 0.856
Read more at; https://brainly.com/question/14661097
PLEASE HELP!! (3/5) - 50 POINTS -
Answer:
infinite number of solutions
Step-by-step explanation:
A dependent system is where the two equations are the same line has has an infinite number of solutions
Answer:
[tex]\boxed{\sf D) \ an\ infinite \ number \ of \ solutions}[/tex]
Step-by-step explanation:
A dependent system of equations has an infinite number of solutions.
When you graph the system of equations, both the equations represent the same line and have an infinite number of solutions.
Help!!!!!!! Thank you!!!!!!!
Answer:
D
Step-by-step explanation:
The ratio of yellow paint to blue paint is 4:3. We can make the largest amount of green paint by using all of the 20 quarts of yellow paint so we have to solve for x in 4:3 = 20:x, since 4 * 5 = 20, 3 * 5 = x so we use 15 qts of blue paint, therefore we will have 20 + 15 = 35 qts of green paint.
Answer:
D
Step-by-step explanation:
-50 POINTS- please help
Answer:
-13
-10
Step-by-step explanation:
A x = B
To find X
A ^ -1 A x = A ^ -1 B
x = A^ -1 B
x = -3/2 -5/2 2
-1 -2 4
Across times down
-3/2 * 2 + -5/2 *4 = -13
-1 *2 -2 * 4 = -10
The matrix is
-13
-10
Answer:
[tex]\Large \boxed{\bold{D.} \ \left[\begin{array}{ccc}-13\\ -10\end{array}\right]}[/tex]
Step-by-step explanation:
[tex]AX=B[/tex]
To find [tex]X[/tex]
[tex]X=A^{-1} \cdot B[/tex]
[tex]\displaystyle \left[\begin{array}{ccc}-\frac{3}{2} \cdot 2 + - \frac{5}{2} \cdot 4\\ -1 \cdot 2 + -2 \cdot 4\end{array}\right][/tex]
[tex]\displaystyle \left[\begin{array}{ccc}-3 + - 10\\ -2 + -8\end{array}\right][/tex]
[tex]\displaystyle \left[\begin{array}{ccc}-13\\ -10\end{array}\right][/tex]
Suppose a vine maple grows in height linearly. Four weeks after it is planted it stands 10.67 inches, and after seven weeks it is 15.67 inches tall. Write an equation that models the growth, in inches, of the vine maple as a function of time, in weeks. 1. What is the slope of the function? 2. How tall was the tree when it was first planted? 3. Write the function 4. How tall will the vine maple be after 16 weeks?
Answer:
Height (z)= 4+(5/3)(z)
Where z is the number of weeks
1). Slope = 4
2). Height= 5.67 inches
3).Height (z)= 4+(5/3)(z)
4).Height= 30.67 inches
Step-by-step explanation:
At week four
10.67= x+4y
Week 7
15.67= x+7y
Solving both equation simultaneously
3y= 5
Y= 5/3
15.67= x+7y
15.67= x+7(5/3)
15.67-35/3= x
15.67-11.67= x
4= x
The modeled equation is
Height (z)= 4+5/3(z)
Where z is the number of weeks
Slope of the function as compared to y= mx+c is 4
The first week of it's plantation
Height (z)= 4+5/3(z)
Height (1)= 4+5/3(1)
Height= 5.67 inches
After 16 weeks
Height (z)= 4+(5/3)(z)
Height (16)= 4+(5/3)(16)
Height= 30.67 inches
2 divided by ___=42 two divided by what equals 42?
The population of Jacksonville is 836,507. What is the population rounded to the
nearest hundred thousand?
A. 900,000
O
B. 850,000
C. 840,000
o D. 800,000
Answer:
D. 800,000
Step-by-step explanation:
It is D because you find the hundred thousand place which is the 8, the you go to the number next door which is 3, if the 3 is 5 or greater the 8 will become a 9 or if it is not then it will stay the same. And everything to the left stays the same, everything to the right turns into zeros.
A man claims to have extrasensory perception (ESP). As a test, a fair coin is flipped10 times and the man is asked to predict the outcome in advance. He gets 7 out of10 correct. What is the probability that he would have done at least this well if hehad no ESP?
Answer:
I would say 70%
Step-by-step explanation:
He got 7 of of 10 (7/10 = 70%) right so I would say he would do just as well without ESP since it doesn't exist.
The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20. Determine the probability that Tim will takes less than 150 minutes to install a satellite dish.
Answer: 0.8749
Step-by-step explanation:
Given, The time, X minutes, taken by Tim to install a satellite dish is assumed to be a normal random variable with mean 127 and standard deviation 20.
Let x be the time taken by Tim to install a satellite dish.
Then, the probability that Tim will takes less than 150 minutes to install a satellite dish.
[tex]P(x<150)=P(\dfrac{x-\text{Mean}}{\text{Standard deviation}}<\dfrac{150-127}{20})\\\\=P(z<1.15)\ \ \ [z=\dfrac{x-\text{Mean}}{\text{Standard deviation}}]\\\\=0.8749\ [\text{By z-table}][/tex]
hence, the required probability is 0.8749.
22/25of a number is what percentage of that number?
Answer:
88%.
Step-by-step explanation:
Multiply the fraction by 100:
(22/25) * 100
= 22 * 4
= 88%.
Carol owns a BBQ company that sells brisket for $11.75 per pound (after it is smoked for 10 hours). She buys the brisket for an AP$ of $4.72 per pound and they weigh 10.4 lbs each. Once they are done smoking, they weigh 6.24 lbs each.
What is the yield % of the briskets after Carol is done smoking them?
Answer: 60%
Step-by-step explanation:
Given, AP$ of Brisket = $4.72
Weight of each brisket on purchase : 10.4 lbs
Weight of each brisket after smoking : 6.24 lbs
Yield % of the briskets after Carol is done smoking them=[tex]\dfrac{\text{Weight after smoking}}{\text{Weight on purchase}}[/tex]
[tex]\dfrac{6.24}{10.4}\times100\\\\=60\%[/tex]
Hence, the yield % of the briskets after Carol is done smoking them = 60%
Solve for x: x/25 > 5
Answer:
x>125
Step-by-step explanation:
Answer:
x > 125
Step-by-step explanation:
Multiply each side by 25, so it now looks like this: x > 125I hope this helps!
Write a differential equation that fits the physical description. The at time t is proportional to the power of its .
Complete Question
The complete question is shown on the first uploaded image
Answer:
The differential equation that fits the physical description is [tex]\frac{d (v(t))}{dt} = z [v(t)]^2[/tex]
Step-by-step explanation:
From the question we are told that
The acceleration due to air resistance of a particle moving along a straight line at time t is proportional to the second power of its velocity v, this can be mathematically represented as
[tex]a(t) \ \ \alpha \ \ \ [v(t)]^2[/tex]
Where [tex]a(t)[/tex] is the acceleration at time t
and [tex]v(t)[/tex] is the velocity at time t
So
=> [tex]a(t)= z [v(t)]^2[/tex]
Where z is a constant
Generally acceleration is mathematically represented as
[tex]a(t) = \frac{d (v(t))}{dt}[/tex]
So
[tex]\frac{d (v(t))}{dt} = z [v(t)]^2[/tex]