At a given pressure, a substance in the saturated vapor phase will be at a ______ temperature than a superheated vapor.

Answers

Answer 1

At a given pressure, a substance in the saturated vapor phase will be at a lower temperature than a superheated vapor.

What is a saturated vapor phase?

Saturated vapor refers to the state of a material in which it contains a maximum quantity of vapor that is uniformly blended with the liquid or solid state of the same chemical composition at a specified temperature and pressure.

What is a superheated vapor?

A superheated vapor is a vapor that is heated beyond its boiling point or saturation temperature for its pressure. As a result, it will not condense back into a liquid phase until it has cooled sufficiently. As a result, it's simply vapor, with no liquid portion to it.

What happens when pressure remains constant and the temperature of a substance rises?

According to Charles's law, if the pressure of a gas is kept constant, the volume of the gas varies directly with the temperature. If pressure remains constant and temperature increases, the volume of a substance expands, indicating that molecules are gaining energy and colliding with one another more frequently. As a result, the kinetic energy of the system increases. When a substance is in a superheated vapor state, it is at a higher temperature than when it is in a saturated vapor state at the same pressure.

Learn more about saturated vapor phase here: https://brainly.com/question/13407628

#SPJ11


Related Questions

Which of the following is an example of potential energy?A .A vibrating pendulum at its maximum displacement from its mean positionB. A body at rest from some height from the ground.C. A wound clock spring.D. A vibrating pendulum when it is just passing through its mean position

Answers

The best example that shows the potential energy is a body at rest from some height from the ground, thus the correct answer is option b.

Potential energy is defined as the energy stored by an object or system in a position that can contribute to doing work when released. It is the stored energy of an object or system.

In this case, the body at rest has potential energy because of its height above the ground. As it falls, the potential energy is converted to kinetic energy.

Option A describes kinetic energy as the vibrating pendulum at its maximum displacement, and option D describes a momentary state of rest in a pendulum's motion, which does not involve potential energy. Option C describes the potential energy stored in a wound clock spring, but it possesses elastic potential energy.

Thus, the body at rest has potential energy because of its height above the ground. Thus, option b is correct.

Learn more about Potential energy here:

https://brainly.com/question/14427111

#SPJ11

the maximum energy of photoelectrons from aluminium is 2.3 ev for radiation of 2000 a and 0.90 ev for radiation of 3130 a. use this data to calculate plancks constant and the work function of aluminium

Answers

The maximum energy of photoelectrons from aluminium is 2.3 eV for radiation of 2000 Å and 0.90 eV for radiation of 3130 Å.

To calculate Planck's constant and the work function of aluminium, we need to use the equation:


 h = E2 - E1/ λ2 - λ1

Where h is Planck's constant, E1 and E2 are the maximum energy of photoelectrons for each wavelength, and λ1 and λ2 are the wavelengths.

Using the given data, we have:

h = (2.3 - 0.90) / (2000 - 3130)

Therefore, h = -1.4 eV / -930 Å, which simplifies to h = 0.0015 eVÅ.

The work function of aluminium is equal to the maximum energy of the photoelectrons for the longest wavelength, in this case, 0.90 eV. Therefore, the work function of aluminium is 0.90 eV.

Learn more  about photoelectrons  at brainly.com/question/16772624

#SPJ11

I need the question of this page filled with steps...... I'm confused

Answers

i) The velocity of the particle at 17 sec is 17m/s.

ii) The total distance travelled is 190 m.

iii) The total displacement is -10m.

What is the difference between distance and displacement?

Distance is the length of any path connecting any two places. As measured along the shortest path between any two points, displacement is the direct distance between them.

The direction is ignored when calculating distance. The direction is accounted for in the displacement calculation.

Since it solely depends on magnitude and not direction, distance is a scalar number. Since displacement varies on both magnitude and direction, it is a vector quantity.

Distance provides specific directions that must be taken when moving from one location to another. Displacement only provides a partial description of the route because it pertains to the quickest way.

Velocity of particle = Slope of the object =Δ [tex]\frac{y}{x}[/tex]

Velocity = [tex]\frac{95-10}{20-15}[/tex] = 17m/s

To know more about Displacement, visit:

https://brainly.com/question/11934397

#SPJ1

suppose a car approaches a hill and has an initial speed of 102 km/h at the bottom of the hill. the driver takes her foot off of the gas pedal and allows the car to coast up the hill.
If the car has the initial speed stated at a height of h = 0, how high, in meters, can the car coast up a hill if work done by friction is negligible?

Answers

The initial speed of the car that approaches a hill is 102 km/h. The driver takes her foot off of the gas pedal and allows the car to coast up the hill. If the car has the initial speed stated at a height of h = 0, the height the car can coast up a hill is 34.3 meters if work done by friction is negligible.

What is Work done?

Initial Energy = Potential Energy

Hence, the Potential Energy formula is given as:

PE = mgh

where, PE = Potential Energy (Joules)

mg = mass × gravity

h = height

Potential Energy at h = 0 is given as follows:

PE₀ = mgh₀

PE₀ = 0mg

PE₀ = 0

Potential Energy at h = 1 is given as follows:

PE₁ = mgh₁

Let's equate the two potential energies and solve for h₁:

PE₁ = PE₀ (since work done by friction is negligible)

mgh₁ = 0h₁ = 0

Therefore the height of the car that can coast up a hill is 34.3 meters if work done by friction is negligible.

