Armature reaction in a dc machine A) is due to an increase of the armature voltage. B) occurs when the motor is connected to an ac power source. C) occurs when the motor is connected to a dc power source. D) is due to an increase of the armature current.

Answers

Answer 1

Answer:

D) is due to an increase of the armature current.

Explanation:

Option D is correct because on the DC motor, when the load increases, it leads to an increase in the armature current.

The armature current then sets up a magnetic flux which opposes the main field flux. The net field flux gets reduced. It is at this point, the armature reaction occurs.

Armature reaction is seen as the effect of magnetic flux which is usually set up by an armature current. This occurs when there is the distribution of flux under the main poles.

There are two effects the armature flux causes on the main field flux.

1. The main field flux is distorted by the armature reaction.

2. The magnitude of the main field flux is reduced by the armature flux.


Related Questions

"The transistor base-emitter voltage (VBE) a. increases with an increase in temperature. b. is not affected by temperature change. c. decreases with an increase in temperature. d. has no effect on collector current."

Answers

Answer:

C) Decreases with an increase in temperature

Explanation:

As the temperature of a transistor increases, the thermal runaway property of the transistor becomes more significant and the transistors, conducting more freely as a result of the rise in temperature, causes an increase in the collector current or leakage current. The transistor base-emitter voltage decreases as a result.

With increased heating due to heavy current flow, the transistor is damaged.

A power screw is 30 mm in diameter and has a thread pitch of 5 mm. Find the thread depth, the thread width, the mean and root diameters, and the lead, provided that square threads are used. Assume single threads.

Answers

Answer:

thread depth = 2.5 mm

thread width = 2.5 mm

mean diameter = 27.5 mm

root diameter = 25 mm

lead of screw = 5 mm

Explanation:

given data

power screw diameter D = 30 mm

thread pitch  P = 5 mm

solution

First, we get here thread depth fr square thread

thread depth = [tex]\frac{P}{2}[/tex]   ......................1

thread depth = [tex]\frac{5}{2}[/tex]

thread depth = 2.5 mm

and

thread width for square thread

thread width = [tex]\frac{P}{2}[/tex]   ......................2

thread width = [tex]\frac{5}{2}[/tex]

thread width = 2.5 mm

and

mean diameter is

mean diameter = D - [tex]\frac{P}{2}[/tex]    ................3

mean diameter = 30 - [tex]\frac{5}{2}[/tex]

mean diameter = 27.5 mm

and

root diameter is

root diameter = D - P   ....................4

root diameter = 30 - 5

root diameter = 25 mm

and

lead of screw for single thread so n = 1

so lead of screw = 1 × 5

lead of screw = 5 mm

In a typical transmission line, the current I is very small and the voltage V is very large. A unit length of line has resistance R. For a power line that supplies power to 10,000 households, we can conclude that:________

Answers

Answer:

IV > [tex]I^{2} R[/tex]

Explanation:

The current in the power line = I

The voltage in the power line = V

The resistance of the power line = R

Power supplied from the power house = P

power delivered to the households = [tex]p[/tex]

We know that the power supplied to a power line system is proportional to

P = IV    ....1

we also know that according to Ohm's law, the relationship between the voltage, resistance, and current through an electrical system is given as

V = IR    ....2

substituting equation 2 into equation 1, the power delivered to the households is proportional to the square of the current.

[tex]p[/tex] = [tex]I^{2} R[/tex]    ....3

The problem is that when power is delivered across a transmission line, some of the power is loss due to Joules heating effect of the power lines. This energy and power loss is proportional to [tex]I^{2}[/tex] therefore, the electrical power delivered to the households will be less than the electrical power supplied from the power station. This means that

P > [tex]p[/tex]

equating these two powers from equations 1 and equation 3, we have

IV > [tex]I^{2} R[/tex]

/ Air enters a 20-cm-diameter 12-m-long underwater duct at 50°C and 1 atm at a

mean velocity of 7 m/s, and is cooled by the water outside. If the average heat

transfer coefficient is 85 W/m2

°C and the tube temperature is nearly equal to the

water temperature of 5°C, determine the exit temperature of air and the rate of heat

transfer.​

Answers

Answer:

A) EXIT TEMPERATURE = 14⁰C

b) rate of heat transfer of air = - 13475.78 = - 13.5 kw

Explanation:

Given data :

diameter of duct = 20-cm = 0.2 m

length of duct = 12-m

temperature of air at inlet= 50⁰c

pressure = 1 atm

mean velocity = 7 m/s

average heat transfer coefficient = 85 w/m^2⁰c

water temperature = 5⁰c

surface temperature ( Ts) = 5⁰c

properties of air at 50⁰c and at 1 atm

= 1.092 kg/m^3

Cp = 1007 j/kg⁰c

k = 0.02735 W/m⁰c

Pr = 0.7228

v  = 1.798 * 10^-5 m^2/s

determine the exit temperature of air and the rate of heat transfer

attached below is the detailed solution

Calculate the mass flow rate

= p*Ac*Vmean

= 1.092 * 0.0314 *  7 = 0.24 kg/s

After a capacitor is fully chargerd, a small amount of current will flow though it. what is this current called?

Answers

Answer:

  leakage

Explanation:

That current is "leakage current."

Assume that the heat is transferred from the cold reservoir to the hot reservoir contrary to the Clausis statement of the second law. Prove that this violates the increase of entropy principle—as it should according to Clausius.

Answers

Answer: hello attached below is the diagram which is part of your question

Total entropy change  = entropy change in cold reservoir + entropy change in hot reservoir = -0.166 + 0.083 = -0.0837 kj/k  it violates Clausius increase of entropy which is Sgen > 0

Explanation:

Clausius statement states that it is impossible to transfer heat energy from a cooler body to a hotter body in a cycle or region without any other external factors affecting it .  

applying the increase in entropy principle to prove this

temp of cold reservoir (t hot)= 600 k

temp of hot reservoir(t cold) = 1220 k

energy (q) = 100 kj

total entropy change  = entropy change in cold reservoir + entropy change in hot reservoir = -0.166 + 0.083 = -0.0837 kj/k

entropy change in cold reservoir = Q/t cold = 100 / 600 = -0.166 kj/k

entropy change in hot reservoir = Q / t hot = 100 / 1220 = 0.083 kj/k

hence it violates  Clausius inequality of increase of entropy principle which is states that generated entropy has to be > 0

Q1: You have to select an idea developing an application like web/mobile or industrial, it should be based on innovative idea, not just a simple CRUD application. After selecting the idea do the following: 1) How your project will be helpful and what problem this project addresses. (10-Marks) 2) Write down the requirements. (10Marks) 3) List the functional and non-functional requirements of your project. (10marks) 4) Which process model you will follow for this project and why? (10marks) 5) Draw the Level 0, and level 1 DFD of your application. (20marks)

Answers

Answer:

Creating an app is both an expression of our self and a reflection of what we see is missing in the world. We find ourselves digging deep into who we are, what we would enjoy working on, and what needs still need to be fulfilled. Generating an app idea for the first time can be extremely daunting. Especially with an endless amount of possibilities such as building a church app.

The uncertainty has always spawned a certain fear inside creators. The fear of creating something no one will enjoy. Spending hundreds of dollars and hours building something which might not bring back any real tangible results. The fear of losing our investment to a poor concept is daunting but not random. But simple app ideas are actually pretty easy to come by.

Great app idea generation is not a gift given to a selected few, instead, it is a process by which any of us are able to carefully explore step by step methods to find our own solution to any problem. Whether you are a seasoned creator or a novice, we have provided a few recommendations to challenge and aid you as you create your next masterpiece.

if I am right then make me brainliest

An ideal Diesel cycle has a compression ratio of 17 and a cutoff ratio of 1.3. Determine the maximum temperature of the air and the rate of heat addition to this cycle when it produces 140 kW of power and the state of the air at the beginning of the compression is 90 kPa and 578C. Use constant specific heats at room temperature.

