Answer:
A. Increases
Explanation:
As altitude decreases, the amount of gas molecules in the air increases - the air becomes less dense. As altitude increases, the amount of gas molecules in the air decreases—the air becomes less dense.
Answer:
It decreases so it is B
Explanation:
As altitude rises, air pressure drops.
An elevator motor provides 45.0 kW of power while lifting an elevator 35.0 m. If the elevator contains seven passengers each with an average mass of 70.0 kg and it takes 20.0 s to accomplish this task, determine the mass of the elevator.
Find how much work ∆W is done by the motor in lifting the elevator:
P = ∆W / ∆t
where
• P = 45.0 kW = power provided by the motor
• ∆W = work done
• ∆t = 20.0 s = duration of time
Solve for ∆W :
∆W = P ∆t = (45.0 kW) (20.0 s) = 900 kJ
In other words, it requires 900 kJ of energy to lift the elevator and its passengers. The combined mass of the system is M = (m + 490.0) kg, where m is the mass of the elevator alone. Then
∆W = M g h
where
• g = 9.80 m/s² = acceleration due to gravity
• h = 35.0 m = distance covered by the elevator
Solve for M, then for m :
M = ∆W / (g h) = (900 kJ) / ((9.80 m/s²) (35.0 m)) ≈ 2623.91 kg
m = M - 490.0 kg ≈ 2133.91 kg ≈ 2130 kg
You are testing a new amusement park roller coaster with an empty car with a mass of 130 kg . One part of the track is a vertical loop with a radius of 12.0 m . At the bottom of the loop (point A) the car has a speed of 25.0 m/s and at the top of the loop (point B) it has speed of 8.00 m/s . Part A As the car rolls from point A to point B, how much work is done by friction
Answer:
work done by friction = 5889 J
Explanation:
We are given;
Mass of car; m = 130 kg
Speed at point A; v1 = 25 m/s
Speed at point B: v2 = 8 m/s
Since radius is 12 m
At point A, distance is; y1 = 12 m
At point B, distance is; y2 = -12 m
Now, formula for work done by all the forces is given by the equation;
Total work;
W_gravity + W_others = K2 - K1
Where W_others is work done by other forces which is equal to work done by friction
Where K2 - K1 is change in kinetic energy.
W_grav is also change in potential energy and is expressed as;
W_grav = mgy1 - mgy2
K2 - K1 = ½m(v1)² - ½m(v2)²
Thus;
mgy1 - mgy2 + W_others = ½m(v1)² - ½m(v2)²
Making W_others the subject;
W_others = ½m(v1)² - ½m(v2)² + mgy2 - mgy1
Plugging in the relevant values;
W_others = (½ × 130 × 25²) - (½ × 130 × 8²) + (130 × 9.8 × -12) - (130 × 9.8 × 12)
W_others = 5889 J
Recall that I earlier said W_others = work done by friction.
Thus, work done by friction = 5889 J
Help please. Question about a potential energy.
Although planets orbit the Sun in ellipses, all the planetary orbits are fairly close to circular and not very eccentric.
True
False
Answer:
False
Explanation:
The Sun rotates in this same, right-hand-rule direction. All planetary orbits lie in nearly the same plane. All planetary orbits are nearly circular (eccentricity near zero).
Rate as Brainliest please
In the past, asteroids striking the earth have produced disastrous results. If we discovered an asteroid on a collision course with the earth, we could, in principle, deflect it and avoid an impact by focusing a laser on the surface. Intense surface heating from the laser could cause surface material to be ejected into space at high speed.
Required:
How would this deflect the asteroid?
Answer:
Explained below.
Explanation:
We are told that the surface material is ejected into space at a high speed. This means that it will have a likely high momentum as well.
Now, we can say that the total momentum is conserved because the entire asteroid system behaves like an isolated system.
Also, as the surface material is moving with the high momentum like we established earlier, it will cause the asteroid to move with a speed in an opposite direction which also means deflection in an opposite direction.