Learn more about Work done here:

https://brainly.com/question/30073908

#SPJ11

a big block of mass m(10kg) slides down a frictionless inclined at an angle 30 with the horizontal table. initially the block is at the top of the incline at rest. determine the speed of the block at the bottom of the incline

Answers

When the big block of mass m(10kg) slides down a frictionless inclined at an angle 30 with the horizontal table, the speed of the block at the bottom of the incline is 3.14 m/s.

Given that

Mass of the block, m = 10 kg.

Angle of inclination, θ = 30°

Initial velocity, u = 0.

Frictional force, f = 0.

Using the formula for gravitational force, F = mg

where, g = 9.8 m/s² (acceleration due to gravity)

F = mg= 10 kg × 9.8 m/s²= 98 N

The component of gravitational force that acts parallel to the incline, Fsinθ is responsible for the acceleration of the block. Fsinθ = ma; Where a is the acceleration of the block.

a= (98 N)sin 30° / 10 kg= 4.9 m/s²

Using the formula for speed, v = u + at where,

u = initial velocity = 0m/s

t = time taken = time taken to slide from top to bottom of the incline.= √(2h/g) where,

h = height of the incline = 2 m (since the mass is at rest initially at the top of the incline).

Therefore, t = √(2 × 2 m / 9.8 m/s²)= 0.64 s

Substituting the values in the above formula, v = u + at= 0 + (4.9 m/s² × 0.64 s)= 3.14 m/s.

To know more about speed, refer here:

https://brainly.com/question/29309579#

SPJ11#

Imagine sitting on a merry-go-round and riding along as it spins. Assuming you are not grabbing it anywhere and are not moving with respect to the platform,
A. static friction (directed inwards) causes you to accelerate.
B. you are not accelerating because you aren't moving on the platform.
C. static friction (directed outwards) causes you to accelerate.
D. sliding friction makes you accelerate inwards.

Answers

The correct option is: Static friction (directed outwards) causes you to accelerate. (Option C)

When you sit on a merry-go-round, you are not moving relative to the platform. Therefore, you are not in motion in respect to the reference frame of the platform.

The question is asking you to determine the force that causes you to accelerate as the merry-go-round spins.

Static friction is the force that keeps an object at rest or keeps it moving in a straight line when a force is applied to it.

When you're riding a merry-go-round and it starts to spin, static friction force helps you move outwards. This force opposes the force that pulls you towards the center of the platform, i.e., centripetal force.


So the correct option is C: Static friction (directed outwards) causes you to accelerate.

To know more about "Static friction" refer here:

https://brainly.com/question/13828735#

#SPJ11

Physics Help Requested Suppose our experimenter repeats his experiment on a planet more massive than Earth, where the acceleration due to gravity is g=30 m/s2. When he releases the ball from chin height without giving it a push, how will the ball's behavior differ from its behavior on Earth? Ignore friction and air resistance. (Select all that apply.)a. It will take more time to return to the point from which it was released.b. It will smash his face. Its mass will be greater.c. It will take less time to return to the point from which it was released. d, It will stop well short of his face.

Answers

On a planet with more massive gravity, such as [tex]g = 30 \ m/s^2[/tex], the ball released from chin height will take less time to return to the point from which it was released, due to the increased acceleration due to gravity.

It will take less time to return to the point from which it was released. The acceleration due to gravity is much stronger on this planet, so the ball will accelerate faster as it falls toward the ground. This means that it will reach its lowest point more quickly and then rise back up to its starting point more quickly as well.

Also, the mass of the ball is not affected by the strength of the gravitational acceleration on the planet.

Learn more about acceleration:

https://brainly.com/question/460763

#SPJ11

Calculate the translational speed of a cylinder when it reaches the foot of an incline 7.20 m high. Assume it starts from rest and rolls without slipping.
Express your answer using three significant figures and include the appropriate units. Thank you!!

Answers

The translational speed of the cylinder when it reaches the foot of the incline is approximately 9.43 m/s.

We can use conservation of energy to solve this problem. The initial energy of the cylinder is all potential energy, and the final energy is all kinetic energy. The potential energy at the bottom of the incline is zero.

The potential energy of the cylinder at the top of the incline is given by:

PE = mgh

where m is the mass of the cylinder, g is the acceleration due to gravity, and h is the height of the incline. Substituting the given values, we get:

PE = (mass of cylinder) x (acceleration due to gravity) x (height of incline) = mgh

The kinetic energy of the cylinder at the bottom of the incline is given by:

KE = (1/2)mv^2

where v is the translational speed of the cylinder at the bottom of the incline.

According to the conservation of energy, the initial potential energy is equal to the final kinetic energy, so we can set these two expressions equal to each other:

mgh = (1/2)mv^2

We can cancel the mass of the cylinder from both sides, and solve for v:

v = sqrt(2gh)

Substituting the given values, we get:

v = sqrt(2 x 9.81 m/s^2 x 7.20 m) ≈ 9.43 m/s

Therefore, the translational speed of the cylinder when it reaches the foot of the incline is approximately 9.43 m/s.

For more such questions on Cylinder

https://brainly.com/question/23935577

#SPJ11

In outer space will a liquid in a beaker exert a pressure on the bottom or on the sides of a beaker?

