Atoms are indivisible spheres. 1.plum pudding model 2.Dalton model 3.Bohr model

Answers

Answer 1

Answer: 2. Dalton Model

Explanation:

John Dalton proposed that atoms are indivisible spheres. Although his model of an atom was not entirely new to the scientific world since the ancient Greeks has made  a similar statement in the past ( all matter are made up of small indivisible particle called atom).

As of when Dalton proposed his model of an atom, electrons and nucleus where yet to be discovered.


Related Questions

One way the U.S. Environmental Protection Agency (EPA) tests for chloride contaminants in water is by titrating a sample of silver nitrate solution. Any chloride anions in solution will combine with the silver cations to produce bright white silver chloride precipitate. Suppose an EPA chemist tests a sample of groundwater known to be contaminated with nickel(II) chloride, which would react with silver nitrate solution like this:

Answers

Answer:

6.5 mg/L.

Explanation:

Step one: write out and Balance the chemical reaction in the Question above:

NiCl2 + 2AgNO3 =====> 2AgCl + Ni(NO3)2.

Step two: Calculate or determine the number of moles of AgCl.

So, we are given that the mass of AgCl = 3.6 mg = 3.6 × 10^-3 g. Therefore, the number of moles of AgCl can be calculated as below:

Number of moles AgCl = mass/molar mass = 3.6 × 10^-3 g / 143.32. = 2.5118 × 10^-5 moles.

Step three: Calculate or determine the number of moles of NiCl2.

Thus, the number of moles of NiCl2 = 2.5118 × 10^-5/ 2 = 1.2559 × 10^-5 moles.

Step four: detemine the mass of NiCl2.

Therefore, the mass of NiCl2 = number of moles × molar mass = 1.2559 × 10^-5 moles × 129.6 = 1.6 × 10^-3 g.

Step five: finally, determine the concentration of NiCl2.

1000/ 250 × 1.6 × 10^-3 g. = 6.5 mg/L.

Match the words below to the appropriate blanks in the sentences. Make certain each sentence is complete before submitting your answerβ-1,4- and α-1,6-glycosidicβ-1,4-glycosidicgalactosean unbranchedglucosea branchedfructoseα-1,6-glycosidicAmylose is ......... polymer of ....... units joined by ........ bonds. Amylopectin is ....... polymer of .......units joined by ........ bonds.

Answers

The words given are not clear, so the clear question is as follows:

Match the words below to the appropriate blanks in the sentences. Make certain each sentence is complete before submitting your answer:

A. β-1,4- and α-1,6-glycosidic

B. α-1,4-glycosidic

C. α-1,4-galactose

D. an unbranched glucose

E. a branched fructose

F. α-1,6-glycosidic

Amylose is ......... polymer of ....... units joined by ........ bonds.

Amylopectin is ....... polymer of .......units joined by ........ bonds.

Answer:

D. an unbranched glucose

C. α-1,4-galactose

B. α-1,4-glycosidic

E. a branched fructose

A. β-1,4- and α-1,6-glycosidic

F. α-1,6-glycosidic

Explanation:

Amylose and amylopectin are two types of polysaccharides that can be found in starch granules.

Amylose is linear or unbranched glucose polymer of α-1,4-galactose units that are joined by α-1,4-glycosidic.

Amylopectin is a branched fructose polymer of β-1,4- and α-1,6-glycosidic units joined by α-1,6-glycosidic bonds.

Hence, the correct answers in the sequential order are:

Amylose:

D. an unbranched glucose

C. α-1,4-galactose

B. α-1,4-glycosidic

Amylopectin:

E. a branched fructose

A. β-1,4- and α-1,6-glycosidic

F. α-1,6-glycosidic

Consider the reaction: C(s) + O2(g)CO2(g) Write the equilibrium constant for this reaction in terms of the equilibrium constants, Ka and Kb, for reactions a and b below: a.) C(s) + 1/2 O2(g) CO(g) Ka b.) CO(g) + 1/2 O2(g) CO2(g) Kb

Answers

Answer:

A. Ka = [CO2] / [C] [O2]^1/2

B. Kb = [CO2] / [CO] [O2]^1/2

Explanation:

Equilibrium constant is simply defined as the ratio of the concentration of the products raised to their coefficient to the concentration of the reactants raised to their coefficient.

Now, we shall obtain the expression for the equilibrium constant for the reaction as follow:

A. Determination of the expression for equilibrium constant Ka.

This is illustrated below:

C(s) + 1/2 O2(g) <==> CO(g)

Ka = [CO2] / [C] [O2]^1/2

B. Determination of the expression for equilibrium constant Kb.

This is illustrated below:

CO(g) + 1/2 O2(g) <==> CO2(g)

Kb = [CO2] / [CO] [O2]^1/2

Of the following two gases, which would you predict to diffuse more rapidly? PLZZ HELPP PLZ PLZ PLZ

Answers

Answer:

CO2 will diffuse more rapidly.

Explanation:

From Graham's law of diffusion, we understood that the rate of diffusion of a gas is inversely proportional to the square root of its density as shown below:

Rate (R) & 1/√Density (d)

R & 1/√d

But, the density of a gas is directly proportional to the relative molecular mass (M) of the gas.