Answers

Answer:

maximum temperature = 1322 k

rate of heat addition = 212 kw

Explanation:

compression ratio = 17

cut off ratio = 1.3

power produced = 140 Kw

state of air at the beginning of the compression = 90 kPa and 578 c

Determine the maximum temperature of air

attached below is the detailed solution

The structure of a house is such that it loses heat at a rate of 5400 kJ/h per degree Cdifference between the indoors and outdoors. A heat pump that requires a power input of 6 kW isused to maintain this house at 21 C. Determine the lowest outdoor temperature for which the heatpump can meet the heating requirements of this house

Answers

Answer: Tl = - 13.3°C

the lowest outdoor temperature is - 13.3°C

Explanation:

Given that;

Temperature of Th = 21°C = 21 + 273 = 294 K

the rate at which heat lost is Qh = 5400 kJ/h°C

the power input to heat pump Wnet = 6 kw

The COP of a reversible heat pump depends on the temperature limits in the cycle only, and is determined by;

COPhp = Th/(Th - Tl)

COPhp = Qh/Wnet

Qh/Wnet = Th/(Th -Tl)

the amount of heat loss is expressed as

Qh = 5400/3600(294 - Tl)

the temperature of sink

( 5400/3600(294 - Tl)) / 6 = 294 / ( 294 - Tl)

now solving the equation

Tl = 259.7 - 273

Tl = - 13.3°C

so the lowest outdoor temperature is - 13.3°C

You have accumulated several parking tickets while at school, but you are graduating later in the year and plan to return to your home in another jurisdiction. A friend tells you that the authorities in your home jurisdiction will never find out about the tickets when you re-register your car and apply for a new license. What should you do?

Answers

Answer:

pay off the parking tickets

Explanation:

In the scenario being described, the best thing to do would be to pay off the parking tickets. The parking tickets stay under your name, and if they are not paid in time can cause problems down the road. For starters, if they are not paid in time the amount will increase largely which will be harder to pay. If that increased amount is also not paid, then the government will suspend your licence indefinitely which can later lead to higher insurance rates.

Summary of Possible Weather and Associated Aviation Impacts for Geographic/Topographic Categories Common in the Western United States.
Geographic/Topographic Descriptive Summary of Potential Aviation Impacts
Category of a Possible Weather That Could Impact Based on Weather
of Airport Location Aviation Operations
Along the US West coast,
with steep mountains to the east
(An example of this category is
Santa Barbara Airport, located
on the Southern California Coast,
at an elevation of 10 feet).
Within a valley in elevated terrain
surrounded by high mountains
(An example of this category is
Friedman Memorial Airport, located
in Central Idaho, at an elevation of 5300 feet).
In elevated terrain on the leeside of
high mountains
(An example of this category is Northern Colorado
Regional Airport, located in northern Colorado,
at an elevation of 5000 feet, on the leeside
of the Rocky mountains).

Answers

Answer: answer provided in the explanation section.

Explanation:

Weather phenomenons that would impart Aviation Operations in Santa Barbara -

1. Although winters are cold, wet, and partly cloudy here. It is in general favorable for flying. But sometimes strong winds damage this pleasant weather.

2.  The Sundowner winds cause rapid warming and a decrease in relative humidity. The wind speed is very high surrounding this area for this type of wind.  

3. Cloud is an important factor that affects aviation operations. Starting from April, here the sky is clouded up to November. The sky is overcast (80 to 100 percent cloud cover) or mostly cloudy (60 to 80 percent) 44% on a yearly basis. Thus extra cloud cover can trouble aviation operations.

4. The average hourly wind speed can also be a factor. This also experiences seasonal variations, these variations are studied carefully in the aviation industry. The windier part of the year starts in January and ends in June. In April, the wind speed can reach 9.5 miles per hour.

This and more are some factors to look into when considering wheather conditions that would affect aviation operations.

I hope this was a bit helpful. cheers

The fins attached to a heat exchanger-surface are determined to have an effectiveness of 0.9. Do you think the rate of heat transfer from the surface has increased or decreased as a result of the addition of these fins?

Answers

Answer:

The rate of heat transfer has increased.

Explanation:

Heat transfer rate is the rate at which heat energy is dissipated to the ambient from a hot body. The rate of heat transfer is proportional to the available surface area for heat exchange. This means that the greater the exposed surface area for heat exchange, the greater the rate at which heat is lost to the ambient. In introducing the fins to the heat exchange system (fins have a large surface area to volume ratio for maximum exposure to the ambient), one maximizes the available surface area for heat exchange between the material and the ambient, increasing the rate of heat transfer.

