Answer:
The speed of the proton is 4059.39 m/s
Explanation:
The centripetal force on the particle is given by;
[tex]F = \frac{mv^2}{r}[/tex]
The magnetic force on the particle is given by;
[tex]F = qvB[/tex]
The centripetal force on the particle must equal the magnetic force on the particle, for the particle to remain in the circular path.
[tex]\frac{mv^2}{r} = qvB\\\\r = \frac{mv^2}{qvB} \\\\r = \frac{mv}{qB}[/tex]
where;
r is the radius of the circular path moved by both electron and proton;
⇒For electron;
[tex]r = \frac{(9.1*10^{-31})(7.45*10^6)}{(1.602*10^{-19})(1.1*10^{-5})}\\\\r = 3.847 \ m[/tex]
⇒For proton
The speed of the proton is given by;
[tex]r = \frac{mv}{qB}\\\\mv = qBr\\\\v = \frac{qBr}{m} \\\\v = \frac{(1.602*10^{-19})(1.1*10^{-5})(3.847)}{1.67*10^{-27}} \\\\v = 4059.39 \ m/s[/tex]
Therefore, the speed of the proton is 4059.39 m/s
A flat loop of wire consisting of a single turn of cross-sectional area 7.30 cm2 is perpendicular to a magnetic field that increases uniformly in magnitude from 0.500 T to 3.50 T in 1.00 s. What is the resulting induced current if the loop has a resistance of 2.60
Answer:
-0.73mA
Explanation:
Using amphere's Law
ε =−dΦB/ dt
=−(2.6T)·(7.30·10−4 m2)/ 1.00 s
=−1.9 mV
Using ohms law
ε=V =IR
I = ε/ R =−1.9mV/ 2.60Ω =−0.73mA
The place you get your hair cut has two nearly parallel mirrors 6.5 m apart. As you sit in the chair, your head is
Complete question is;
The place you get your hair cut has two nearly parallel mirrors 6.50 m apart. As you sit in the chair, your head is 3.00 m from the nearer mirror. Looking toward this mirror, you first see your face and then, farther away, the back of your head. (The mirrors need to be slightly nonparallel for you to be able to see the back of your head, but you can treat them as parallel in this problem.) How far away does the back of your head appear to be?
Answer:
13 m
Explanation:
We are given;
Distance between two nearly parallel mirrors; d = 6.5 m
Distance between the face and the nearer mirror; x = 3 m
Thus, the distance between the back-head and the mirror = 6.5 - 3 = 3.5m
Now, From the given values above and using the law of reflection, we can find the distance of the first reflection of the back of the head of the person in the rear mirror.
Thus;
Distance of the first reflection of the back of the head in the rear mirror from the object head is;
y' = 2y
y' = 2 × 3.5
y' = 7
The total distance of this image from the front mirror would be calculated as;
z = y' + x
z = 7 + 3
z = 10
Finally, the second reflection of this image will be 10 meters inside in the front mirror.
Thus, the total distance of the image of the back of the head in the front mirror from the person will be:
T.D = x + z
T.D = 3 + 10
T.D = 13m
Please help!
Much appreciated!
Answer:
your question answer is 22°
With the same block-spring system from above, imagine doubling the displacement of the block to start the motion. By what factor would the following change?
A. Kinetic energy when passing through the equilibrium position.
B. Speed when passing through the equilibrium position.
Answer:
A) K / K₀ = 4 b) v / v₀ = 4
Explanation:
A) For this exercise we can use the conservation of mechanical energy
in the problem it indicates that the displacement was doubled (x = 2xo)
starting point. At the position of maximum displacement
Em₀ = Ke = ½ k (2x₀)²
final point. In the equilibrium position
[tex]Em_{f}[/tex] = K = ½ m v²
Em₀ = Em_{f}
½ k 4 x₀² = K
(½ K x₀²) = K₀
K = 4 K₀
K / K₀ = 4
B) the speed value
½ k 4 x₀² = ½ m v²
v = 4 (k / m) x₀
if we call
v₀ = k / m x₀
v = 4 v₀
v / v₀ = 4
Intelligent beings in a distant galaxy send a signal to earth in the form of an electromagnetic wave. The frequency of the signal observed on earth is 2.2% greater than the frequency emitted by the source in the distant galaxy. What is the speed vrel of the galaxy relative to the earth
Answer:
Vrel= 0.75c
Explanation:
See attached file
In the lab, you shoot an electron towards the south. As it moves through a magnetic field, you observe the electron curving upward toward the roof of the lab. You deduce that the magnetic field must be pointing:_______.
a. to the west.
b. upward.
c. to the north.
d. to the east.
e. downward.