Answer:
Explained below.
Explanation:
The material ejected from the surface of the asteroid would have a significant momentum. Since the asteroid and all its material is an isolated system, the ejection would cause an oppositely directed change in momentum of the asteroid, according to the law of conservation of momentum.
The ejected material is analogous to gases expelled from a rocket, and the asteroid is analogous to a rocket.
A 5kg cart moving to the right with a velocity of 16 m/s collides with a concrete wall and
rebounds with a velocity of 22 m/s. Is the change in momentum of the cart
Explanation:
mass, m = 5kg
initial velocity, u = 16m/s
final velocuty, v = -22m/s
change in momentum, ∆p = ?
∆p = m (v-u)
5(-22-16)
5(38)
∆p = 190kgm/s
check the calculations!
IS
When a 0.622 kg basketball hits
the floor, its velocity changes from
4.23 m/s down to 3.85 m/s up.
What impulse was given to the
ball?
(Unit = kg*m/s)
Remember: up is +, down is -
Enter
Answer:
5.03
Explanation:
trust me
Light containing two different wavelengths passes through a diffraction grating with 1,250 slits/cm. On a screen 17.5 cm from the grating, the third-order maximum of the shorter wavelength falls midway between the central maximum and the first side maximum for the longer wavelength. If the neighboring maxima of the longer wavelength are 8.44 mm apart on the screen, what are the wavelengths in the light
Answer:
[tex]\lambda_s =6.43*10^-4m[/tex]
Explanation:
From the question we are told that:
Diffraction grating [tex]N=1250slits/cm[/tex]
Distance b/w Screen and grating length [tex]d_{sg}=17.5 cm[/tex]
Distance b/w neighboring maxima and Screen [tex]d_{ms}=8.44[/tex]
Generally the equation for grating space is mathematically given by
[tex]d(g)=\frac{1}{N}[/tex]
[tex]d(g)=\frac{100}{1250}[/tex]
[tex]d(g)=0.08[/tex]
Generally the equation for small angle approximation is mathematically given by
[tex]\triangle y=\frac{\lambda d}{L}[/tex]
Therefore for longest wavelength
[tex]\lambda _l=\frac{8.44*10^{-3}*(0.08)}{0.175m}[/tex]
[tex]\lambda _l=3.858*10^{-3}[/tex]
Therefore the third order maximum equation for the shorter wavelength as
[tex]\lambda_s =\frac{1}{6} \lambda_l[/tex]
[tex]\lambda_s =\frac{1}{6} (3.858*10^-^3)[/tex]
[tex]\lambda_s =6.43*10^-4m[/tex]
The wavelengths in the light is given as
[tex]\lambda_s =6.43*10^-4m[/tex]
A 4.0 kg block is moving at 5.0 m/s along a horizontal frictionless surface toward and ideal spring that is attached to a wall , After the block collides with the spring, the spring is compressed a maximum distance of 0.68m . what is the speed of the block when the spring is compressed to only one-half of the maximum distance?
A 4.0 kg block is moving at 5.0 m/s along a horizontal frictionless surface toward an ideal spring that is attached to a wall, the maximum speed of the block when the spring is compressed to one-half of the maximum distance is 4.33 m/s
From the conservation of energy; the kinetic energy of the mass is equal to the work done on the spring.
i.e.