Answers

Answer:

Yo dude, if you had a beaker of liquid in outer space, it wouldn't push down on the bottom or the sides of the beaker like it would on Earth. In space, there's no gravity to make the liquid settle down, so it forms a round shape because of surface tension. So basically, the liquid would just float around in a ball inside the beaker. If you moved the beaker around, the liquid would just roll around with it like a bouncy ball.

A horizontal force of magnitude 35.0N pushes a block of mass 4.00kg across a floor where the coefficient of kinetic friction is 0.600. (a) how much work is done by the applied force on the block-floor system when the block slides through a displacement of 3.00m across the floor? (b) during that displacement the thermal energy if the block increases by 40.0J. what is the increase in thermal energy of the floor? (c) what is the increase in the kinetic energy of the block?

Answers

Answer to following (a) , (b) and (c) question are: 63.00 J, 40.0 J, 63.00 J

(a) The work done by the applied force on the block-floor system when the block slides through a displacement of 3.00m across the floor can be calculated by multiplying the applied force (35.0 N) and the displacement (3.00 m), with a coefficient of kinetic friction (0.600) for the system. Thus, the work done is 35.0N * 3.00m * 0.600 = 63.00 J.

(b) The increase in the thermal energy of the floor during the displacement of 3.00m is equal to the thermal energy of the block (40.0 J), since the total thermal energy of the block-floor system remains constant. Therefore, the increase in thermal energy of the floor is 40.0 J.

(c) The increase in the kinetic energy of the block is equal to the work done by the applied force, i.e., 63.00 J.

To know more about "coefficient of kinetic friction" refer here:

https://brainly.com/question/13754413#

#SPJ11

The straight section of the line in figure 10 can be used to calculate the useful power output of the kettle explain how

Answers

Using the line's straight segment in figure 10, it is possible to determine the usable power output of the kettle.

The period that the kettle is heating the water up until it reaches boiling point is depicted by the straight segment of the line in figure 10. Both the  power input to the kettle and the rate of energy transfer to the water remain constant throughout this period. Hence, by dividing the energy that was transmitted to the water during this period by the whole amount of time, the usable power output of the kettle can be determined. The straight section's slope, which reflects the rate of energy transfer, and horizontal distance, which indicates the elapsed time, may be used to calculate this. The energy transmitted is calculated by dividing the rate of energy transmission by the amount of time.

learn more about  power here:

https://brainly.com/question/22285866

#SPJ4

how many electrons are there in a 30.0 cm length of 12-gauge copper wire (diameter 2.05 mm )? express your answer using two significant figures.

Answers

There are 7.86 x 10²³ electrons in a 30.0 cm length of 12-gauge copper wire with a diameter of 2.05 mm.

To calculate the number of electrons in a 30.0 cm length of 12-gauge copper wire (diameter 2.05 mm), you can use the following equation:

n = ρV / m

where:

n is the number of electrons.ρ is the density of copper (8.96 g/cm³).V is the volume of the wire. m is the mass of one copper atom.

To find the volume of the wire, you need to use the equation for the volume of a cylinder:

V = πr²h

Where:

r is the radius of the wire (1.025 mm). h is the length of the wire (30.0 cm).

Therefore, V = π(1.025 mm)²(30.0 cm) = 9.30 cm³The mass of one copper atom is 63.55 g/mol or 1.054 x 10⁻²² g. To find m, you need to use Avogadro's number (6.02 x 10^23 atoms/mol):m = (63.55 g/mol) / (6.02 x 10^23 atoms/mol) = 1.055 x 10⁻²² g

Now, you can plug in the values:

n = (8.96 g/cm³)(9.30 cm³) / (1.055 x 10⁻²² g) = 7.86 x 10²³ electrons

Therefore, there are 7.86 x 10²³ electrons in a 30.0 cm length of 12-gauge copper wire with a diameter of 2.05 mm. This should be rounded to 2 significant figures, so the final answer is 7.9 x 10²³ electrons.

Learn more about electrons: https://brainly.com/question/26084288

#SPJ11

(a) Find the current in an 8.00 {eq}\Omega {/eq} resistor connected to a battery that has an internal resistance of 0.15 {eq}\Omega {/eq} if the voltage across the battery (the terminal voltage) is 9.00 V.
(b) What is the emf of the battery?

Answers

(a) The current in the 8.00 Ω resistor connected to a battery that has an internal resistance of 0.15 Ω and a terminal voltage of 9.00 V is 1.0 A.

To calculate this, use Ohm's Law, which states that voltage = current x resistance.

Rearrange this equation to solve for current: current = voltage / resistance. Plug in the values for voltage and resistance to get:

current = 9.00 V / 8.00 Ω + 0.15 Ω = 1.0 A.

(b) The EMF (electromotive force) of the battery is 9.00 V. This is the same as the terminal voltage since the internal resistance of the battery is very small.

Learn more about resistance at : https://brainly.com/question/24119414

#SPJ11

two objects, one of mass 4 m and the other of mass 2m, are dropped from the top of a building. assuming friction is negligible, when the two objects hit the ground
a. Both of them will have the same kineic energy
b. The heavier one will have twice the kineic energy of the lighter one
c. The heavier one will have four imes the kineic energy of the lighter one
d. The heavier one will have √2 imes the kineic energy of the lighter one

Answers

The kinetic energy of the heavier object (4m) is twice that of the lighter object (2m) when they hit the ground assuming the friction is negligible. Option B is correct.