Answer:
a. to the west.
Explanation:
An electron in a magnetic field always experience a force that tends to change its direction of motion through the magnetic field. According to Lorentz left hand rule (which is the opposite of Lorentz right hand rule for a positive charge), the left hand is used to represent the motion of an electron in a magnetic field. Hold out the left hand with the fingers held out parallel to the palm, and the thumb held at right angle to the other fingers. If the thumb represents the motion of the electron though the field, and the other fingers represent the direction of the field, then the palm will push in the direction of the force on the particle.
In this case, if we point the thumb (which shows the direction we shot the electron) to the south (towards your body), with the palm (shows the direction of the force) facing up to the roof, then the fingers (the direction of the field) will point west.
Two parallel metal plates, each of area A, are separatedby a distance 3d. Both are connected to ground and each plate carries no charge. A third plate carrying charge Qis inserted between the two plates, located a distance dfrom the upper plate. As a result, negative charge is induced on each of the two original plates. a) In terms of Q, find the amount of charge on the upper plate, Q1, and the lower plate, Q2. (Hint: it must be true that Q
Answer:
Upper plate Q/3
Lower plate 2Q/3
Explanation:
See attached file
A 2.0 m × 4.0 m flat carpet acquires a uniformly distributed charge of −10 μC after you and your friends walk across it several times. A 5.0 μg dust particle is suspended in midair just above the center of the carpet.
Required:
What is the charge on the dust particle?
Answer:
The charge on the dust particle is [tex]q_d = 6.94 *10^{-13} \ C[/tex]
Explanation:
From the question we are told that
The length is [tex]l = 2.0 \ m[/tex]
The width is [tex]w = 4.0 \ m[/tex]
The charge is [tex]q = -10\mu C= -10*10^{-6} \ C[/tex]
The mass suspended in mid-air is [tex]m_a = 5.0 \mu g = 5.0 *10^{-6} \ g = 5.0 *10^{-9} \ kg[/tex]
Generally the electric field on the carpet is mathematically represented as
[tex]E = \frac{q}{ 2 * A * \epsilon _o}[/tex]
Where [tex]\epsilon _o[/tex] is the permittivity of free space with value [tex]\epsilon_o = 8.85*10^{-12} \ \ m^{-3} \cdot kg^{-1}\cdot s^4 \cdot A^2[/tex]
substituting values
[tex]E = \frac{-10*10^{-6}}{ 2 * (2 * 4 ) * 8.85*10^{-12}}[/tex]
[tex]E = -70621.5 \ N/C[/tex]
Generally the electric force keeping the dust particle on the air equal to the force of gravity acting on the particles
[tex]F__{E}} = F__{G}}[/tex]
=> [tex]q_d * E = m * g[/tex]
=> [tex]q_d = \frac{m * g}{E}[/tex]
=> [tex]q_d = \frac{5.0 *10^{-9} * 9.8}{70621.5}[/tex]
=> [tex]q_d = 6.94 *10^{-13} \ C[/tex]
Water pressurized to 3.5 x 105 Pa is flowing at 5.0 m/s in a horizontal pipe which contracts to 1/2 its former radius. a. What are the pressure and velocity of the water after the contraction
Answer:
Explanation:
Using the Continuity equation
v X A = v' xA'
so if A is 1/2of A' then A velocity must be 2 times the A'
after-contraction v = 2 x 5.0m/s = 10m/s
Using the Bernoulli equation
p₁ + ½ρv₁² + ρgh₁ = p₂ + ½ρv₂² + ρgh₂
, the "h" terms cancel
3.5 x 10^ 5Pa + ½ x 1000kg/m³x (5.0m/s)² = p₂ + ½ x 1000kg/m³ x (10m/s)²
p₂ = 342500pa
In a physics laboratory experiment, a coil with 250 turns enclosing an area of 14 cm2 is rotated in a time interval of 0.030 s from a position where its plane is perpendicular to the earth's magnetic field to a position where its plane is parallel to the field. The earth's magnetic field at the lab location is 5.0×10^−5 T.Required:a. What is the total magnetic flux through the coil before it is rotated? After it is rotated? b. What is the average emf induced in the coil?
