Answer:
0.2305 = 23.05% probability that exactly 2 workers say yes.
Step-by-step explanation:
For each worker, there are only two possible outcomes. Either they say yes, or they say no. The probability of a worker saying yes is independent of any other worker, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
5% of workers in the US use public transportation to get to work.
This means that [tex]p = 0.05[/tex]
You randomly select 25 workers
This means that [tex]n = 25[/tex]
Find the probability that exactly 2 workers say yes.
This is P(X = 2). So
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 2) = C_{25,2}.(0.05)^{2}.(0.95)^{23} = 0.2305[/tex]
0.2305 = 23.05% probability that exactly 2 workers say yes.
Solve the inequality. |X-15|>9
Answer:
X<6 or X>24
Step-by-step explanation:
Assume that 300 births are randomly selected and 5 of the births are girls. Use subjective judgment to describe the number of girls as significantly high, significantly low, or neither significantly low nor significantly high.g
Answer:
Following are the response to the given choice.
Step-by-step explanation:
Please find the complete question in the attached file.
Subjective opinion = Question of opinion.
Therefore this requires only just opinion and we don't have to do any actual calculations.
Does this seem like a great number of girls, a little number of girls, or a decent number of girls to you but if 1,300 babies were born, 5 of whom were females?
This is a small number of beautiful gals, in my honest opinion. We anticipate boys and girls to be produced about the very same frequency, thus I expect some half of them to be females if there are 1 300 newborns. You should have roughly 650 girls if 50% of the infants are girls, but now we only have five. That appears to me to be considerably low. which is your own opinion.
A sprinkler releases water st a rate of 150 liters per hour. If the sprinkler operated for 80 minutes how many liters of water will be released
The amount of water released from the sprinkler for 80 minutes is 200 L
What is an Equation?
Equations are mathematical statements with two algebraic expressions flanking the equals (=) sign on either side.
It demonstrates the equality of the relationship between the expressions printed on the left and right sides.
Coefficients, variables, operators, constants, terms, expressions, and the equal to sign are some of the components of an equation. The "=" sign and terms on both sides must always be present when writing an equation.
Given data ,
Let the amount of water from the sprinkler for 80 minutes be = A
Now , the value of A is given by the equation
A sprinkler releases water st a rate of 150 liters per hour
So , 60 minutes = 150 Liters of water
80 minutes = 1/60 hours
80 minutes = 1.333 hours
The amount of water released for 1.333 hours A = 150 x 1.333
On simplifying the equation , we get
The amount of water released for 1.333 hours A = 200 L
Therefore , the value of A is 200 L
To learn more about equations click :
https://brainly.com/question/19297665
#SPJ2
What is the smallest 6-digit- palindrome (a number that reads the same forward and backward) divisible by 99
Answer:
108801
Step-by-step explanation:
Palindrome as defined in the given question as a number which reads the same forward and backward. Examples are: 1001, 20202, 1331 etc.
Thus, to determine the smallest 6-digit palindrome divisible by 99 without a remainder, the digits should be in the form of abccba.
Therefore, the smallest 6-digit palindrome that can be divided by 99 is 108801.
So that,
108801 ÷ 99 = 1099
convert 65 kg into gram .
Answer:
65000
Step-by-step explanation:
65x 1000
1000 because 1kg= 1000
i’ll give brainliest to right answer please hurry
Answer:
Scientific notation uses exponential notation. When a number is written in scientific notation, the exponent tells you if the term is a large or a small number. A positive exponent indicates a large number and a negative exponent indicates a small number that is between 0 and 1.
Answer:
Look at the exponitial factor. If it is like 10^2 or like 10^10 the number is very big because it is raised to a very big power. Oppisitely, when it is rasied to a negative number, the number producted will have many decimal places. For example 10^-1 is literaly 0.1.
Step-by-step explanation:
Yes I got u
Will give brainliest answer
Answer:
the x-intercepts are at
x = -3
x = 0
x = 1
Step-by-step explanation:
ask the points, where the functional value is 0.