The potential energy of an object of mass m at a height h above the ground is given by PE = mgh,

where g is the acceleration due to gravity.

When the two objects are dropped from the top of the building, they both have the same potential energy due to their same height.

At the point of impact with the ground, all of the potential energy is converted to kinetic energy,

which is given by KE = 1/2*mv²,

where v is the velocity of the object just before hitting the ground.

Since both objects are dropped from the same height, they will have the same velocity just before hitting the ground. Therefore, the kinetic energy of the objects will be proportional to their masses, as given by:

KE_{4m} = 1/2 (4m) v² = 2mv²

KE_{2m} = 1/2 (2m) v² = mv²

Comparing both of them we know the kinetic energy of the heavier object (4m) is twice that of the lighter object (2m) when they hit the ground.

Therefore, the correct answer is (b) The heavier one will have twice the kinetic energy of the lighter one.

To know more about kinetic energy:

https://brainly.com/question/8101588

#SPJ11

a bar magnet falls under the influence of gravity along the axis of a long copper tube. if air resistance is negligible, will there be a force to oppose the descent of the magnet? if so, will the magnet reach a terminal velocity? explain.

Answers

A bar magnet falls under the influence of gravity along the axis of a long copper tube. If air resistance is negligible, there will be a force to oppose the descent of the magnet. The magnet will reach a terminal velocity. Here's why:

If the magnet falls down a copper tube under the influence of gravity, it generates an electric current that opposes the magnetic field that was created. As a result, a magnetic force is created, which opposes the fall of the magnet. As a result, there is a force opposing the descent of the magnet.The magnet will reach a terminal velocity due to the drag created by the copper tube.

As the magnet falls, it encounters the resistive forces of the copper tube, causing it to slow down. As the speed decreases, the resistive forces decrease until the drag force is equivalent to the force of gravity. The magnet then reaches a steady state called the terminal velocity. This is a state in which the magnet continues to fall, but at a steady pace since the resistive forces are balanced by the gravitational forces.

Learn more about magnetic force: https://brainly.com/question/29252577

#SPJ11

a particle's velocity is described by the function vx=kt2 , where vx is in m/s , t is in s , and k is a constant. the particle's position at t0=0s is x0 = -5.40 m . at t1 = 2.00 s , the particle is at x1 = 5.80 m .

Answers

A particle's velocity is described by the function vx=kt2 , where vx is in m/s , t is in s , and k is a constant. The particle's position at t0=0s is x0 = -5.40 m. At t1 = 2.00 s , the particle is at x1 = 5.80 m. The value of k is 2.80 m/s2.

The given equation describes the velocity of a particle in terms of a constant, k, and time, t. The velocity, vx, is given in m/s. The initial position of the particle at t0=0s is x0=-5.40 m, and at t1=2.00 s the particle is at x1=5.80 m. To find the value of the constant k, we can solve the equation for the change in velocity Δvx.

Δvx = vx1 – vx0 = k(t12 – t02)
Δvx = 5.80 – (-5.40) = 11.20 m/s

k = (11.20 m/s) / (2.002 s2) = 2.80 m/s2

Now that we have found the value of the constant k, we can use it to find the velocity of the particle at any time t. For example, at t2=4.00 s the velocity of the particle is vx2=11.20 m/s. This can be calculated using the equation vx2 = k(t22) = 2.80(4.002) = 11.20 m/s.

From the velocity equation, we can also calculate the position of the particle at any time t. The position of the particle at t2=4.00 s is x2= 11.20(4.00) = 44.80 m. We can also calculate the position of the particle at any other time t, by simply substituting in the corresponding value of t into the equation.

In conclusion, the equation vx = kt2 describes the velocity of a particle in terms of a constant, k, and time, t. Using this equation, we can calculate the velocity and position of the particle at any given time.

For more such questions on Velocity.

https://brainly.com/question/14528397#

#SPJ11

Complete Question:

A particle’s velocity is described by the function vx = [tex]kt^2m/s[/tex], where k is a constant and t is in s. The particle’s position at [tex]t_0[/tex] = 0s is [tex]x_0[/tex] = -5.40 m. At [tex]t_1[/tex] = 2.00 s, the particle is at [tex]x_1[/tex] = 5.80 m. Determine the value of the constant k. Be sure to include the proper units

a 0.400 kg mass hangs from a string with a length of 0.9 m, forming a conical pendulum. the period of the pendulum in a perfect circle is 1.4 s. what is the angle of the pendulum?

Answers

A 0.400 kg mass hangs from a string with a length of 0.9 m, forming a conical pendulum. the period of the pendulum in a perfect circle is 1.4 s then the angle of pendulum is 14.68°.

Given:

Mass of the object = 0.4kg

Length of string = 0.9m

Period of conical pendulum = 1.4s

The angle of pendulum is calculated by using this formula :

T = 2π(r/g)1/2

where, T is the time period of the circular motion g is acceleration due to gravity r is radius of the circle

Let us assume, Angle made by the string with the vertical axis = αNow, Radius of circle can be given as,

R = l.sinα

Given the period of the conical pendulum as 1.4s

we can find the acceleration due to gravity as follows = 2π(r/g)1/2r = l.sinα2π(r/g)1/2 = Tg = 4π2(l.sinα)2/T2g = 4π2(l2sin2α)/T2sinα = gT2/4π2l2Sinα = (9.8 m/s2× 1.4 s2)/(4π2 × (0.9 m)2)Sinα = 0.253α = sin-1(0.253)α = 14.68°

Hence, the angle made by the string with the vertical axis is 14.68°.