Thus, we can say that the rate of diffusion of a gas is inversely proportional to the square root of the molar mass of the gas. This can be represented mathematically as:

Rate (R) & 1/√Molar mass (M)

R & 1/√M

From the above illustration, we can say that the lighter the gas, the faster the rate of diffusion and the heavier the gas, the slower the rate of diffusion.

Now, to answer the question given above,let us determine the molar mass of Cl2 and CO2.

This is illustrated below:

Molar mass of Cl2 = 2 x 35.5 = 71 g/mol

Molar mass of CO2 = 12 + (2x16) = 12 + 32 = 44 g/mol

Summary

Gas >>>>>> Molar mass

Cl2 >>>>>> 71 g/mol

CO2 >>>>> 44 g/mol

From the illustration above, we can see that CO2 is lighter than Cl2.

Therefore, CO2 will diffuse more rapidly.

Answer: CO2

Explanation:

Which of the following provides a characteristic of
MgO(s) with a correct explanation?
Choose 1 answer:
А
It is hard because its ions are held together by strong
electrostatic attractions.
B
It is malleable because its atoms can easily move past
one another without disrupting the bonding.
It is a poor conductor of electricity because its
electrons are tightly held within covalent bonds and
lone pairs.
It has a high melting point because its molecules
interact through strong intermolecular forces.

Answers

Answer:

А It is hard because its ions are held together by strong electrostatic attractions.

B It is malleable because its atoms can easily move past one another without disrupting the bonding.  

Explanation:

These are correct explanations of the properties of magnesium.

C is wrong. Mg is a good conductor of electricity and it has metallic bonds.

D is wrong. Mg has no molecules. It has no intermolecular forces.

15. Calculate the critical angle of glass and water combination. Show your calculation. 16. What is the critical angle for the interface between Mystery A and glass

Answers

Answer:

15. Critical angle of glass and water combination, θ = 62.45°

16. Critical angle for the interface between Mystery A and glass, θ = 37.93°

Note; The question is incomplete. The complete question is as follows:

Medium Air Water Glass Mystery A Mystery B Table-2 Speed (m/s) 1.00 C 0.75 c 0.67 0.41 c 0.71 c n 1.00 1.33 1.50 Index of Refraction n of a given medium is defined as the ratio of speed of light in vacuum, c to the speed of light in a medium, v. n = c/v

Table-4: Incident Angle (degrees) Reflected Angle Refracted angle (degrees) (degrees) % Intensity of reflected ray 0 10 20 30 40 50 N/A N/A N/A 30 40 50 0 11.3 22.7 34.2 46.3 59.5 N/A N/A N/A 0.67 1.22 3.08 % Intensity of refracted ray 100 100 100 99.33 98.78 96.92

When rays travel from a denser medium to a less dense medium, we can define a critical angle of incidence θ such that refracted angle θ₂ = 90°. Applying Snell's law: Critical angle θ = sin-1(n₂/n₁).

When the angle of incidence is greater than the critical angle, 100% of the light intensity is reflected. This is called total internal reflection because all the light is reflected.

15. Calculate the critical angle of glass and water combination. Show your calculation.

16. What is the critical angle for the interface between Mystery A and glass?

Explanation:

15.  Applying Snell's law; Critical angle θ = sin-1(n₂/n₁).

where n₂,refractive index of water = 1.33, n₁, refractive index of glass = 1.50 since glass is denser than water

θ = sin-1(1.33/1.50)

θ = 62.45°

Critical angle of glass and water combination, θ = 62.45°

16.  Refractive index of mystery A , n = c/v

where v = 0.41 c

therefore, n = c / 0.41 c = 2.44

Critical angle for the interface between Mystery A and glass, θ = sin-1(n₂/n₁).

where n₂,refractive index of glass = 1.50, n₁, refractive index of mystery A = 2.44 since mystery A is denser than glass as seen from its refractive index

θ = sin-1(1.50/2.44)

θ = 37.93°

Critical angle for the interface between Mystery A and glass, θ = 37.93°

The half-life of radium-226 is 1620 years. What percentage of a given amount of the radium will remain after 900 years

Answers

Answer:

68%

Explanation:

Since we need a percentage we can use any number we want for our initial value.

5(1/2)^900/1620 = 3.40

(3.40 / 5)*100 = 68%

To make sure lets use a different initial amount

1(1/2)^900/1620 = 0.68

(0.68/1) * 100 = 68%

The percentage of radium that will remain after 900 years is 68%.

To solve this question, we'll assume the initial amount of radium-226 to be 1.

Now, we shall proceed to obtaining the percentage of radium-226 that will after 900 years. This can be obtained as illustrated below:

Step 1

Determination of the number of half-lives that has elapsed.

Half-life (t½) = 1620 years

Time (t) = 900 years

Number of half-lives (n) =?

[tex]n = \frac{t}{t_{1/2}}\\\\n = \frac{900}{1620}\\\\n = \frac{5}{9}[/tex]

Step 2:

Determination of the amount remaining

Initial amount (N₀) = 1

Number of half-lives (n) = 5/9

Amount remaining (N) =?

[tex]N = \frac{N_{0} }{2^{n}}\\\\N = \frac{1}{2^{5/9}}[/tex]

N = 0.68

Step 3

Determination of the percentage remaining.