Explanation:
Consider a loop of wire, which has an area of [tex]A=14 \mathrm{cm}^{2}[/tex] and [tex]N=250[/tex] turns, it is initially placed perpendicularly in the earth magnetic field. Then it is rotated from this position to a position where its plane is parallel to the field as shown in the following figure in [tex]\Delta t=0.030[/tex] s. Given that the earth's magnetic field at the position of the loop is [tex]B=5.0 \times 10^{-5} \mathrm{T}[/tex], the flux through the loop before it is rotated is,
[tex]\Phi_{B, i} &=B A \cos \left(\phi_{i}\right)=B A \cos \left(0^{\circ}\right[/tex]
[tex]=\left(5.0 \times 10^{-5} \mathrm{T}\right)\left(14 \times 10^{-4} \mathrm{m}^{2}\right)(1)[/tex]
[tex]=7.0 \times 10^{-8} \mathrm{Wb}[/tex]
[tex]\quad\left[\Phi_{B, i}=7.0 \times 10^{-8} \mathrm{Wb}\right[/tex]
after it is rotated, the angle between the area and the magnetic field is [tex]\phi=90^{\circ}[/tex] thus,
[tex]\Phi_{B, f}=B A \cos \left(\phi_{f}\right)=B A \cos \left(90^{\circ}\right)=0[/tex]
[tex]\qquad \Phi_{B, f}=0[/tex]
(b) The average magnitude of the emf induced in the coil equals the change in the flux divided by the time of this change, and multiplied by the number of turns, that is,
[tex]{\left|\mathcal{E}_{\mathrm{av}}\right|=N\left|\frac{\Phi_{B, f}-\Phi_{B, i}}{\Delta t}\right|}{=} & \frac{1.40 \times 10^{-5} \mathrm{Wb}}{0.030 \mathrm{s}}[/tex]
[tex]& 3.6 \times 10^{-4} \mathrm{V}=0.36 \mathrm{mV}[/tex]
[tex]\mathbb{E}=0.36 \mathrm{mV}[/tex]
(a) The initial and final flux through the coil is 1.75 × 10⁻⁵ Wb and 0 Wb
(b) The induced EMF in the coil is 0.583 mV
Flux and induced EMF:Given that the coil has N = 250 turns
and an area of A = 14cm² = 1.4×10⁻³m².
It is rotated for a time period of Δt = 0.030s such that it is parallel with the earth's magnetic field that is B = 5×10⁻⁵T
(a) The flux passing through the coil is given by:
Ф = NBAcosθ
where θ is the angle between area vector and the magnetic field
The area vector is perpendicular to the plane of the coil.
So, initially, θ = 0°, as area vector and earth's magnetic field both are perpendicular to the plane of the coil
So the initial flux is:
Φ = NABcos0° = NAB
Ф = 250×1.4×10⁻³×5×10⁻⁵ Wb
Ф = 1.75 × 10⁻⁵ Wb
Finally, θ = 90°, and since cos90°, the final flux through the coil is 0
(b) The EMF induced is given by:
E = -ΔФ/Δt
E = -(0 - 1.75 × 10⁻⁵)/0.030
E = 0.583 × 10⁻³ V
E = 0.583 mV
Learn more about magnetic flux:
https://brainly.com/question/15359941?referrer=searchResults
If you wish to observe features that are around the size of atoms, say 5.5 × 10^-10 m, with electromagnetic radiation, the radiation must have a wavelength of about the size of the atom itself.
Required:
a. What is its frequency?
b. What type of electromagnetic radiation might this be?
Answer:
a) 5.5×10^17 Hz
b) visible light
Explanation:
Since the wavelength of the electromagnetic radiation must be about the size of the about itself, this implies that;
λ= 5.5 × 10^-10 m
Since;
c= λ f and c= 3×10^8 ms-1
f= c/λ
f= 3×10^8/5.5 × 10^-10
f= 5.5×10^17 Hz
The electromagnetic wave is visible light