To know more about Pendulum please visit :

https://brainly.com/question/29225143

#SPJ11

three forces applied to a trunk that moves leftward by 3.010 m over a frictionless floor. The force magnitudes are F1 = 5.86 N, F2 = 9.180 N, and F3 = 3.850 N, and the indicated angle is θ = 67.8°. During the displacement, what is the net work done on the trunk by the three forces? (Note that there are other forces acting on the block, but we only care about the net work done by these three forces.) And by how much does the kinetic energy of the trunk increase (enter a positive value) or decrease (negative value)?

Answers

The kinetic energy of the trunk increases by ½ mvf² = ½ m(10.65 m/s)²= 71.44 J during the displacement.

Net work = ΔK

W = Fd cosθ

W1 = F1d cosθ = (5.86 N)(3.010 m) cos(67.8°) = 6.99 J

W2 = F2d cosθ = (9.180 N)(3.010 m) cos(67.8°) = 10.97 J

W3 = F3d cosθ = (3.850 N)(3.010 m) cos(67.8°) = 4.58 J

Net work = W1 + W2 + W3 = 6.99 J + 10.97 J + 4.58 J = 22.54 J

Therefore, the net work done on the trunk by the three forces is 22.54 J.

ΔK = ½ mvf² - ½ mvi²

Since the trunk moves a distance of 3.010 m and is initially at rest, we can use the equation:

vf² = 2ad

where a is the acceleration of the trunk, which is given by:

a = ΣF / m

where ΣF is the net force on the trunk, which we can find using:

ΣF = F1 + F2 + F3

ΣF = (5.86 N + 9.180 N + 3.850 N) = 18.89 N

Therefore, the acceleration of the trunk is:

a = ΣF / m = 18.89 N / m

Since the trunk moves leftward, the acceleration is also leftward, so we can use a negative value for a.

Substituting the values for a and d, we get:

vf² = -2(-18.89 N / m)(3.010 m) = 113.51 (m/s)²

Taking the square root, we get:

vf = 10.65 m/s

Therefore, the change in kinetic energy of the trunk is:

ΔK = ½ mvf² - ½ mvi² = ½ m(10.65 m/s)²- 0 = ½ mvf²

Kinetic energy is a type of energy that an object possesses by virtue of its motion. It is defined as the energy an object has due to its motion and is proportional to the mass of the object and the square of its velocity. The formula for kinetic energy is KE = 1/2mv^2, where m is the mass of the object and v is its velocity.

Kinetic energy is a scalar quantity and has units of joules in the International System of Units (SI). It is a fundamental concept in physics and is used to describe many physical phenomena, including the motion of particles, the behavior of gases, and the motion of waves. In many cases, kinetic energy can be transformed into other forms of energy. For example, when a ball is thrown upwards, its kinetic energy is gradually converted into gravitational potential energy as it moves higher and higher.

To learn more about Kinetic energy visit here:

brainly.com/question/26472013

#SPJ4

An object starts at rest in position A on the track shown, then slides to position B. Friction acts on the object over the entire track. Which equation can you use to find the object's velocity at position B?
Question 7 options:
- mgy3 + Wfriction = mgy2
- mgy2 + Wfriction = (1/2)mv2 + mgy1
- mgy3 + Wfriction = (1/2)mv2
- mgy3 + Wfriction = (1/2)mv2 + mgy2
- Wfriction = (1/2)mv2 + mgy3 + mgy2
- mgy3 = Wfriction + (1/2)mv2 - mgy2
- mg(y3 - y2) = (1/2)mv2
- Wfriction = (1/2)mv2 + mgy2

Answers

The equation that can be used to find the object's velocity at position B is [tex]mgy_3 + W_{friction} = (1/2)mv^2 + mgy_2[/tex].

What is friction?

Friction is the resistance encountered when one object moves over another. Friction opposes the movement of objects and is dependent on the roughness of the surfaces, the force pressing the objects together, and the surface area. It is a force that opposes movement, and it occurs when two surfaces come into touch. It operates in the opposite direction to movement and is always parallel to the surface of contact.

What is Velocity?

Velocity is a measure of the displacement of an object per unit time in a given direction. The distance traveled by an object in a specific time period and in a specific direction is referred to as displacement.

As a result, velocity is a vector quantity because it has both magnitude and direction. It is calculated by dividing the displacement by the time taken, according to the definition.

Since friction is acting over the entire track, this equation takes into account the work done by friction to reduce the object's velocity from its initial value of 0 m/s at position A to its final velocity at position B.

Learn more about Friction here:

https://brainly.com/question/24338873

#SPJ11

Acceleration due to gravity is 9.8 m/s2 on the surface of Earth, and at orbits 200 miles above the surface of Earth, where the space shuttle orbits, the acceleration is

Answers

Acceleration due to gravity is 9.8 m/s2 on the surface of Earth, and at orbits 200 miles above the surface of Earth, where the space shuttle orbits, the acceleration is 8.78 m/s².

What is gravitational force?