Initial amount (N₀) = 1

Amount remaining (N) = 0.68

Percentage remaining =?

Percentage remaining = N/N₀ × 100

Percentage remaining = 0.68/1 × 100

Percentage remaining = 68%

Therefore, the percentage amount of radium-226 that remains after 900 years is 68%

Learn more: https://brainly.com/question/10406952

A mixture of 50ml of 0.1M HCOOH and 50ml of 0.05M NaOH is equivalent to

Answers

Answer:

d) a solution that is 0.025M in HCOOH and 0.025M in HCOONa

Explanation:

The reaction of a weak acid (HOOH) with NaOH is as follows:

HCOOH + NaOH → HCOONa + H₂O

Based on the reaction, 1 mole of the acid reacts with 1 mole of the base (Ratio 1:1).

The initial moles of both species are:

HCOOH: 0.050L × (0.1mol / L) = 0.0050 moles of HCOOH

NaOH: 0.050L × (0.05 mol / L) = 0.0025 moles NaOH

After the reaction, all NaOH reacts with HCOOH producing HCOONa (Because moles of NaOH < moles HCOOH).

Final moles:

HCOOH: 0.0050 moles - 0.0025 moles (After reaction) = 0.0025 moles

HCOONa: Moles HCOONa = Initial Moles NaOH: 0.0025 moles

As volume of the mixture is 100mL (50 from the acid + 50 from NaOH), molarity of both HCOOH and HCOONa is:

0.0025 moles / 0.100L = 0.025M of both HCOOH and HCOONa

Thus, the initial mixture is equivalent to:

d) a solution that is 0.025M in HCOOH and 0.025M in HCOONa

Using the standard reduction potentials Ni2+(aq) + 2 e‑Ni(s) ‑0.25 volt Fe3+(aq) + e‑Fe2+(aq) +0.77 volt Calculate the value of E°cell for the cell with the following reaction. Ni2+(aq) + 2 Fe2+(aq) →Ni(s) + 2 Fe3+(aq)

Answers

Answer:

The correct answer is - 1.02 V

Explanation:

From the reduction-oxidation reaction:

Ni²⁺(aq) + 2 Fe²⁺(aq) → Ni(s) + 2 Fe³⁺(aq)

Ni²⁺ is reduced to Ni(s) while Fe²⁺ is oxidized to Fe³⁺. Thus, the half reactions are:

Reduction (cathode) : Ni²⁺(aq) + 2 e‑ → Ni(s)                    Eº= ‑0.25 V

Oxidation (anode) :  2 x (Fe²⁺ → Fe³⁺ + e-)(aq)                Eº= -0.77 V

                                -------------------------------------

                     Ni²⁺(aq) + 2 Fe²⁺(aq) → Ni(s) + 2 Fe³⁺(aq)

In order to calculate the Eºcell, we have to add the reduction potential of the reaction in cathode (reduction) to the oxidation potential of the anode (oxidation):

Eºcell= Eºr + Eºo= (-0.25 V) + (-0.77 V) = - 1.02 V

While balancing a chemical equation, we change the _____ to balance the number of atoms on each side of the equation.

Answers

Answer:

While balancing a chemical equation, we change the coefficient  to balance the number of atoms on each side of the equation

Explanation:

While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

What is chemical equation?

To summarize in chemistry terms, a chemical equation depicts the initial chemicals, or reactants, on the left-hand side and the final compounds, or products, just on right-hand side, divided by an arrow. In the chemical equation, the number of atoms in each element as well as the total charge are the same on opposite of the equation's sides.

Chemical equations are used in chemistry to depict chemical processes by writing the reactants and products in terms of their corresponding chemical formulas. While balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

Therefore, while balancing a chemical equation, we change the coefficient to balance the number of atoms on each side of the equation.

To know more about chemical equation, here:

https://brainly.com/question/29028257

#SPJ6

Arrange the compounds in order of decreasing magnitude of lattice energy:


a. LiBr

b. KI

c. CaO.


Rank from largest to smallest.

Answers

Answer:

The correct answer is CaO > LiBr > KI.

Explanation:

Lattice energy is directly proportional to the charge and is inversely proportional to the size. The compound LiBr comprises Li+ and Br- ions, KI comprises K+ and I- ions, and CaO comprise Ca²⁺ and O²⁻ ions.  

With the increase in the charge, there will be an increase in lattice energy. In the given case, the lattice energy of CaO will be the highest due to the presence of +2 and -2 ions. K⁺ ions are larger than Li⁺ ion, and I⁻ ions are larger than Br⁻ ion.  

The distance between Li⁺ and Br⁻ ions in LiBr is less in comparison to the distance between K⁺ and I⁻ ions in KI. As a consequence, the lattice energy of LiBr is greater than KI. Therefore, CaO exhibits the largest lattice energy, while KI the smallest.  

Arranging the chemical compounds in order of decreasing magnitude of lattice energy, we have:

c. CaO.

a. LiBr

b. KI

Lattice energy can be defined as a measure of the energy required to dissociate one (1) mole of an ionic compound into its constituent anions and cations, in the gaseous state.

Hence, it is typically used to measure the bond strength of ionic compounds.

Generally, lattice energy is inversely proportional to the size of the ions and directly proportional to their electric charges.