[tex]\mathbf{\dfrac{1}{2} mv^2 = \dfrac{1}{2}kx^2_{max}}[/tex]
Given that:
the mass of the block = 4.0 kg the speed at which it is moving = 5.0 m/scompression of the spring = 0.68 m∴
From the equation above, multiplying both sides with 2, we have:
[tex]\mathbf{mv^2 =kx^2_{max}}[/tex]
Making (k) the subject of the formula;
[tex]\mathbf{k = \dfrac{mv^2}{x^2_{max}}}[/tex]
[tex]\mathbf{k = \dfrac{4 \times 5^2}{0.68^2}}[/tex]
k = 216.26 N/m
However, when compressed to one-half of the maximum distance; the speed is computed as follows:
x = 0.68/2 = 0.34 m
∴
[tex]\mathbf{\dfrac{1}{2}mv_o^2 - \dfrac{1}{2}mv^2 = \dfrac{1}{2}kx^2}[/tex]
[tex]\mathbf{m(v_o^2 -v^2) =kx^2}[/tex]
[tex]\mathbf{(v_o^2 -v^2) =\dfrac{kx^2}{m}}[/tex]
[tex]\mathbf{(5^2 -v^2) =\dfrac{216.26 \times 0.34^2}{4.0}}[/tex]
25 - v² = 6.25
25 -6.25 = v²
v² = 18.75
[tex]\mathbf{ v= \sqrt{18.75 }}[/tex]
v = 4.33 m/s
Therefore, we can conclude that the speed of the block when the spring is compressed to only one-half of the maximum distance is 4.33 m/s
Learn more about speed here:
https://brainly.com/question/22610586?referrer=searchResults
Which of the following best defines
weather?
A. the expanding or contracting of the atmosphere
B. the measurement of the amount of water vapor in the
atmosphere
C. the condition of the atmosphere at a certain time and
place
Help Resources
D. the average air temperature of a specific region
Answer:
I'd say D
Explanation:
because not all weather happens within the atmosphere, and most weather depends on region (lile if your near the equator or not)
The elastic energy stored in your tendons can contribute up to 35 % of your energy needs when running. Sports scientists have studied the change in length of the knee extensor tendon in sprinters and nonathletes. They find (on average) that the sprinters' tendons stretch 41 mm , while nonathletes' stretch only 33 mm .
Hello. Your question is incomplete. However, I managed to find it completely on the internet and I realized that you forgot to mention that the question asks you for the maximum energy difference between velovistas and non-athletes, considering that the spring constant for the tendon of the two groups is equal to 33n/mm.
To make this calculation you will need to use Hooke's law, using the formula: ¹/2*K*x², where "K" will be the value of the spring constant for the tendon and "X" will be the value of the sprinter and non-athlete terms.
So for the sprinter we will have the calculation:
¹/2*33*41² -------> 0,5*33*1681 = 27736. 5 Nmm
(To facilitate the calculation, first solve the division of ¹/2 and then multiply 41 by 41, lastly, just multiply all the results.)
For the non-athlete we will have the calculation:
¹/2*33*33² -------> 0,5*33*1089 = 17968. 5 Nmm
(To facilitate the calculation, first solve the division of ¹/2 and then multiply 41 by 41, lastly, just multiply all the results.)
Now, to reach the final result, you only need to subtract the two values presented by the sprinter and the non-athlete.
27736.5 - 17968.5 = 9768 Nmm
Will give brainliest!
Describe how heat is moving in the image and label each as Radiation, Conduction, or Convection.
Radiation / Conduction / Convection
Answer:
well in the pot there is conventional heat, the pot itself is giving off conductable heat, and the radiational heat is coming from the stove.
The eight plants of the Solar System orbit the Sun in a chaotic random way.
True
False
Answer:
The Solar System has plants? I assume you meant planets. If so, that is false
Explanation:
WILL GIVE BRAINLIEST, ANSWER WITH ACTUAL ANSWER OR ELSE I WILL REPORT YOU!!!!!
Four students are assigned a project for which they must experimentally determine the coefficient of kinetic friction between a block of an unknown material and a table. Each student has their own idea of how to go about setting up the experiment. The group settles on two possible test to conduct: Student A's idea and Student B's idea. Student A believes the group can obtain the coefficient of kinetic friction by attaching a spring scale to the mass and pulling on the mass with the spring scale with a horizontally directed force. The reading on the spring scale at the moment the block begins to move is the coefficient of kinetic friction. Which of the following explains what is wrong with Student A's logic?
MC Options inserted in image below
Answer:
I know you said not to do this but I am doing a challenge and You asked this an hour ago. PLS DON'T REPORT ME.