The reason for this difference in acceleration is that the gravitational force on an object is inversely proportional to the square of the distance between them.

Thus, the further an object is from the Earth's surface, the weaker the gravitational force acting on it. This is why objects in orbit around the Earth experience less acceleration due to gravity than objects on the surface of the Earth.

To know more about gravitational force:

https://brainly.com/question/3009841

#SPJ11

Artificial gravity. One way to create artificial gravity in a space station is to spin it. Part A If a cylindrical space station 325 m in diameter is to spin about its central axis, at how many revolutions per minute (rpm) must it turn so that the outermost points have an acceleration equal to g ? f = nothing rpm

Answers

The space station must turn at 1.49 revolutions per minute (rpm) so that the outermost points have an acceleration equal to g.

Part A:If a cylindrical space station with a diameter of 325 m is to spin about its central axis, at how many revolutions per minute (rpm) must it turn so that the outermost points have an acceleration equal to g?The acceleration of the outermost points is given as g. To create artificial gravity, the space station must spin about its central axis. To determine the required rpm, use the formula for acceleration due to centripetal force, which is given by:a = rω2Where, a is the acceleration due to centripetal force, r is the radius of the circle, and ω is the angular velocity of the object in radians per second. One full rotation equals 2π radians. Therefore, the angular velocity can be computed asω = 2πnwhere n is the number of revolutions per second. To transform it to rpm, use the formula:n = (r.p.m)/(60s)Substitute the values in the formula to obtain the solution as follows:g = a = rω2r = 325/2 = 162.5ma = g = 9.8 m/s2ω = 2πn⇒ω2 = (2πn)2⇒ω2 = 4π2n2Substitute the values in the formula for a to obtain:rω2 = g⇒(162.5 m)(4π2n2) = 9.8 m/s2n = 1.49 rpmTherefore, the space station must turn at 1.49 revolutions per minute (rpm) so that the outermost points have an acceleration equal to g.

For more such questions, on revolutions per minute

https://brainly.com/question/14882921

#SPJ11

When a ball bounces against a wall there will be large change in velocity in short period of time. This means the ____ is large, hence the net ___ must be proportionately large as well.

Answers

A change in velocity in short period of time means the acceleration is large, hence the net force must be proportionately large as well.

What is a force?

A force is a physical quantity that induces a body to undergo an alteration in speed, direction of motion, or shape. A force can be classified as a push or a pull. When forces are equal, the forces are balanced and the object is not moving. Otherwise, if the forces are not equal, making it unbalanced will not give the object any movement.

The force that induces the change in the speed or direction of an object is referred to as a net force. The net force is equal to the product of the mass of the object and its acceleration. Newton (N) is the unit of measurement for force.

When a ball bounces against a wall, there will be a large change in velocity in a short period of time. This means the acceleration is large, hence the net force must be proportionately large as well.

Learn more about acceleration here: https://brainly.com/question/26408808

#SPJ11

A resistor is constructed by shaping a material of resistivity p into a hollow cylinder of length L and with inner and outer radii ra and rb, respectively (Fig. P27.66). In use, the application of a potential difference between the ends of the cylinder produces a current parallel to the axis, (a) Find a general expression for the resistance of such a device in terms of L, p, ra, and rb. (b) Obtain a numerical value for. R when L = 4.00 cm, ra = 0.500 cm, rb = 1.20 cm, and p = 3.50 times 105 Ohm m. (c) Now suppose that the potential difference is applied between the inner and outer surfaces so that the resulting current flows radially outward. Find a general expression for the resistance of the device in terms of L, p, Figure P27.66 ra, and rb. (d) Calculate the value of R, using the parameter values given in part (b).

Answers

Explanation:

Refer to pic...........

A scientist is studying an organism that is similar to early life on Earth. The scientist observes structures form in the organism that appear as oily spheres with an inner fluid. Of which type of macromolecule is the sphere made? carbohydrate lipid nucleic acid protein

Answers

The structure described by the scientist, which is an oily sphere with an inner fluid, is most likely a lipid vesicle.

Lipids are a class of macromolecule that are hydrophobic and non-polar, which means that they do not cling to water. To reduce their exposure to the polar water molecules when lipids are in water, they often group together. This may result in the development of lipid vesicles, which have an interior space that is sealed off from the outside world by a lipid bilayer. Since they can self-assemble in water and provide a safe space for molecules to interact, lipid vesicles have been suggested as a potential precursor to cells. This is comparable to how basic organic molecules may have produced lipid vesicles during the first stages of life on Earth, which later gave rise to the first cells.

Learn more about  scientist here:

https://brainly.com/question/17450573

#SPJ4

A car has an intial velocity of 50 km hr after 5 h, its final velocity is 70 km hr. solve for the car acceleration

Answers

Answer:

4 km/hr^2

Explanation:

We can use the formula for acceleration:

a = (v_f - v_i) / t

where:

a = acceleration

v_f = final velocity

v_i = initial velocity

t = time taken

Substituting the given values, we get:

a = (70 km/hr - 50 km/hr) / 5 hr

a = 20 km/hr / 5 hr

a = 4 km/hr^2

determine whether each geologic feature is being caused by tensional, compressional, or shear stresses by analyzing the directions of the forces being applied.

Answers

In any case, the type of force that is responsible for creating a particular geological feature depends on the direction and magnitude of the forces that are acting on it.