Lithium bromide (LiBr) comprises the following ions:

[tex]Li^+[/tex] and [tex]Br^-[/tex]

Potassium iodide (KI) comprises the following ions:

[tex]K^+[/tex] and [tex]I^-[/tex]

Calcium oxide (CaO) comprises the following ions:

[tex]Ca^{2+}[/tex] and [tex]O^{2-}[/tex]

From the above, we can deduce that there is an increase in the charge possessed by the ionic chemical compounds and as such this would result in an increase in the lattice energy.

In order of decreasing magnitude of lattice energy, the chemical compounds are arranged as:

I. CaO.

II. KI.

III. LiBr.

Read more: https://brainly.com/question/24605723

Find the density if the volume is 15 mL and the mass is 8.6 g. (5 pts)
Find the volume if the density is 2.6 g/mL and the mass is 9.7 g.(5 pts)
Find the mass if the density is 1.6 g/cm3 and the volume is 4.1 cm3 (5 pts)
Find the density if the initial volume of water is 12.8 mL, the final volume is 24.6 mL and the mass of the object is 4.3 g. Make a drawing to show the water displacement using a graduated cylinder. (gdoc, gdraw)

Answers

Answer:

[tex]\large \boxed{\text{0.57 g/mL; 3.7 mL; 6.6 g; 0.366 g/mL}}[/tex]

Explanation:

1. Density from mass and volume

[tex]\text{Density} = \dfrac{\text{mass}}{\text{volume}}\\\\\rho = \dfrac{m}{V}\\\\\rho = \dfrac{\text{8.6 g}}{\text{15 mL}} = \text{0.57 g/mL}\\\text{The density is $\large \boxed{\textbf{0.57 g/mL}}$}[/tex]

2. Volume from density and mass

[tex]V = \text{9.7 g}\times\dfrac{\text{1 mL}}{\text{2.6 g}} = \text{3.7 mL}\\\\\text{The volume is $\large \boxed{\textbf{3.7 mL}}$}[/tex]

3. Mass from density and volume

[tex]\text{Mass} = \text{4.1 cm}^{3} \times \dfrac{\text{1.6 g}}{\text{1 cm}^{3}} = \textbf{6.6 g}\\\\\text{The mass is $\large \boxed{\textbf{6.6 g}}$}[/tex]

4. Density by displacement

Volume of water + object = 24.6 mL

Volume of water                = 12.8 mL

Volume of object               = 11.8 mL

[tex]\rho = \dfrac{\text{4.3 g}}{\text{11.8 mL}} = \text{0.36 g/mL}\\\text{The density is $\large \boxed{\textbf{0.36 g/mL}}$}[/tex]

Your drawing showing water displacement using a graduated cylinder should resemble the figure below.

 

From the following balanced equation, CH4(g)+2O2(g)⟶CO2(g)+2H2O(g) how many grams of H2O can be formed when 1.25g CH4 are combined with 1.25×10^23 molecules O2? Use 6.022×10^23 mol−1 for Avogadro's number.

Answers

Answer:

2.81 g of H2O.

Explanation:

We'll begin by calculating mass of O2 that contains 1.25×10²³ molecules O2.

This can be obtained as follow:

From Avogadro's hypothesis, we understood that 1 mole of any substance contains 6.022×10²³ molecules. This implies that 1 mole of O2 also contains 6.022×10²³ molecules.

1 mole of O2 = 16x2 = 32 g.

Thus 6.022×10²³ molecules is present in 32 g of O2,

Therefore, 1.25×10²³ molecules will be present in =

(1.25×10²³ × 32) / 6.022×10²³ = 6.64 g of O2.

Therefore, 1.25×10²³ molecules present in 6.64 g of O2.

Next, the balanced equation for the reaction. This is given below:

CH4(g) + 2O2(g) —> CO2(g) + 2H2O(g)

Next, we shall determine the masses of CH4 and O2 that reacted and the mass of H2O produced from the balanced equation.

This can be obtained as follow:

Molar mass of CH4 = 12 + (4x1) = 16 g/mol.

Mass of CH4 from the balanced equation = 1 x 16 = 16 g

Molar mass of O2 = 16x2 = 32 g/mol.

Mass of O2 from the balanced equation = 2 x 32 = 64 g

Molar mass of H2O = (2x1) + 16 = 18 g/mol.

Mass of H2O from the balanced equation = 2 x 18 = 36 g

From the balanced equation above,

16 g of CH4 reacted with 64 g of O2 to produce 36 g if H2O.

Next, we shall determine the limiting reactant.

This can be obtained as follow:

From the balanced equation above,

16 g of CH4 reacted with 64 g of O2.

Therefore, 1.25 g of CH4 will react with = (1.25 x 64)/16 = 5 g of O2.

From the above calculations, we can see that only 5 g out of 6.64 g of O2 is needed to react completely with 1.25 g of CH4.

Therefore, CH4 is the limiting reactant.

Finally, we shall determine the mass of H2O produced from the reaction.

In this case, the limiting reactant will be used because it will give the maximum yield of H2O.

The limiting reactant is CH4 and the mass of H2O produced from the reaction can be obtained as follow:

From the balanced equation above,

16 g of CH4 reacted to produce produce 36 g if H2O.