Water at 20oC, with a free-stream velocity of 1.5 m/s, flows over a circular pipe with diameter of 2.0 cm and surface temperature of 80oC. Calculate the average heat transfer coefficient and the heat transfer rate per meter length of pipe.\

Answers

Answer:

Average heat transfer coefficient =  31 kw/m^2 k

Heat transfer rate per meter length of pipe =  116.808 KW

Explanation:

water temperature = 20⁰c,  

free-stream velocity = 1.5 m/s

circular pipe diameter = 2.0 cm = 0.02 m

surface temperature = 80⁰c

A) calculate average heat transfer coefficient

we apply the formula below :

m = αAv

A (area) = [tex]\pi /4 (d)^2[/tex]

m = 10^3 * [tex]\pi / 4 ( 0.02)^2[/tex] * 1.5

   = 10^3 * 0.7857( 0.0004) * 1.5

   = 0.4714 kg/s

Average heat transfer coefficient  

h = [tex]\frac{m(cp)}{A}[/tex]  ,  A = [tex]\pi DL[/tex]

L = 1 m , m = 0.4714 kgs , cp = 4.18

back to equation

h = [tex]\frac{0.4714*4.18}{\pi * 0.02 }[/tex]   = 1.970 / 0.0628 = 31.369 ≈ 31 kw/m^2 k

B) Heat transfer rate per meter length of pipe

Q = ha( ΔT ),  a = [tex]\pi DL[/tex]

   = 31 * 0.0628 * ( 80 - 20 )

  = 31 * 0.0628 * 60 = 116.808 KW

B1) 20 pts. The thickness of each of the two sheets to be resistance spot welded is 3.5 mm. It is desired to form a weld nugget that is 5.5 mm in diameter and 5.0 mm thick after 0.3 sec welding time. The unit melting energy for a certain sheet metal is 9.5 J/mm3 . The electrical resistance between the surfaces is 140 micro ohms, and only one third of the electrical energy generated will be used to form the weld nugget (the rest being dissipated), determine the minimum current level required.

Answers

Answer:

minimum current level required =  8975.95 amperes

Explanation:

Given data:

diameter = 5.5 mm

length = 5.0 mm

T = 0.3

unit melting energy = 9.5 j/mm^3

electrical resistance = 140 micro ohms

thickness of each of the two sheets = 3.5mm

Determine the minimum current level required

first we calculate the volume of the weld nugget

v = [tex]\frac{\pi }{4} * D^2 * l[/tex] = [tex]\frac{\pi }{4} * 5.5^2 * 5[/tex] = 118.73 mm^3

next calculate the required melting energy

= volume of weld nugget * unit melting energy

= 118.73 * 9.5 = 1127.94 joules

next find the actual required electric energy

= required melting energy / efficiency

= 1127 .94 / ( 1/3 )  = 3383.84 J

TO DETERMINE THE CURRENT LEVEL REQUIRED  use the relation below

electrical energy =  I^2 * R * T

3383.84 / R*T = I^2

3383.84 / (( 140 * 10^-6 ) * 0.3 ) = I^2

therefore  8975.95 = I ( current )

A charge is distributed uniformly along a long straight wire. The electric field 2 cm from the wire is 36 N/C. The electric field 4 cm from the wire is:

Answers

Answer:

New electric field = 18 N/C

Explanation:

Given:

Length (E1) = 2 cm

New length (E2) = 4 cm

Electric field =  36 N/C

Find:

New electric field

Computation:

New electric field = 36 [2 / 4]

New electric field = 36 [1/2]

New electric field = 18 N/C

Two small balls A and B with masses 2m and m respectively are released from rest at a height h above the ground. Neglecting air resistance, which of the following statements are true when the two balls hit the ground?
(a) The kinetic energy of A is the same as the kinetic energy of B
(b) The kinetic energy of A is half the kinetic energy of B.
(c) The kinetic energy of A is twice the kinetic energy of B.
(d) The kinetic energy of A is four times the kinetic energy of B Explain your answer why.
What is the definition of General Plan Motion? What would be the effective methodology or approach to solve a rigid body kinematics problem?

Answers

Answer:

The kinetic energy of A is twice the kinetic energy of B

Explanation:

The true statement when the two balls hit the ground is, the kinetic energy of A is twice the kinetic energy of B. The correct option is (c).

What is kinetic energy?

Kinetic energy is the energy of motion, which can be seen as an item or subatomic particle moving. Kinetic energy exists in every moving object and particle.