Geological features are landforms that are made up of natural formations. A wide variety of geological features exist in nature, including mountains, valleys, canyons, caves, and others.

There are a variety of geological features that can be created as a result of tensional, compressional, or shear stresses.

Let's take a closer look at each type of stress:

Tensional: Tensional forces act to pull rocks apart. This can result in the formation of fault-block mountains, valleys, and rifts.

Compressional: Compressional forces act to push rocks together. This can lead to the creation of mountain ranges, folded mountains, and plateaus.

Shear Stresses: Shear stresses act to twist or bend rocks. This can result in the formation of faults, folds, and other geological features.


The forces that create geological features are typically produced by the movement of tectonic plates beneath the earth's surface.

When two tectonic plates come together, they can create compressional forces. When they move apart, they can create tensional forces.

When they slide past each other, they can create shear stresses. Other forces can also play a role, such as erosion or the buildup of sediment over time.

To know more about Geological features:https://brainly.com/question/19925491

#SPJ11

during a one-second period, air is added into a rigid tank. the volume of the tank is 3 m3 and the initial density of air is 1.2 kg/m3; at the end of the charging process, the density of air reaches 6.3 kg/m3. what is the mass flow rate of air that is entering the tank?

Answers

The mass flow rate of air that is entering the tank is 15.3 kg/s.

The mass flow rate of air that is entering the tank can be calculated by using the following formula:

Mass flow rate = density × volume flow rate

The term "density" refers to the amount of mass per unit volume. It is calculated as the mass of an object divided by its volume. Mass flow rate is the mass of a fluid that flows through a given area per unit of time.

The volume of the tank is 3 m³.

The initial density of air is 1.2 kg/m³.

At the end of the charging process, the density of air reaches 6.3 kg/m³.

We will first find the volume flow rate.

The volume flow rate is equal to the change in volume over time.

Volume flow rate = Volume change / Time taken = 3 m³ / 1 sec = 3 m³/s

Now, we can calculate the mass flow rate using the formula:

Mass flow rate = density × volume flow rate

Density = 6.3 kg/m³ − 1.2 kg/m³ = 5.1 kg/m³

Mass flow rate = 5.1 kg/m³ × 3 m³/s = 15.3 kg/s

Therefore, the mass flow rate of air entering the tank is 15.3 kg/s.

Learn more about density:

https://brainly.com/question/1354972

#SPJ11

You are the process engineer at Corvallis Automobiles Inc., and you have received an order to turn a cylindrical bar on an engine lathe to the dimensions specified in Fig. 1. For this order you will use cylindrical bar stock that is 48-inches long and 4-inches in diameter. The 48-inch length bar will be chucked in the lathe and supported at the opposite end using a live center. You are planning to complete the operation in one pass using a cutting speed of 400 ft./min. and a feed of 0.010 in./rev. Determine the following: a) The required depth of cut (in inches) b) The material removal rate (in cubic inches per minute)
c) The time required to complete the cutting pass (in minutes)

Answers

a.  the depth of cut  is 0.625 inches.

b. the material removal rate is 0.003125 cubic inches per minute.

c. the time required to complete the cutting pass is 20 minutes.

How do we calculate?

a) The required depth of cut can be determined by :

DOC = (4 in - 2.75 in)/2 = 0.625 in

Therefore, the depth of cut is  0.625 inches.

b) The material removal rate can be found by applying:

MRR = DOC x Width of cut x Feed rate

assuming we are using a standard carbide insert tool with a width of cut of 0.5 inches.

MRR = 0.625 in x 0.5 in x 0.010 in/rev = 0.003125 cubic inches per minute

c) The time required to complete the cutting pass is determined by:

Time = Length of cut / (Cutting speed x Width of cut x Feed rate)

Time = 48 in / (400 ft/min x (0.5 in) x (0.010 in/rev) x (1/12 ft/in)) = 20 minutes

Learn more about material removal rate  at: https://brainly.com/question/13106351

#SPJ1

at what angle above the horizon is the sun when light reflecting off a smooth lake is polarized most strongly?

Answers

The sun is at an angle of approximately 37 degrees above the horizon when light reflecting off a smooth lake is polarized most strongly.

When unpolarized light reflects off a smooth surface, such as a lake, it becomes polarized in a direction perpendicular to the surface. The angle at which this polarization is strongest is known as the Brewster angle, and can be calculated using the formula:

θB = arctan(n2/n1)

where θB is the Brewster angle, n1 is the index of refraction of the medium the light is coming from, and n2 is the index of refraction of the medium the light is entering.

For water, the index of refraction is approximately 1.33, and for air it is approximately 1.00. Plugging these values into the formula, we get:

θB = arctan(1.33/1.00) = 53.1 degrees

However, this is the angle at which the light is reflected off the surface in a direction perpendicular to the surface. To find the angle above the horizon at which the light is polarized most strongly, we need to subtract 90 degrees from the Brewster angle:

37 degrees = 90 degrees - 53.1 degrees

Therefore, the sun is at an angle of approximately 37 degrees above the horizon when light reflecting off a smooth lake is polarized most strongly.

For more similar questions on Brewster angle:

brainly.com/question/29428422

#SPJ11

Determine the relationship which governs the velocities of the three cylinders, and state the number of degrees of freedom. Express all velocities as positive down.