2x³ + 4x² - 6x = 0
we see that every term contains an expression of x. so, we can simplify this
x × (2x² + 4x - 6) = 0
so, one solution is plainly visible : x=0
for the other solutions we need to solve the square equation
2x² + 4x - 6 = 0
or even simpler
x² + 2x - 3 = 0
the solution of a square equation is
x = (-b ± sqrt(b² - 4ac))/(2a)
in our case
a=1
b=2
c=-3
x = (-2 ± sqrt(2² - 4×1×-3))/(2×1) = (-2 ± sqrt(4 + 12))/2 =
= (-2 ± sqrt(16))/2 = (-2 ± 4)/2 = -1 ± 2
x1 = -1 + 2 = 1
x2 = -1 - 2 = -3
determine the general solution of cos2X -7cosX -3=0
Answer:
x=2pi/3 +2pi n, 4pi/3 +2pi n for all integar of n.
Step-by-step explanation:
add 7/8 + 2 3/24 + 6 1/6
Answer:
9 4/24 or 9 1/6
Find the LCM(lowest common multiple) of 8, 24 and 6.The LCM of 8, 24 and 6 is 24.We now want to turn all the denominators into 24 so we are going multiply 7/8 by 3 and 1/6 by 4. We won't need to turn the denominator of 3/24 into 24 because it's already 24Whatever you do to the denominator you have to do to the numerator, so you also have to multiply the numerator of 7/8 by 3 and the numerator of 1/6 by 4That now results in 21/8 + 2 3/24 + 6 4/24Now you have to add all the fractions together which is going to equal to 28/24Because 28/24 is more than the whole, subtract 28 from 24 which gives us 4. That 4 is now our new numeratorWe are now going to all the whole numbers 6+2+1=9. Incase you're wondering, the '1' came from the 28/24The answer you should get should be 9 4/24 or if it should be simplified it would be 9 1/6
Because of high tuition costs at state and private universities, enrollments at community colleges have increased dramatically in recent years. The following data show the enrollment (in thousands) for Jefferson Community College for the nine most recent years.
Year Period (t) Enrollment (1,000s)
2001 1 6.5
2002 2 8.1
2003 3 8.4
2004 4 10.2
2005 5 12.5
2006 6 13.3
2007 7 13.7
2008 8 17.2
2009 9 18.1
Required:
a. What type of pattern exists in the data?
b. Use simple linear regression analysis to find the parameters for the line that minimizes MSE for this time series.
c. What is the forecast for year 10?
Answer:
a. A linear pattern exists in the data.
b. The parameters for the line that minimizes MSE for this time series are as folows:
ß1 = Estimated slope = 1.4567
ß0 = Estimated intercept = 4.7165
Also, we have:
MSE = Mean squared error = 0.4896
c. Forecast for year 10 is 19,280.
Step-by-step explanation:
a. What type of pattern exists in the data?
Note: See Sheet1 of the attached excel file for the line graph.
From the line graph, it can be observed that a linear pattern exists in the data.
b. Use simple linear regression analysis to find the parameters for the line that minimizes MSE for this time series.
Note: See Sheet2 of the attached excel file for all the calculations to obtain the following:
Sample size = 9
Total of X = 45
Total of Y = 108
Mean of X = Total of X / Sample size = 45 / 9 = 5
Mean of Y = Total of X / Sample size = 108 / 9 = 12
SSxx = Total of (X - Mean of X)^2 = 60
SSyy = Total of (Y - Mean of Y)^2 = 130.74
SSxy = Total of (X - Mean of X) * (Y - Mean of Y) = 87.40
Therefore, we have:
ß1 = Estimated slope = SSxy/SSxx = 87.4 / 60 = 1.4567
ß0 = Estimated intercept = Mean of Y – (ß1 * Mean of X) = 12 - (5 * 1.4567) = 4.7165
Therefore, the parameters for the line that minimizes MSE for this time series are as folows:
ß1 = Estimated slope = 1.4567
ß0 = Estimated intercept = 4.7165
Regression equation which also used in the attached excel is as follows:
Y = ß0 + ß1X =
Y = 4.7165 + 1.4567X …………………. (1)
SSE = Sum of squared error = Total of (Y - Y*)^2 = 3.4273
Therefore, we have:
MSE = Mean squared error = (SSE/(n-2)) = (3.4273 / (9 - 2)) = 0.4896
c. What is the forecast for year 10?
This implies that X = 10
Substitute X = 10 into equation (1), we have:
Y = 4.7165 + (1.4567 * 10) = 19.28
Since it is 1,000s, we have:
Y = 19.28 * 1,000 = 19,280
Therefore, forecast for year 10 is 19,280.