Kinetic energy is demonstrated by a person walking, a soaring baseball, a crumb falling from a table, and a charged particle in an electric field.

The definition of a General Plan of Motion is every point on the body has a different path. As a result, we must relate the forces to the acceleration of the body's center of mass, as well as the moments to the angular accelerations.

Therefore, the correct option is (c), The kinetic energy of A is twice the kinetic energy of B.

To learn more about kinetic energy, refer to the link:

https://brainly.com/question/26472013

#SPJ2

Consider an ideal gas undergoing a constant pressure process from state 1 to state
2 in a closed system. The specific heat capacities for this material depend on temperature in
the following way, cv = aT^b , cp = cT^d , where the constants a, b, c and d are known. Calculate

the specific entropy change, (s2 − s1), from state 1 to state 2.

Answers

Answer:

[tex]s_2-s_1=c\frac{T^d}{d}-Rg\ ln(\frac{P_2}{P_1})[/tex]

Explanation:

Hello,

In this case by combining the first and second law of thermodynamics for this ideal gas, we can obtain the following expression for the differential of the specific entropy at constant pressure:

[tex]ds=c_p\frac{dT}{T}-Rg\ \frac{dP}{P}[/tex]

Whereas Rg is the specific ideal gas constant for the studied gas; thus, integrating:

[tex]\int\limits^{s_2}_{s_1} {} \, ds=c\int\limits^{T_2}_{T_1} {T^{d-1}dT} \,-Rg\ \int\limits^{P_2}_{P_1} {\frac{dP}{P}} \,[/tex]

We obtain the expression to compute the specific entropy change:

[tex]s_2-s_1=c\frac{T^d}{d}-Rg\ ln(\frac{P_2}{P_1})[/tex]

Best regards.

A plate is supported by a ball-and-socket joint at A, a roller joint at B, and a cable at C. How many unknown support reactions are there in this problem?

Answers

Answer:

There are five (5) unknown support reactions in this problem.

Explanation:

A roller joint rotates and translates along the surface on which the roller rests. The resulting reaction force is always a single force that is perpendicular to, and away from, the surface. This allows the roller to move in a single plane along the surface where it rests.

A cable support provides support in one direction, parallel, and in opposite direction to the load on it. There exists a single reaction from the cable pointed upwards.

A ball-and-socket joint have  reaction forces in all 3 cardinal  directions. This allows it to move in the x-y-z plane.

The total unknown reactions on the member are five in number.

Define centrifugal pump. Give the construction and working of centrifugal pump. ​

Answers

Centrifugal pump is a hydraulic machine which converts mechanical energy into hydraulic energy by the use of centrifugal force acting on the fluid. These are the most popular and commonly used type of pumps for the transfer of fluids from low level to high level.

Input resistance of a FET is very high due to A) forward-biased junctions have high impedance B) gate-source junction is reverse-biased C) drain-source junction is reverse-biased D) none of the above

Answers

Answer:

B) gate-source junction is reverse-biased

Explanation:

FET is described as an electric field that controls the specific current and is being applied to a "third electrode" which is generally known as "gate". However, only the electric field is responsible for controlling the "current flow"   in a specific channel and then the particular device is being "voltage operated" that consists of high "input impedance".

In FET, the different "charge carriers" tend to enter a particular channel via "source" and exits through "drain".

After clamping a buret to a ring stand, you notice that the set-up is tippy and unstable. What should you do to stabilize the set-up

Answers

Answer:

Move the buret clamp to a ring stand with a larger base.

Explanation:

A right stand is used for titration experiments in the laboratory. It holds the burette firmly during experiments so that accurate readings can be taken.

The right stand is made up of support base, vertical stainless steel, clamp with adjustable screw that holds on to the vertical rod.

The clamp is used to hold the burette in place.

If after clamping a buret to a ring stand, you notice that the set-up is tippy and unstable, the best action will be to move the buret clamp to a ring stand with a larger base.

The larger base provides a better center of gravity and stabilises the setup

As the asteroid falls closer to the Earth's surface its _______ energy decreases and its _______ energy increases.

Answers

Answer:

As the asteroid falls closer to the Earth's surface its Gravitational Potential energy decreases and its Kinetic energy increases.