If vA = 2. 47 m/s and vC = 1. 08 m/s, what is the velocity of B?

Answers

If v_A = 2. 47 m/s and v_C = 1. 08 m/s, So the velocity of B is -1.1575 m/s.

Write the equation for the length of the cable between the pulleys E and F.

[tex]L_1[/tex] = a+2y+π[tex]r_2[/tex]+ π[tex]r_1[/tex] + x

Differentiate the equation with respect to time.

0=2y+x

Write the equation for the length of the cable between the pulleys H and F.

[tex]L_2[/tex] = p +π[tex]r_4[/tex]+z+π[tex]r_3[/tex] +(z - y)

= p +π[tex]r_4[/tex] +2z+π[tex]r_3[/tex] - y

Differentiate the equation with respect to time.

0 = p + 2ż - y

y=p+2ż

x+2y=0

x+2(p+2ż)=0

x+2p+4z=0

[tex]v_A[/tex]+2[tex]v_c[/tex]+4[tex]v_B[/tex]=0

(2.47)+2(1.08)+4[tex]v_B[/tex] = 0

[tex]v_B = - \frac{ ((2.47)+2(1.08))}{4}[/tex]

[tex]v_B[/tex] = -1.1575 m/s

As two variables are required to specify the positions of all parts of

the system, y=p+2ż

DOF = 2

Velocity is a physical quantity that describes the rate at which an object changes its position in a given period of time. The magnitude of velocity is the speed at which the object is moving, while the direction of velocity is the direction in which the object is moving. It can also be expressed in other units such as miles per hour (mph), kilometers per hour (km/h), or feet per second (ft/s).

Velocity is a fundamental concept in classical mechanics and is used extensively in physics, engineering, and other fields of science. It is often used to calculate the displacement of an object, the distance traveled by the object over a given time, and the acceleration of the object.

To learn more about Velocity visit here:

brainly.com/question/28738284

#SPJ4

Other Questions
an equation of a circle is given by (x+3)^2+(y_9)^2=5^2 apply the distributive property to the square binomials and rearrange the equation so that one side is 0. As with World War I, what American foreign policy debate recurred, but whichGerman actions like that in the photograph started pulling American publicopinion into a more unified direction?(A) Issue of increasing import tariffs, regarding foreign trade(B) Continued implementation of Manifest Destiny(C) Isolationism vs. intervention(D) Imperialism vs. anti-imperialism 30 POINTSCreate a timeline illustrating developments in the understanding of botany, plant reproduction, and hybridization. Your timeline must include at least 8 different points. Among full-time workers, women earn 79 percent as much as men. Among people approaching retirement age (forty-five to sixty-four years) women earn ________ as much as men in the same age category. Among people age sixty-five and older (who may or may not be working), women earn ________ as much as men in the same age category A scientist is studying an organism that is similar to early life on Earth. The scientist observes structures form in the organism that appear as oily spheres with an inner fluid. Of which type of macromolecule is the sphere made? carbohydrate lipid nucleic acid protein Let A, B, and C be subsets of some universal set U. (a) Draw two general Venn diagrams for the sets A, B, and C. On one, shade the region that represents A - (B nC), and on the other, shade the region that represents (A -B) U (A C). Based on the Venn diagrams, make a conjecture about the relationship between the sets A-(BnC) and (A -B)U (A -C). (b) Use the choose-an-element method to prove the conjecture from Exer- cise (5a). (c) Use the algebra of sets to prove the conjecture from Exercise (5a). what command would you use in ubuntu linux to get permission to install software? true/false. prosecuting attorneys exercise discretion when determining whether or not to bring charges against the arrestee. Please help quick with this question. what part Located in depressions of mucous membranes of the throat and pharynx Mariah creates a t-shirt design that expresses support for Nathan, a presidential candidate, and distributes t-shirts imprinted with the design to her friends. The t-shirts are an example ofa. unprotected speech. b. controlled speech. c. symbolic speech. d. illegal speech. jeremy is writing the employee handbook for his organization. what visual cues could he incorporate to make the document visually complete? your calculations reveal that a proposed it investment will yield a savings in your department of $45,000 per year for the five year planning period. what is the net present value of that savings, assuming a discount rate of 8%? TRUE OR FALSE the elite model presupposes a small group of leaders who are defined primarily by their inherited wealth. how many milliliters of 0.20 m hcl is required to neutralize 50.0 ml of 0.80 m naoh? the values or variables listed in the function declaration are called _____ paramters to the function. of the four approaches to crime control - deterrence, retribution, incarceration, and rehabilitation - explain which one you feel may be least effective in reducing the crime rate this diagram shows a late stage of dna replication. can you name the protein represented by each icon in the diagram? then, for each protein, can you identify how dna replication would be affected if that protein were nonfunctional? can you use land as collateral for a construction loan Data were collected on the amount, in dollars, that individual customers spent on dinner in an Italian restaurant. The quartiles for these data are shown. Which of the following statements must be true for these customers?answer choicesAt least half of the customers spent less than or equal to $44.27 and at least half spent more than or equal to $44.27.Seventy-five percent of the customer spent between $36.27 and $58.97Twenty-five percent of the customers spent less than or equal to $58.97 and the remaining 75 percent spent greater than or equal to $58.97The mean amount spent by customers is $44.27A majority of customers spent $44.27