6/10 > _ > 1/3 which fraction goes in the blank?
Step-by-step explanation:
6/10 > _ > 1/3
3/5 > _ > 1/3
Taking the average of both the fraction½(⅗+⅓)
½(9+5/15)
½(14/5)
=7/15
6/10 > 7/15 > 1/3Answer:
7/15
Step-by-step explanation: 10 and 3 LCM is 30
6/10 x 3 =18/30 and 1/3x 10= 10/30
10/30 and 18/30 average is 14/30 which simplified is 7/15
The answer is 7/15
Hope it helps
If the domain of a function that is reflected over the x-axis is (1, 5), (2, 1), (-1, -7), what is the range?
A. (1, -5), (2, -1), (-1, 7)
B. (5, 1), (1, 2), (-7, -1)
C. (-5, -1), (-1, -2), (7, 1)
D. (-1, 5), (-2, 1), (1, -7)
Answer:
A. (1, -5), (2, -1), (-1, 7)
Step-by-step explanation:
Reflecting a function over the x-axis:
When a function is reflected over the x-axis, the x-value stays the same, while y changes the signal, so the transformation rule is:
[tex](x,y) \rightarrow (x,-y)[/tex]
To find the range:
We apply the transformation to the points in the domain. Thus:
[tex](1,5) \rightarrow (1,-5)[/tex]
[tex](2,1) \rightarrow (2,-1)[/tex]
[tex](-1,-7) \rightarrow (-1,-(-7)) = (-1, 7)[/tex]
Thus the correct answer is given by option a.
Answer:
It is letter A and please give me brainliest
Step-by-step explanation:
2x+2y=38 y=x+3 solve by the solution
Answer:
x = 8 , y = 11
Step-by-step explanation:
[tex]2x + 2y = 38 => x + y = 19 - -- ( 1 ) \\\\y = x + 3 ---- ( 2 ) \\\\Substitute \ ( 2 ) \ in \ ( 1) :\\\\ x + y = 19\\\\x + ( x+ 3) = 19\\\\2x + 3 = 19\\\\2x = 19 - 3 \\\\2x = 16 \\\\x = \frac{16}{2} = 8\\\\Substitute \ x = 8 \ in \ ( 1 ) : \\\\x + y = 19\\\\8 + y = 19\\\\y = 19 - 8 = 11[/tex]
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
A(n) _____ is an expression that uses variables to state a rule.
plz help asap
Answer:
A FORMULA is an expression that uses variables to state a rule.
How long will it take money to double if it is invested at 25 % compounded continuously ?
Answer:
Is it anual or monthly?
Step-by-step explanation:
A student takes an exam containing 16 true or false questions. If the student guesses, what is the probability that he will get exactly 14 questions right
Answer:
0.001831055
Step-by-step explanation:
Here, n = 16, p = 0.5, (1 - p) = 0.5 and x = 14
As per binomial distribution formula P(X = x) = nCx * p^x * (1 - p)^(n - x)
We need to calculate P(X = 14)
P(x =14) = 16C14 * 0.5^14 *(1-0.5)^2
= 120 * 0.5^14 *(1-0.5)^2
= 0.001831055
Ben starts walking along a path at 3 mi/h. One and a half hours after Ben leaves, his sister Amanda begins jogging along the same path at 7 mi/h. How long (in hours) will it be before Amanda catches up to Ben?
Enter the exact answer.
Hint: The distance formula is that distance = rate * time, so for example in one and a half hours, Ben has walked 3 * 1.5 miles.
Amanda catches up to Ben in ____________ hours.
Answer:
1.125 hours
Step-by-step explanation:
Given :
Ben's speed = 3 mi/hr
Time before Amanda starts = 1.5 hours
Amanda's speed = 7 mi/hr
Time before Amanda catches up with Ben
Recall :
Distance = speed * time
Distance already covered by Ben before Amanda starts :
(3 * 1.5) = 4.5
Hence, we can setup the equation :
Ben's distance = Amanda's distance
Let time taken = x
4.5 + 3x = 7x
4.5 = 7x - 3x
4.5 = 4x
x = 4.5 / 4
x = 1.125 hours
1.125 * 60 = 67. 5 minutes
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Answer:
4
Problem:
If m and n are positive integers and m^2 - n^2 = 9, which of the following could be the value of
n?