Therefore, 1.25 g of CH4 will react to produce = (1.25 x 36)/16 = 2.81 g of H2O.

Therefore, 2.81 g of H2O were obtained from the reaction.

The mass in grams of H₂O which can be formed when 1.25g CH₄ are combined with 1.25×10²³ molecules O₂ is 2.8 grams.

What is stoichiometry?

Stoichiometry of any reaction tells about the amount of species present before and after the completion of the reaction.

Given chemical reaction is:

CH₄(g) + 2O₂(g) → CO₂(g) + 2H₂O(g)

Moles of CH₄ will b calculate as:

n = W/M, where

W = given mass = 1.25g

M = molar mass = 16g/mol

n = 1.25/16 = 0.078 moles

Molecues of CH₄ in 0.078 moles = 0.078×6.022×10²³ = 0.46×10²³

Given molecules of O₂ = 1.25×10²³

Required molecules of CH₄ is less as compared to the molecules of O₂, so here CH₄ is the limiting reagent and formation of water is depends on it only.

From the stoichiometry of the reaction it is clear that:

1 mole of CH₄ = will produce 2 moles of H₂O

0.078 moles of CH₄ = will produce 2×0.078=0.156 moles of H₂O

Mass of H₂O will be calculated by using its moles as:

W = (0.156)(18) = 2.8g

Hence required mass of H₂O is 2.8g.

To know more about limiting reagent, visit the below link:

https://brainly.com/question/1163339

Because of movements at the Mid-Atlantic Ridge, the Atlantic Ocean widens by about 2.5 centimeters each year. Explain which type of plate boundary causes this motion.

Answers

Answer:

A divergent plate boundary  

Explanation:

At a divergent boundary, the plates pull away from each other and generate new crust.

 

Answer:

Because the ocean becomes larger, this is a divergent plate boundary. Divergent plates cause the ocean floor to expand, making the ocean larger.

Explanation:

PLATO ANSWER

Calculate the concentration of H3O+ in a solution that contains 5.5 × 10-5 M OH- at 25°C. Identify the solution as acidic, basic, or neutral.

Answers

Explanation:

To calculate [H3O+] in the solution we must first find the pH from the [ OH-]

That's

pH + pOH = 14

pH = 14 - pOH

To calculate the pOH we use the formula

pOH = - log [OH-]

And [OH-] = 5.5 × 10^-5 M

So we have

pOH = - log 5.5 × 10^ - 5

pOH = 4.26

Since we've found the pOH we can now find the pH

That's

pH = 14 - 4.26

pH = 9.74

Now we can find the concentration of H3O+ in the solution using the formula

pH = - log H3O+

9.74 = - log H3O+

Find the antilog of both sides

H3O+ = 1.8 × 10^ - 10 M

The solution is basic since it's pH lies in the basic region.

Hope this helps you

The substance formed on addition of water to an aldehyde or ketone is called a hydrate or a/an:_______
A) vicinal diol
B) geminal diol
C) acetal
D) ketal

Answers

Answer:

B) geminal diol

Explanation:

Hello,

In this case, considering the attached picture, you can see that the substance resulting from the hydrolysis of an aldehyde or a ketone is a geminal diol since the two hydroxyl groups are in the same carbon. Such hydrolysis could be carried out in either acidic or basic conditions depending upon the equilibrium constant.

Regards.

A 1.0 L buffer solution is 0.250 M HC2H3O2 and 0.050 M LiC2H3O2. Which of the following actions will destroy the buffer?

A. adding 0.050 moles of NaOH
B. adding 0.050 moles of LiC2H3O2
C. adding 0.050 moles of HC2H3O2
D. adding 0.050 moles of HCl
E. None of the above will destroy the buffer.

Answers

Answer:

D

Explanation:

Addition of 0.05 M HCl, will react with all of the C2H3O2- from LiAc which will give 0.05 M more HAc. So there will be no Acetate ion left to make the solution buffer. Hence, the correct option for the this question is d, which is adding 0.050 moles of HCl.

The action that destroys the buffer is option c. adding 0.050 moles of HCl.

What is acid buffer?

It is a solution of a weak acid and salt.

Here, The buffer will destroy at the time when either HC2H3O2 or NaC2H3O2 should not be present in the solution.

The addition of equal moles of HCl finishly reacts with equal moles of NaC2H3O2. Due to this,  there will be only acid in the solution.

Since

moles of HC2H3O2 = 1*0.250 = 0.250

moles of NaC2H3O2 = 1*0.050 = 0.050.

moles of HCl is added = 0.050

Now

The reaction between HCl and NaC2H3O2

[tex]HCl + NaC_2H_3O_2 \rightarrow HC_2H_3O_2 + NaCl[/tex]

Now

BCA table is

            NaC2H3O2  HCl       HC2H3O2

Before 0.050 0.050 0.250

Change -0.050 -0.050 +0.050

After 0 0 0.300

Now, the solution contains the acid (HC2H3O2 ) only.

Therefore addition of 0.050 moles of HCl will destroy the buffer.