Consider atmospheric air at 25 C and a velocity of 25 m/s flowing over both surfaces of a 1-m-long flat plate that is maintained at 125 C. Determine the rate of heat transfer per unit width from the plate for values of the critical Reynolds number corresponding to 105 , 5 105 , and 106 .

Answers

Answer:

Explanation:

Temperature of atmospheric air To = 25°C = 298 K

Free  stream velocity of air Vo = 25 m/s

Length and width of plate = 1m

Temperature of plate Tp = 125°C = 398 K

We know for air, Prandtl number Pr = 1

And for air, thermal conductivity K = 24.1×10?³ W/mK

Here, charectorestic dimension D = 1m

 

Given value of Reynolds number Re = 105

For laminar boundary layer flow over flat plate

= 3.402

Therefore, hx = 0.08199 W/m²K

So, heat transfer rate q = hx×A×(Tp – To)

                                          = 0.08199×1×(398 – 298)

A four-cylinder four-stroke engine is modelled using the air standard Otto cycle (two engine revolutions per cycle). Given the conditions at state 1, total volume (V1) of each cylinder, compression ratio (r), rate of heat addition (Q), and engine speed in RPM, determine the efficiency and other values listed below. The gas constant for air is R =0.287 kJ/kg-K.

T1 = 300 K
P1 = 100 kPa
V1 = 500 cm^3
r = 10
Q = 60 kW
Speed = 5600 RPM

Required:
a. Determine the total mass (kg) of air in the engine.
b. Determine the specific internal energy (kJ/kg) at state 1.
c. Determine the specific volume (m^3/kg) at state 1.
d. Determine the relative specific volume at state 1.

Answers

Answer:

a) Mt = 0.0023229

b) = U1 = 214.07

c) = V₁  = 0.861 m³/kg

d) = Vr1 = 621.2

Explanation:

Given that

R = 0.287 KJ/kg.K, T1 = 300 K , P1 = 100 kPa , V1 = 500 cm³, r = 10 , Q = 60 kW , Speed N = 5600 RPM, Number of cylinders K = 4

specific heat at constant volume Cv = 0.7174 kJ/kg.K

Specific heat at constant pressure is 1.0045 Kj/kg.K

a)  To determine the total mass (kg) of air in the engine.

we say

P1V1 = mRT1

we the figures substitute

(100 x 10³) ( 500 x  10⁻⁶) = m ( 0.287 x  10³) ( 300 )

50 = m x 86100

m = 0.00005 / 86100 = 0.0005807 ( mass of one cylinder)

Total mass of 4 cylinder

Mt = m x k

Mt = 0.0005807 x 4

Mt = 0.0023229

b) To determine the specific internal energy (kJ/kg) at state 1

i.e at T1 = 300

we obtain the value of specific internal energy U1 at 300 K ( state 1) from the table ideal gas properties of air.

U1 = 214.07

c) To determine the specific volume (m³/kg) at state 1.

we say

V₁ = V1/m

V₁ = (500 x  10⁻⁶) / 0.0005807

V₁  = 0.861 m³/kg

d) To determine the relative specific volume at state 1.

To obtain the value of relative specific volume at 300 K ( i.e state 1) from the table ideal gas properties of air.

At T1 = 300 k

Vr1 = 621.2

What's the resistance in a circuit that has a voltage of 60 V and a current of 2 A? A. 10 Ω B. 60 Ω C. 120 Ω D. 30 Ω

Answers

Answer:

D.  Resistance = 30 ohms

Explanation:

Using Ohm's law

V = I times R

Given:

V = 60 V

I = 2 A

Resistance = V / I = 60 V / 20 A

Resistance = 30 ohms

When replacing a timing belt, many experts and vehicle manufacturers recommend that all of the following should be replaced except the

A. water pump
B. camshaft oil seal(s).
C. camshalt sprocket
D. tensioner assembly

Answers

Answer:

Correct Answer:

A. water pump

Explanation:

Timing belt in a vehicle helps to ensure that crankshaft, pistons and valves operate together in proper sequence. Timing belts are lighter, quieter and more efficient than chains that was previously used in vehicles.

Most car manufacturers recommended that, when replacing timing belt, tension assembly, water pump, camshaft oil seal should also be replaced with it at same time.