A) 1
B) 16
C) 9
D) 4
Step-by-step explanation:
One approach would be to plug in the choices and see.
If n=1, then we have m^2-1=9.
This would give m^2=10 after adding 1 on both sides. There is no integer m when squared would give us 10. ( Square root of 9 is a decimal )
If n=16, then we would have m^2-256=9.
This would give m^2=265 after adding 256 on both sides. There is no integer m when squared would give us 265. ( Square root of 265 is a decimal )
If n=9, then we would have m^2-81=9.
This would give m^2=90 after adding 81 on both sides. There is no integer m when squared would give us 90. ( Square root of 90 is a decimal )
If n=4, then we would have m^2-16=9.
This would give m^2=25 after adding 16 on both sides. There is an integer m when squared would give us 25. ( Square root of 25 is a 5)
In any triangle ABC,Prove by vector method c^2=a^2+b^2-2abcosC
Answer:
Let be [tex]\vec A[/tex], [tex]\vec B[/tex] and [tex]\vec C[/tex] the vector of a triangle so that [tex]\vec C = \vec A + \vec B[/tex]. By definition of Dot Product:
[tex]\vec C \,\bullet\,\vec C = (\vec A + \vec B) \,\bullet \vec C[/tex]
[tex]\vec C \,\bullet \,\vec C = (\vec A\,\bullet \,\vec C) + (\vec B \,\bullet \,\vec C)[/tex]
[tex]\|\vec C\|^{2} = [\vec A \,\bullet \,(\vec A + \vec B)] + [\vec B\,\bullet \,(\vec A + \vec B)][/tex]
[tex]\|\vec C\|^{2} = \vec A \,\bullet \, \vec A + \vec B\,\bullet \vec B + 2\cdot (\vec A \,\bullet \, \vec B)[/tex]
[tex]\|\vec C\|^{2} = \|\vec A\|^{2} + \|\vec B\|^{2} + 2\cdot \|\vec A\|\cdot \|\vec B\|\cdot \cos\theta_{C}[/tex]
Step-by-step explanation:
Let be [tex]\vec A[/tex], [tex]\vec B[/tex] and [tex]\vec C[/tex] the vector of a triangle so that [tex]\vec C = \vec A + \vec B[/tex]. By definition of Dot Product:
[tex]\vec C \,\bullet\,\vec C = (\vec A + \vec B) \,\bullet \vec C[/tex]
[tex]\vec C \,\bullet \,\vec C = (\vec A\,\bullet \,\vec C) + (\vec B \,\bullet \,\vec C)[/tex]
[tex]\|\vec C\|^{2} = [\vec A \,\bullet \,(\vec A + \vec B)] + [\vec B\,\bullet \,(\vec A + \vec B)][/tex]
[tex]\|\vec C\|^{2} = \vec A \,\bullet \, \vec A + \vec B\,\bullet \vec B + 2\cdot (\vec A \,\bullet \, \vec B)[/tex]
[tex]\|\vec C\|^{2} = \|\vec A\|^{2} + \|\vec B\|^{2} + 2\cdot \|\vec A\|\cdot \|\vec B\|\cdot \cos\theta_{C}[/tex]
Each of these extreme value problems has a solution with both a maximum value and a minimum value. Use Lagrange multipliers to find the extreme values of the function subject to the given constraint.