Explanation: Sorry
Water can form large dewdrops in nature how would droplets made of isopropyl alcohol instead of water be different
Answer:
isopropyl alcohol would form smaller droplets, because it has lower surface tension than water has
Explanation:
Ap3x
The droplets made of isopropyl alcohol instead of water be smaller due to surface tension.
What is droplets?The single drop of a liquid in the form of sphere is called droplet.
Water can form large dewdrops in nature. Isopropyl alcohol would form smaller droplets, because it has lower surface tension than water.
Surface tension is the property of the liquid to acquire minimum surface area.
Thus, droplets made of isopropyl alcohol instead of water be smaller.
Learn more about droplet.
https://brainly.com/question/2926487
#SPJ2
If you live in Melbourne, Australia, the local magnetic field has a strength of about 4x10-5 T. The magnetic field vector is directed northward, making an angle of 30 deg above the horizontal. An electron in Melbourne is moving parallel to the ground, in the west direction, at a speed of 9x105 m/s. What are the magnitude and direction of the magnetic force on the electron
Answer:
[tex]5.76\times 10^{-18}\ \text{N}[/tex] perpendicular to the velocity and magnetic field
Explanation:
B = Magnetic field = [tex]4\times 10^{-5}\ \text{T}[/tex]
[tex]\theta[/tex] = Angle the magnetic field makes with the horizontal = [tex]30^{\circ}[/tex]
v = Velocity of electron = [tex]9\times 10^5\ \text{m/s}[/tex]
q = Charge of electron = [tex]1.6\times 10^{-19}\ \text{C}[/tex]
Magnetic force is given by
[tex]F=qvB\sin\theta\\\Rightarrow F=1.6\times 10^{-19}\times 9\times 10^5\times 4\times 10^{-5}\sin30^{\circ}\\\Rightarrow F=2.88\times 10^{-18}\ \text{N}[/tex]
The magnitude of the magnetic force is [tex]2.88\times 10^{-18}\ \text{N}[/tex] and the direction is perpendicular to the velocity and magnetic field.
A man walks 30 m to the west, then 5 m to the east in 45 seconds.
What is his average speed?
A uniform magnetic field is in the positive z direction. A positively charged particle is moving in the positive x direction through the field. The net force on the particle can be made zero by applying an electric field in what direction
Answer:
We apply an electric field in the negative y direction
Explanation:
Since A uniform magnetic field is in the positive z direction and A positively charged particle is moving in the positive x direction through the field, the magnetic force acting on the positively charged particle is in the positive y direction according to Fleming's right-hand rule.
For the net force on the particle to be zero, we apply an electric field in the negative y direction to create an electric force on the positively charged particle, so as to cancel out the magnetic force.
Which nucleus completes the following equation?
Answer:
Option D. ²³⁹₉₃Np
Explanation:
From the question given above, the following data were:
²³⁹₉₂U —> ⁰₋₁e + __
Let ⁿₘX represent the unknown. Thus, the equation above becomes
²³⁹₉₂U —> ⁰₋₁e + ⁿₘX
Next, we shall determine n, m and X. This can be obtained as follow:
239 = 0 + n
239 = n
n = 239
92 = –1 + m
Collect like terms
92 + 1 = m
93 = m
m = 93
ⁿₘX => ²³⁹₉₃X => ²³⁹₉₃Np
Thus, the balanced equation becomes:
²³⁹₉₂U —> ⁰₋₁e + ⁿₘX
²³⁹₉₂U —> ⁰₋₁e + ²³⁹₉₃Np
Option D gives the correct answer to the question.
Answer:
D
Explanation:
239 93 Np
A fox runs at a speed of 16 m/s and then stops to eat a rabbit. If this all took 120
seconds, what was his acceleration?