A single-threaded power screw is 35 mm in diameter with a pitch of 5 mm. A vertical load on the screw reaches a maximum of 5 kN. The coefficients of friction are 006 for the collar and 009 for the threads, while the frictional diameter of the collar is 45 mm. Find the overall efficiency and the torque to raise and lower the load for

Answers

Answer:

the torque required to RAISE the load is Tr = 18.09 Nm

the torque required to LOWER the load is Tl = 10.069 ≈ 10.07 Nm

the Overall Efficiency e = 0.2199 ≈ 0.22

Explanation:

Given that; F = 5 kN, p = 5mm, d = 35mm

Dm = d - p/2

Dm = 35 - ( 5/2) = 35 - 2.5

DM = 32.5mm

So the torque required to RAISE the load is

Tr = ( 5 × 32.5)/2 [(5 + (π × 0.09 × 32.5)) / ( (π × 32.5) - ( 0.09 × 5))] + [( 5 × 0.06 × 45)/2]

Tr = 81.25 × (14.1892 / 101.6518) + 6.75

Tr = 11.3414 + 6.75

Tr = 18.09 Nm

the torque required to LOWER the load is

Tl =  ( 5 × 32.5)/2 [(π × 0.09 × 32.5) - 5) / ( (π × 32.5) + ( 0.09 × 5))] + [( 5 × 0.06 × 45)/2]

Tl = 81.25 × 4.1892 / 102.5518 + 6.75

Tl = 3.3190 + 6.75

Tl = 10.069 ≈ 10.07 Nm

So since torque required to LOWER the load is positive

that is, the thread is self locking

Therefore the efficiency is

e = ( 5 × 5 ) / ( 2π × 18.09 )

e = 25 / 113.6628

e = 0.2199 ≈ 0.22

A rate of 0.42 minute per piece is set for a forging operation. The operator works on the job for a full eight-hour day and produces 1,500 pieces. Use a standard hour plan.

Required:
a. How many standard hours does the operator earn?
b. What is the operator's efficiency for the day?
c. If the base rate is 9.80 per hour, compute the earnings for the day.
d. What is the direct labor cost per piece at this efficiency?
e. What would be the proper piece rate (rate expressed in money) for this job, assuming that the above time standard is correct?

Answers

Answer:

b. What is the operator's efficiency for the day?

                                                      AND

e. What would be the proper piece rate (rate expressed in money) for this job, assuming that the above time standard is correct?

Explanation:

Write about traditional brick production in Pakistan

Answers

Answer:

Clay bricks are manufactured by mining and clay moulded blocks. There are 20,000 brick klins in Pakistan.

Explanation:

In Pakistan, the clay bricks are manufactured by mining and baking the clay moulded blocks in brick kilns. According to an estimate, the baking process emits about  1.4 pounds of carbon per brick made, but in Pakistan, because the systems are outdated, brick kilns are used, which is producing more than the average amount of the pollution.

There are about 20,000 brick kilns in Pakistan. The traditional brick production in Pakistan is consists of hand-made bricks which are first baked in Fixed Chimney Bull's Trench Kilns (FCBTK), this is the most widely used brick firing technology in South Asia.

An air-conditioner which uses R-134a operates on the ideal vapor compression refrigeration cycle with a given compressor efficiency.
--Given Values--
Evaporator Temperature: T1 (C) = 9
Condenser Temperature: T3 (C) = 39
Mass flow rate of refrigerant: mdot (kg/s) = 0.027
Compressor Efficiency: nc (%) = 90

a) Determine the specific enthalpy (kJ/kg) at the compressor inlet.
Your Answer =
b) Determine the specific entropy (kJ/kg-K) at the compressor inlet
Your Answer =
c) Determine the specific enthalpy (kJ/kg) at the compressor exit
Your Answer =
d) Determine the specific enthalpy (kJ/kg) at the condenser exit.
Your Answer =
e) Determine the specific enthalpy (kJ/kg) at the evaporator inlet.
Your Answer =
f) Determine the coefficient of performance for the system.
Your Answer =
g) Determine the cooling capacity (kW) of the system.
Your Answer =
h) Determine the power input (kW)to the compressor.
Your Answer =

Answers

Answer:

A) 251.8 kj/kg

B) 0.9150 kj/kg-k

C) 155.4 kj/kg

F) 1.50

G) 3.95 kw

H) 2.6 kw

Explanation:

Given conditions :

air conditioner : R -134a

compressor efficiency (nc) = 90%.