(a) f (x, y) = x^2 - y^2; x^2 + y^2 = 1
Max of 1 at (plusminus 1, 0), min of - 1 at (0, plusminus l)
(b) f (x, y) = 3x + y; x^2 + y^2 = 10
Max of 10 at (3, 1), min of - 10 at (- 3, - 1)
(c) f (x, y) = xy; 4x^2 + y^2 = 8
Max of 2 at plusminus (1, 2), min of - 2 at plusminus (l, - 2)
Answer:
a) f(x,y) = - 1 minimum at P ( 0 ; -1 )
b) f (x,y) = 10 maximum at P ( 3 , 1 ) and f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) Max f ( x , y ) = 2 for points P ( 1, 2 ) and T ( -1 , -2 )
Min f ( x , y ) = -2 for points Q ( 1 , - 2 ) and R ( -1 , 2 )
Step-by-step explanation:
A) f(x,y) = x² - y² subject to x² + y² = 1 g(x,y) = x² + y²- 1
δf(x,y)/ δx = 2*x δg(x,y)/ δx = 2*x
δf(x,y)/ δy = - 2*y δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ* δg(x,y)/ δx
2*x = λ*2*x
δf(x,y)/ δy = λ* δg(x,y)/ δy
- 2*y = λ*2*y
Then, solving
2*x = λ*2*x x = λ*x λ = 1
- 2*y = λ*2*y y = - 1
x² + y²- 1 = 0 x² + ( -1)² - 1 = 0 x = 0
Point P ( 0 ; -1 ) ; then at that point
f(x,y) = x² - y² f(x,y) = 0 - ( -1)² f(x,y) = - 1 minimum
b) f( x, y ) = 3*x + y g ( x , y ) = x² + y² = 10
δf(x,y)/ δx = 3 δg(x,y)/ δx = 2*x
δf(x,y)/ δy = 1 δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ 3 = 2* λ *x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ 1 = 2*λ * y (2)
x² + y² - 10 = 0 (3)
Solving that system
From ec (1) λ = 3/2*x From ec (2) λ = 1/2*y
Then (3/2*x ) = 1/2*y 3*y = x
x² + y² = 10 ⇒ 9y² + y² = 10 10*y² = 10
y² = 1 y ± 1 and
y = 1 x = 3 P ( 3 , 1 ) y = - 1 x = -3 Q ( - 3 , - 1 )
Value of f( x , y ) at P f (x,y) = 3*x + y f (x,y) = 3*(3) +1
f (x,y) = 10 maximum at P ( 3 , 1 )
Value of f( x , y ) at Q f (x,y) = 3*x + y f (x,y) = 3*(- 3) + ( - 1 )
f (x,y) = - 10 minimum at Q ( - 3 , - 1 )
c) f( x, y ) = xy g ( x , y ) = 4*x² + y² - 8
δf(x,y)/ δx = y δg(x,y)/ δx = 8*x
δf(x,y)/ δy = x δg(x,y)/ δy = 2*y
δf(x,y)/ δx = λ * δg(x,y)/ δx ⇒ y = λ *8*x (1)
δf(x,y)/ δy = λ * δg(x,y)/ δy ⇒ x = λ *2*y (2)
4*x² + y² - 8 = 0 (3)
Solving the system
From ec (1) λ = y/8*x and From ec (2) λ = x/2*y Then y/8*x = x/2*y
2*y² = 8*x² y² = 4*x²
Plugging that value in ec (3)
4*x² + 4*x² - 8 = 0
8*x² = 8 x² = 1 x ± 1 And y² = 4*x²
Then:
for x = 1 y² = 4 y = ± 2
for x = -1 y² = 4 y = ± 2
Then we get P ( 1 ; 2 ) Q ( 1 ; - 2)
R ( - 1 ; 2 ) T ( -1 ; -2)
Plugging that values in f( x , y ) = xy
P ( 1 ; 2 ) f( x , y ) = 2 R ( - 1 ; 2 ) f( x , y ) = - 2
Q ( 1 ; - 2) f( x , y ) = -2 T ( -1 ; -2 ) f( x , y ) = 2
Max f ( x , y ) = 2 for points P and T
Min f ( x , y ) = -2 for points Q and R
A cylinder has a radius of 2.5 inches (in.) and a height of 11 in., as shown.
2.5 in.
11 in.
What is the surface area, in square inches, of the cylinder?
Answer:
212.06
Step-by-step explanation:
can't really explain since the formula is fricking long but trust me that's uts 212.06 in²
A papaya is accidentally dropped from a bridge, which is 30 m above the water. Ignoring air resistance, the papaya's speed just before it hits the water will be __________ m/s.
Answer:
24 .30ms is the answer I think so if the answer is correct plz mark me as brainliest.
The papaya's speed just before it hits the water will be 24.24 m/s.
What is speed?The rate at which objects moves is called speed. It is given by
[tex]s = \frac{d}{t}[/tex]
An object held above the ground has a potential energy related to the height at which it is held,
PE = mgh
If you drop the object, its potential energy will become the kinetic energy of motion:
KE = ½ mv²
½ mv² = mgh
v = √(2gh)
v = √(2*9.8*30)
v = 24.24 m/s
To learn more about Speed here
https://brainly.com/question/7359669
#SPJ2
If 5x = 3x+12 then x = …..