Answer:
a = 52s²
Explanation:
How to find acceleration
Acceleration (a) is the change in velocity (Δv) over the change in time (Δt), represented by the equation a = Δv/Δt. This allows you to measure how fast velocity changes in meters per second squared (m/s^2). Acceleration is also a vector quantity, so it includes both magnitude and direction.
Solve
We know initial velocity (u = 16), velocity (v = 120) and acceleration (a = ?)
We first need to solve the velocity equation for time (t):
v = u + at
v - u = at
(v - u)/a = t
Plugging in the known values we get,
t = (v - u)/a
t = (16 m/s - 120 m/s) -2/s2
t = -104 m/s / -2 m/s2
t = 52 s
6) Which of the following describes a good team member?
A) She is willing to compromise.
B) He is aggressive.
C) She is stubborn.
D) He is conceited.
Answer: A
Explanation:
Because someone who is aggressive, stubborn, or proud of theirselves are more likely to think they're above everyone else and be a bully. However someone who is willing to compromise is better since you can generally make everyone happy that way
HOPE THIS HELPS ^^
A scientist measuring the resistivity of a new metal alloy left her ammeter in another lab, but she does have a magnetic field probe. So she creates a 4.5-m-long, 2.0-mm-diameter wire of the material, connects it to a 1.5 V battery, and measures a 3.0 mT magnetic field 1.0 mm from the surface of the wire. What is the material's resistivity
Answer:
[tex]3.49\times 10^{-8}\ \Omega\text{m}[/tex]
Explanation:
r = Radius = [tex]\dfrac{2}{2}=1\ \text{mm}[/tex]
B = Magnetic field = 3 mT
1 mm = Distance from the surface of the wire
V = Voltage
x = Distance from the probe = [tex]r+1=1+1=2\ \text{mm}[/tex]
R = Resistance
L = Length of wire = 4.5 m
Magnetic field is given by
[tex]B=\dfrac{\mu_0I}{2\pi x}\\\Rightarrow I=\dfrac{B2\pi x}{\mu_0}\\\Rightarrow I=\dfrac{3\times 10^{-3}\times 2\times \pi 2\times 10^{-3}}{4\pi 10^{-7}}\\\Rightarrow I=30\ \text{A}[/tex]
Voltage is given by
[tex]V=IR\\\Rightarrow R=\dfrac{V}{I}\\\Rightarrow R=\dfrac{1.5}{30}\\\Rightarrow R=0.05\ \Omega[/tex]
Resistivity is given by
[tex]\rho=\dfrac{RA}{L}\\\Rightarrow \rho=\dfrac{0.05\times \pi (1\times 10^{-3})^2}{4.5}\\\Rightarrow \rho=3.49\times 10^{-8}\ \Omega\text{m}[/tex]
The resistivity of the material is [tex]3.49\times 10^{-8}\ \Omega\text{m}[/tex].
an elevator of mass 250kg is carrying two persons whose masses are 50kg and 100kg. if the forces exerted by the motor is 3000N. calculate the mass of the bodies in the elevator.... Taking g as 10m/s²
Explanation:
mass=force*acceleration
mass=3000*10
mass=30,000
The mass of the bodies in the elevator is 400 kg.
The acceleration of the elevator is 2.5 m/s².
What is acceleration?Acceleration is rate of change of velocity with time. Due to having both direction and magnitude, it is a vector quantity. Si unit of acceleration is meter/second² (m/s²).
Given parameters:
Mass of the elevator: M = 250 kg.
Mass of two persons: m₁ = 50 kg and m₂ = 100 kg.
Force exerted by the motor: F = 3000N.
g = 10 m/s².
Let, the acceleration of the elevator = a.
the mass of the bodies in the elevator :m= 250 kg. + 50 kg +100 kg. = 400 kg.
Now, F = mg - ma
⇒ 3000 = 400×10 - 400a
⇒ a = 1000/400 = 2.5 m/s²
Hence, the acceleration of the elevator is 2.5 m/s².