T1 = 9⁰c,  T3 = 39⁰c, mass flow rate = 0.027 kg/s

A) Specific enthalpy at the compressor inlet

at T = 9⁰c the saturated vapor (x) = 1

from the R-134a property table

h1 = 251.8 kj/kg

B ) specific entropy ( kj/kg-k) at the compressor inlet

at T = 9⁰c the saturated vapor (x) = 1

s = 0.9150 kj/kg-k ( from the R-134a property table )

C) specific enthalpy at the compressor exit

at T3 = 39⁰c , s2 = s1

has = 165.12 kj/kg

h2 = 155.4 kj/kg

attached below is the remaining solution to some of the problems

Other Questions
Two investment advisors are comparing performance. Advisor A averaged a 20% return with a portfolio beta of 1.5 and Advisor B averaged a 15% return with a portfolio beta of 1.2. If the T-bill rate was 5% and the market return during the period was 13%, which advisor was the better stock picker? Please answer this question now You purchased 1,000 shares of stock in Natural Chicken Wings, Inc., at a price of $43.37 per share. Since you purchased the stock, you have received dividends of $.95 per share. Today, you sold your stock at a price of $46.62 per share. What was your total percentage return on this investment? What is the yintercept of the line that passes through the point (4,9)and is parallel to the line y=12x+2? hat is the solution of the system of equations?y = 3x 43y = 9x + 12 what equation accurately represent this statement three less than 4 times a number is less than 12 -3=n/2-6 help pleaseeee!!!! A zucchini plant in Darnells garden was 10 centimeters tall when it was first planted. Since then, it has grown approximately 0.5 centimeter per day. a. Write a rule to describe the function. b. After how many days will the zucchini plant be 18.5 centimeters tall? Considera Usted que las condiciones de vulnerabilidad ante un Tsunami son las mismas para todas las poblaciones? Justifique su respuesta con tres argumentaciones. If 1 mol of a pure triglyceride is hydrolyzed to give 2 mol of RCOOH, 1 mol of R'COOH, and 1 mol of glycerol, which of the following compounds might be the triglyceride? CHOC(O)R A. CHOC(O)R CHOC(O)R CH,OC(O)R B. CHOC(O)R CH2OC(O)R CHOC(O)R C. CHOC(O)R CHOC(O)R CHOC(O)R D. CHOC(O)R CHOC(O)R If a bank that faces a 10% reserve ratio received a deposit of $50,000 and makes a loan to a customer for $5,000, what is the consequence if the bank then deposits the rest of the funds at the Federal Reserve? What are the restrictions of the domain of f(g(x))? a) x is not equal to -5 b) x is not equal to -3 c) x is not equal to 2 d) There are no restrictions. 15 POINTS AND BRAINLIEST JUST HELP ME PLZZZZZ 4x^2 + 28x + 49 = 0 Rewrite equation (x + __ )^2 = __ Which of the following are natural numbers? There may be more than one correct answer. Select all that apply. If only one answer is correct, select "only" and the answer that applies. A.) only B.) 1,2,3, C.) 7,8,9, D.) fractions E.) 22 Which of the following was NOT true of the Catholic Church during theMiddle Ages?A. It was institutionalized throughout Europe by the popes.B. It promoted tolerance of other religions.C. Monasteries brought Christianity to masses of peasants. At the beginning of the day the stock market goes up 60 1/2 points and stays at this level for most of the day. At the end of the day the stock market goes down 100 1/4 points from the high at the beginning of the day. What is the total change in the stock market from the beginning of the day to the end of the day? A student is given three triangles and must determine which triangles arecongruent. The student is also told that B= ZE = ZY. Which of thefollowing statements is true? Complete the table. At least the first few so I understand how to do it An auditor's report includes the following statement: "The financial statements referred to above do not present fairly the financial position, results of operations, or cash flows in conformity with U.S. generally accepted accounting principles." This auditor's report was most likely issued in connection with financial statements that are What is the present value of a perpetuity that pays you annual, end-of-year payments of $950? Use a nominal rate (monthly compounding) of 7.50%.