↦ [tex]\huge\underline{ \underline{Answer:-}}[/tex]
[tex]5x = 3x + 12 \\ 5x - 3x = 12 \\ 2x = 12 \\ x = \frac{12}{2} \\ x = 6[/tex]
ʰᵒᵖᵉ ⁱᵗ ʰᵉˡᵖˢ
꧁❣ ʀᴀɪɴʙᴏᴡˢᵃˡᵗ2²2² ࿐
Step-by-step explanation:
Explanation is in the attachmenthope it is h helpful to you
Use cylindrical shells to find the volume of the solid generated when the region
R under y = x2 over the interval (0,2) revolved about the line y = -1
Answer:
[tex]\displaystyle V = \frac{176 \pi}{15}[/tex]
General Formulas and Concepts:
Pre-Algebra
Equality PropertiesAlgebra I
Terms/CoefficientsExpandingFunctionsFunction NotationGraphingExponential Rule [Root Rewrite]: [tex]\displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}[/tex]Calculus
Integrals
Definite IntegralsArea under the curveIntegration Rule [Reverse Power Rule]: [tex]\displaystyle \int {x^n} \, dx = \frac{x^{n + 1}}{n + 1} + C[/tex]
Integration Rule [Fundamental Theorem of Calculus 1]: [tex]\displaystyle \int\limits^b_a {f(x)} \, dx = F(b) - F(a)[/tex]
Integration Property [Multiplied Constant]: [tex]\displaystyle \int {cf(x)} \, dx = c \int {f(x)} \, dx[/tex]
Integration Property [Addition/Subtraction]: [tex]\displaystyle \int {[f(x) \pm g(x)]} \, dx = \int {f(x)} \, dx \pm \int {g(x)} \, dx[/tex]
Shell Method:
[tex]\displaystyle V = 2\pi \int\limits^b_a {xf(x)} \, dx[/tex]
[Shell Method] x is the radius[Shell Method] 2πx is the circumference[Shell Method] 2πxf(x) is the surface area[Shell Method] 2πxf(x)dx is the volumeStep-by-step explanation:
Step 1: Define
Identify
Graph of region
y = x²
x = 2
y = 4
Axis of Revolution: y = -1
Step 2: Sort
We are revolving around a horizontal line.
[Function] Rewrite in terms of y: x = √y[Graph] Identify bounds of integration: [0, 4]Step 3: Find Volume Pt. 1
[Shell Method] Find distance of radius x: [tex]x = y + 1[/tex][Shell Method] Find circumference variable f(x) [Area]: [tex]\displaystyle f(x) = 2 - \sqrt{y}[/tex][Shell Method] Substitute in variables: [tex]\displaystyle V = 2\pi \int\limits^4_0 {(y + 1)(2 - \sqrt{y})} \, dy[/tex][Integral] Rewrite integrand [Exponential Rule - Root Rewrite]: [tex]\displaystyle V = 2\pi \int\limits^4_0 {(y + 1)(2 - y^\bigg{\frac{1}{2}})} \, dy[/tex][Integral] Expand integrand: [tex]\displaystyle V = 2\pi \int\limits^4_0 {(-y^\bigg{\frac{3}{2}} + 2y - y^\bigg{\frac{1}{2}} + 2)} \, dy[/tex][Integral] Integrate [Integration Rule - Reverse Power Rule]: [tex]\displaystyle V = 2\pi \bigg( \frac{-2y^\bigg{\frac{5}{2}}}{5} + y^2 - \frac{2y^\bigg{\frac{3}{2}}}{3} + 2y \bigg) \bigg| \limits^4_0[/tex]Evaluate [Integration Rule - Fundamental Theorem of Calculus 1]: [tex]\displaystyle V = 2\pi (\frac{88}{15})[/tex]Multiply: [tex]\displaystyle V = \frac{176 \pi}{15}[/tex]Topic: AP Calculus AB/BC (Calculus I/I + II)
Unit: Applications of Integration
Book: College Calculus 10e
Please help!! How do I solve for x?
The line in the middle is half the length of the line on the outside. Multiply the middle line by 2 and set it equal to the outside line.