Learn more about acceleration here:
brainly.com/question/12550364
#SPJ2
A step-down transformer has 2500 turns on its primary and 5.0 x 10' tums on its secondary. If the potential difference across the primary is 4850 V, what is
the potential difference across the secondary?
Answer:
I dont know sorry
Explanation:
hehe
Which of the following best describes our
atmosphere?
A. envelope of gases that surround Earth
B. a specific range of altitude where plant life flourishes
C. The air, water, and land that form our planet
D. the water vapor in the air surrounding our planet
A solenoid that is 93.9 cm long has a cross-sectional area of 17.3 cm2. There are 1270 turns of wire carrying a current of 7.80 A. (a) Calculate the energy density of the magnetic field inside the solenoid. (b) Find the total energy in joules stored in the magnetic field there (neglect end effects).
Answer:
[tex]65.6\ \text{J/m}^3[/tex]
[tex]0.11\ \text{J}[/tex]
Explanation:
B = Magnetic field = [tex]\mu_0 \dfrac{N}{l}I[/tex]
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi10^{-7}\ \text{H/m}[/tex]
N = Number of turns = 1270
[tex]l[/tex] = Length of solenoid = 93.9 cm = 0.939 m
[tex]I[/tex] = Current = 7.8 A
A = Area of solenoid = [tex]17.3\ \text{cm}^2[/tex]
Energy density of a solenoid is given by
[tex]u_m=\dfrac{B^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{(\mu_0 \dfrac{N}{l}I)^2}{2\mu_0}\\\Rightarrow u_m=\dfrac{\mu_0N^2I^2}{2l^2}\\\Rightarrow u_m=\dfrac{4\pi\times 10^{-7}\times 1230^2\times 7.8^2}{2\times 0.939^2}\\\Rightarrow u_m=65.6\ \text{J/m}^3[/tex]
The energy density of the magnetic field inside the solenoid is [tex]65.6\ \text{J/m}^3[/tex]
Energy is given by
[tex]U_m=u_mAl\\\Rightarrow U_m=65.6\times 17.3\times 10^{-4}\times 0.939\\\Rightarrow U_m=0.11\ \text{J}[/tex]
The total energy in joules stored in the magnetic field is [tex]0.11\ \text{J}[/tex].
PLEASE HELP!! :)
Which of the following options would increase the electric force the most?
a. tripling the charge on one particle
b. changing the sign of one of the particles.
c. doubling the charge on one particle
d. doubling the charge on both particles
need help ASAP!!!!!!!!!!!
Answer:
The equation says that due to variation in temperature is
delt T = .59 m/s / C = 16 C * .59 m/s = 9.44 m/s
So v = 332 m/s + 9.44 m/s = 341 m/s (to three significant figures)
Larry is making a model of the Solar System. What objects will Larry need to put in his model of the Solar System? Name three types of objects. Describe where Larry should place Earth within the Solar System. es ) your answer below:
Answer:
1) It seems that he would need the central gravitational force
(the sun)
2) Also the planets would need to be included (orbits around the sun)
Mercury, Venus, Earth, Mars, Jupiter, Saturn, etc.
3. Then, many of the planets have significant objects (moons) rotating about them.
Those would seem to be objects to be included in a model of the solar system.
1) He would need the central gravitational force (the sun)
2) The planets would need to be included: Mercury, Venus, Earth, Mars, Jupiter, Saturn, etc.
3) Many of the planets have specific moons rotating about them.
Larry should put the Earth between the planets Venus, and Mars.
The water pressure to an apartment is increased by the water company. The water enters the apartment through an entrance valve at the front of the apartment. Where will the increase in the static water pressure be greatest when no water is flowing in the system
Answer:
Option C
Explanation:
Options for the question are as follows -
A. At a faucet close to entrance valve
B. At a faucet away from the entrance valve
C. It will be the same at all faucets
D. There will be no increase in the pressure at the faucets
Solution -
The static force will be the same at all faucets and also the area of the faucets be same.
Thus, the pressure created at all faucets will be the same.
Thus, option C is correct