Learn more about moles here: https://brainly.com/question/24817060

Provide the name(s) for the tertiary alcohol(s) with the chemical formula C6H14O that have a 4-carbon chain. Although stereochemistry may be implied in the question, DO NOT consider stereochemistry in your name. Alcohol #1______ Alcohol #2: ______Alcohol #3______

Answers

Answer:

Explanation:

A tertiary alcohol is a compound (an alcohol) in which the carbon atom that has the hydroxyl group (-OH) is also bonded (saturated) to three different carbon atoms.

Based on the question, the only tertiary alcohol that can result from C₆H₁₄O that have a 4-carbon chain is

2-hydroxy-2,3-dimethylbutane

     H  OH   H    H

      |     |       |      |

H - C - C -   C  - C - H

      |     |       |      |

     H  CH₃  CH₃ H

From the above, we can see that the carbon atom having the hydroxyl group is also bonded to three other carbon atoms. And since we aren't considering stereochemistry, this is the only tertiary alcohol we can have with a 4-carbon chain

When 1604 J of heat energy is added to 48.9 g of hexane, C6H14, the temperature increases by 14.5 ∘C. Calculate the molar heat capacity of C6H14.

Answers

Answer:

THE MOLAR HEAT CAPACITY OF HEXANE IS 290.027 J/ C

Explanation:

1604 J of heat is added to 48.9 g of hexane

To calculate the molar heat capacity of hexane, it is important to note that the molar heat capacity of a substance is the measure of the amount of heat needed to raise 1 mole of a substance by 1 K.

Since 1604 J of heat = 48.9 g of hexane

Molar mass of hexane = 86 g/mol = 1 mole

then;

1604 J = 48.9 g

x = 86 g

x = 1604 * 86 / 48.9

x = 4205.4 J

Hence, 4205.4 J of heat will be added to 1 mole or 86 g of hexane to raise the temperature by 14.5 C.

In other words,

heat = molar heat capacity * temperature change

molar heat capacity = heat/ temperature change

Molar heat capacity = 4205.4 J / 14.5 C

Molar heat capacity = 290.027 J/C

The molar heat capacity of hexane is 290.027 J/ C

Ammonia, methane, and phosphorus trihydride are three different compounds with three different boiling points. Rank their boiling points in order from lowest to highest.
A. CH4< NH3 < PH3
B. NH3 < PH3< CH4
C. CH4 < PH3 < NH3
D. NH3 < CH4< PH3
E. PH3< NH3 < CH4

Answers

Answer:

B. NH3 < PH3< CH4

Explanation:

Hello,

In this case, taking into account that the boiling point of ammonia, methane and phosphorous trihydrate are -33.34 °C , -161.5 °C  and -87.7 °C , clearly, methane has the lowest boiling point (most negative) and ammonia the greatest boiling point (least negative), therefore, ranking is:

B. NH3 < PH3< CH4

Best regards.

A piece of solid Fe metal is put into an aqueous solution of Cu(NO3)2. Write the net ionic equation for any single-replacement redox reaction that may be predicted. Assume that the oxidation state of in the resulted solution is 2 . (Use the lowest possible coefficients for the reaction. Use the pull-down boxes to specify states such as (aq) or (s). If a box is not needed, leave it blank. If no reaction occurs, leave all boxes blank and click on Submit.)

Answers

Answer:

Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)

Explanation:

The ionic equation shows the actual reaction that took place. It excludes the spectator ions. Spectator ions are ions that do not really participate in the reaction even though they are present in the system.

For the reaction between iron and copper II nitrate, the molecular reaction equation is;

Fe(s) + Cu(NO3)2(aq)----> Fe(NO3)2(aq) +Cu(s)

Ionically;

Fe(s) + Cu^2+(aq) ---> Fe^2+(aq) + Cu(s)

To calculate changes in concentration for a system not at equilibrium, the first step is to determine the direction the reaction will proceed. To do so, we calculate Q and compare it to the equilibrium concentration, K. We can then determine that a reaction will shift to the right if:__________

Answers

Answer:

We can then determine that a reaction will shift to the right if Q<K

Explanation:

Comparing Q with K allows to find out the status and evolution of the system:

If the reaction quotient is equal to the equilibrium constant, Qc = Kc, the system has reached chemical equilibrium. If the reaction quotient is greater than the equilibrium constant, Qc> Kc, the system is not in equilibrium and will evolve spontaneously, decreasing the value of Qc until it equals the equilibrium constant. In this way, the concentrations of the products will decrease and the concentrations of the reagents will increase. In other words, the reverse reaction is favored to achieve equilibrium. Then the system will evolve to the left (ie products will be consumed and more reagents will be formed).If the reaction quotient is less than the equilibrium constant, Qc <Kc, the system is not in equilibrium and will evolve spontaneously increasing the value of Qc until it equals the equilibrium constant. This implies that the concentrations of the products will increase and those of the reagents will decrease. In other words, to achieve balance, direct reaction is favored. Then the reaction will shift to the right, that is, reagents will be consumed and more products will be formed.

In this case, we can then determine that a reaction will shift to the right if Q<K

Janet observes that bubbles rise inside water when water is heated. Which of the following best names and explains the change that causes bubbles to rise?

Answers

Answer:

Boiling

Explanation:

When a liquid is heated, the vapor pressure rises steadily. When water attains a temperature of 100°C or 212°F its vapor pressure is now equal to the atmospheric pressure at sea level, this is what we mean by boiling.