2(x-3) = x + 6
Simplify:
2x -6 p x + 6
Add 6 to both sides
2x = x + 12
Subtract x from both sides:
X = 12
The answer is B) 12
A service station has both self-service and full-service islands. On each island, there is a single regular unleaded pump with two hoses. Let X denote the number of hoses being used on the self-service island at a particular time, and let Y denote the number of hoses on the full-service island in use at that time. The joint pmf of X and Y appears in the accompanying tabulation.
Y
p(x,y) 0 1 2
x 0 0.10 0.04 0.02
1 0.08 0.20 0.06
2 0.06 0.14 0.30
a. What is P(X = 1 and Y = 1)?
b. Compute P(X ≤ 1 and Y ≤ 1).
c. Give a word description of the event {X ≠ 0 and Y ≠ 0}, and compute the probability of this event.
d. Compute the marginal pmf of X and of Y. Using pX(x), what is P(X ≤ 1)?
e. Are X and Y independent rv’s? Explain.
Answer:
a. 0.2
b. 0.42
c. 0.7
d. the solution is in the explanation
e. x and y are not independent
Step-by-step explanation:
a. from the joint probability mass function table,
p(x=1) and p(Y= 1)
= p(1,1) = 0.2
b. prob(0,0)+prob(0,1)+prob(1,0)+prob(1,1)
= 0.10 + 0.04 + 0.08 + 0.20
= 0.42
P(X ≤ 1 and Y ≤ 1) = 0.42
c. prob {X ≠ 0 and Y ≠ 0}
= prob(1,1) + prob(1,2) + prob(2,1) + prob(2,2)
= 0.20 + 0.06 + 0.14 + 0.30
= 0.7
d. we have to calculate the marginal pmf of x and y here.
we have the x values as 0,1,2
prob(x=0) = 0.1 + 0.04 + 0.02
= 0.16
prob(x=1) = 0.08 + 0.2 + 0.06
= 0.34
prob(x=2) = 0.06+0.14+0.3
= 0.50
we have y values as 0,1,2
prob(y=0) = .1+.08+.06
= 0.24
prob(y=1) = .04+.2+.14
= 0.38
prob(y = 2) = 0.02+0.06+0.3
= 0.38
P(X ≤ 1) = prob(x=0)+prob(x=1)
= 0.34+0.16
= 0.50
e. from the joint table we have this,
prob(1,1) = 0.2
prob(x=1) = 0.34
prob(y=1) = 0.38
then prob(x=1)*prob(y=1)
= 0.34*0.38
= 0.1292
therefore prob(1,1) is not equal to prob(x=1)*prob(y=1)
0.2≠0.1292
x and y are not independent
the time it takes a runner to complete a race is inversely related to the speed of the runner if a runner can complete a race in 40 minutes while running at 8 mph how long will it take the runner to complete the race running at 9 mph t
A company decides to drain the water heater to flush out sediments. The water heater has a capacity of 500 gallons. It drains 100 gallons in 20 minutes. After 20 minutes, they open another drain valve and it drains 200 gallons in the next 20 minutes. The drain valves are closed for 10 minutes, while the workers take a break and then the water heater is drained until the water heater is completely empty.
What are the domain and the range of this relation?
Answer:
≤ y ≤ 70 and 0 ≤ x ≤ 500
Step-by-step explanation:
In this relation we have two things to analyze, the number of gallons of water in the heater, that is 500 gallons, and the time that it took to empty the heater.
Let's count the time.
First, there are 20 minutes in wich 100 gallons are drained.
then, another drain valve is opened, so in 20 minutes they drain 200 gallons of water.
now, the wait for 10 minutes.
Now there are 200 gallons remaining, so the workers must wait for the other 20 minutes to drain the 200 gallons remaining.
The total amount of time is 70 minutes.
So if we have a relationship of water in the heater vs time, where X is the water remaining and Y is the time, the correct domains are:
Y from 0 minutes to 70 minutes
X from 0 gallons to 500 gallons
So the correct options are C and E.
0 ≤ y ≤ 70 and 0 ≤ x ≤ 500
______are used to represent an unknown quantity in a mathematical expression.
Answer:
Variables are used to represent an unknown quantity in a mathematical expression.
Step-by-step explanation:
Variables are used to represent an unknown quantity in a mathematical expression.For example : x + 2 = 4, here x is the variable.We can denote variable by any alphabet i.e, a,b,c,d etc.