When this occurs, water continues to evaporate untill the vapor pressure inside the bubbles becomes high enough to stop water bubbles from collapsing again from the pressure of the water around it so the bubbles rise and break the surface.

If the theoretical yield of a reaction is 332.5 g and the percent yield for the reaction is 38 percent, what's the actual yield of product in grams? \

A. 8.74 g
B. 12616 g
C. 116.3 g
D. 126.4 g

Answers

Answer: D - 126.4g

Explanation:  

% Yield = Actual Yield/Theoretical Yield

38% = Actual Yield/332.5

38/100 = Actual Yield/332.5

(.38)(332.5) = 126.35 g = 126.4 g Actual Yield

Answer:

is D. the correct answer

Explanation:

I'm not sure if it is. Please let me know if I'm mistaking.

Solid cesium bromide has the same kind of crystal structure as CsCl which is pictured below: If the edge length of the unit cell is 428.7 pm, what is the density of CsBr in g/cm3.

Answers

Answer:

[tex]\mathbf {density \ d =4.4845 \ g/cm^3}[/tex]

Explanation:

Let recall the crystal structure of CsBr obtains a BCC structure. In a BCC structure, there exist only two atom per cell.

The density d of CsBr in g/cm³ can be calculated by using the formula:

[tex]\mathtt{ density \ d = \dfrac{z \times molar\ mass \ (M)}{ edge \ length \ (a) \ \times avogadro's \ number \ (N)}}[/tex]

where;

z = 1 mole of CsBr

edge length = 428.7 pm = (4.287 × 10⁻⁸)³ cm

molar mass of CsBr = 212.81 g/mol

avogadro's number = 6.023 × 10²³

[tex]\mathtt{ density \ d = \dfrac{1 \times 212.81}{(4.287 \times 10^{-8})^3 \times 6.023 \times 10^{23}}}[/tex]

[tex]\mathtt{ density \ d = \dfrac{ 212.81}{47.4540533}}[/tex]

[tex]\mathbf {density \ d =4.4845 \ g/cm^3}[/tex]

Find the pH of these buffer solutions using the information provided: 1L solution containing 80g of lactic acid (MW

Answers

Answer:

pH of the solution is 2.0

Explanation:

The lactic acid is a weak acid that is in equilibrium with water as follows:

Lactic acid + H2O ⇄ Lactate + H₃O⁺

And Ka for lactic acid: 1.38x10⁻⁴

Ka = 1.38x10⁻⁴ = [Lactate] [H₃O⁺] / [Lactic acid]

Initial concentration of lactic acid is (MW: 112.06g/mol):

80g * (1mol / 112.06g) / 1L = 0.714M

The equilibrium concentration of the species in the equilibrium are:

[Lactate] = X

[H₃O⁺] = X

[Lactic acid] = 0.714-X

Replacing in Ka expression:

1.38x10⁻⁴ = [X] [X] / [0.714-X]

9.8532x10⁻⁵ -  1.38x10⁻⁴X = X²

9.8532x10⁻⁵ -  1.38x10⁻⁴X - X² = 0

Solving for X:

X = -1.0x10⁻². False solution, there is no negative concentrations

X = 9.86x10⁻³M. Right solution.

As [H₃O⁺] = X

[H₃O⁺] = 9.86x10⁻³M

and pH = -log [H₃O⁺] = -log 9.86x10⁻³M

pH = 2.0

pH of the solution is 2.0

Write a balanced chemical equation for the base hydrolysis of methyl butanoate with NaOH. (Use either molecular formulas or condensed structural formulas, but be consistent in your equation.)

Answers

Explanation:

C5H10O2 + NaOH = C2H5COONa + C2H5OH

your result are : sodium propanoate and ethanol

A balanced chemical equation represents atoms and their numbers with their charge. The balanced equation for base hydrolysis is C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH.

What is hydrolysis?

Base hydrolysis is the splitting of the ester linkage by the basic molecule. As the result the acidic ester portion makes the salt, and also alcohol is produced as the by-product.

The base hydrolysis of methyl butanoate is shown as,

C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH

Here, sodium propanoate and ethanol are produced by the splitting of methyl butanoate in the presence of the base (NaOH).

Therefore, C₅H₁₀O₂ + NaOH → C₂H₅COONa + C₂H₅OH is balanced reaction.

Learn more about hydrolysis here:

https://brainly.com/question/22078321

#SPJ2

A chemist prepares a solution of sodium chloride by measuring out 25.4 grams of sodium chloride into a 100. mL volumetric flask and filling the flask to the mark with water. Calculate the concentration in mol/L of the chemist's sodium chloride solution. Be sure your answer has the correct number of significant digits.

Answers

Answer:

The concentration in mol/L =  4.342 mol/L

Explanation:

Given that :

mass of sodium chloride = 25.4 grams

Volume of the volumetric flask = 100 mL

We all know that the molar mass of sodium chloride NaCl = 58.5 g/mol

and number of moles = mass/molar mass

The number of moles of sodium chloride = 25.4 g/58.5 g/mol

The number of moles of sodium chloride = 0.434188 mol

The concentration in mol/L = number of mol/ volume of the solution

The concentration in mol/L = 0.434188 mol/ 100 × 10⁻³ L

The concentration in mol/L =  4.34188 mol/L

The concentration in mol/L =  4.342 mol/L

Select the true statement concerning voltaic and electrolytic cells. Select one: a. Voltaic cells involve oxidation-reduction reactions while electrolytic cells involve decomposition reactions. b. Voltaic cells require applied electrical current while electrolytic cells do not. . c. all electrochemical cells, voltaic and electrolytic, must have spontaneous reactions. d. Electrical current drives nonspontaneous reactions in electrolytic cells.

Answers

Answer:

Electrical current drives nonspontaneous reactions in electrolytic cells.

Explanation:

Electrochemical cells are cells that produce electrical energy from chemical energy.

There are two types of electrochemical cells; voltaic cells and electrolytic cells.

A voltaic cell is an electrochemical cell in which electrical energy is produced from spontaneous chemical process while an electrolytic cell is an electrochemical cell where electrical energy is produced from nonspontaneous chemical processes. Current is needed to drive these nonspontaneous chemical processes in an electrolytic cell.

Answer:

electrolytic cells generate electricity through a non-spontaneous reaction while voltaic cells absorb electricity to drive a spontaneous reaction.

Explanation:

Answer via Educere/ Founder's Education

When titrating a strong acid with a strong base, after the equivalence point is reached, the pH will be determined exclusively by: Select the correct answer below:
A) hydronium concentration
B) hydroxide concentration
C) conjugate base concentration
D) conjugate acid concentration

Answers

Answer:

B) hydroxide concentration

Explanation:

Hello,

In this case, since we are talking about strong both base and acid, since the base is the titrant and the acid the analyte, once the equivalence point has been reached, some additional base could be added before the experimenter realizes about it, therefore, since the titrant is a strong base, it completely dissociates in hydroxide ions and metallic ions which allows us to compute the pOH of the solution by known the hydroxide ions concentration.

After that, due to the fact that the pH is related with the pOH as shown below:

pH=14-pOH

We can directly compute the pH.

Best regards.

Other Questions
Evaluate the function below at x=5. Then, enter your solution. f(x)=3(2)^x what is the name pf a sculpture or photo of someone The granite dome in Twain Harte was damaged by the growth of ______________ joints, likely due to ________________. Steady Company's stock has a beta of . If the risk-free rate is and the market risk premium is , what is an estimate of Steady Company's cost of equity? A 2.0 m 4.0 m flat carpet acquires a uniformly distributed charge of 10 C after you and your friends walk across it several times. A 5.0 g dust particle is suspended in midair just above the center of the carpet.Required:What is the charge on the dust particle? simpily 2^33^2=6^5 Help us plazz this is mathematics IGCSE fast as you can A bag contains twelve marbles, which includes seven red marbles and five blue marbles. Roja reaches into the bag and pulls out four marbles. a) How many different sets of four marbles can be pulled from this bag? b) How many of these sets contain two red marbles and two blue marbles? c) How many of these sets contain all red marbles? d) How many of these sets contain all red marbles or all blue marbles? Solve for x in the equation x squared + 11 x + StartFraction 121 Over 4 EndFraction = StartFraction 125 Over 4 EndFraction. How can you change a rational number to a decimal? Can you give an exsample? You've been brought in as a security consultant for a small bicycle manufacturing firm. Immediately, you notice that they're using a centralized key-generating process, and you make a note to dissuade them from that without delay. What problem is created by using a centralized key-generating process? A rectangular prism has a volume of 864 cubic units. How many cubic unit will fill the volume of the solid if they were packed without any gaps or overlaps If the cross-sectional area of a wire is decreased while all other factors remain the same, how will the resistance change?OAIt will increaseOB.It will decrease.OC. It will go to zero.ODThe cross-sectional area does not affect the resistance. Question on Statistics and Confidence IntervalsA field test for a new exam was given to randomly selected seniors. The exams were graded, and the sample mean and sample standard deviation were calculated. Based on the results, the exam creator claims that on the same exam, nine times out of ten, seniors will have an average score within 5% of 75%. Is the confidence interval at 90%, 95%, or 99%? What is the margin of error? Calculate the confidence interval and explain what it means in terms of the situation. (10 points) bumped into sentence small one Luther CorporationConsolidated Income StatementYear ended December 31 (in $millions)2006 2005Total sales 610.1 578.8Cost of sales (500.2) (355.3)Gross profit 109.9 223.5Selling, general, andadministrative expenses (40.5) (38.7)Research and development (24.6) (21.8)Depreciation and amortization (3.6) (3.9)Operating income 41.2 159.1Other income Earnings before interest and taxes (EBIT) 41.2 159.1Interest income (expense) (25.1) (15.3)Pretax income 16.1 143.8Taxes (5.5) (50.33)Net income 10.6 93.47Price per share $16 $15Sharing outstanding (millions) 10.2 8.0Stock options outstanding (millions) 0.3 0.2Stockholders' Equity 126.6 63.6Total Liabilities and Stockholders' Equity 533.1 386.7Refer to the income statement above. Luther's operating margin for the year ending December 31, 2005 is closest to:_________.A. 13.7413.74%B. 21.9921.99%C. 27.4927.49%D. 32.9932.99% Consider a series RLC circuit where R=25.0 , C=35.5 F, and L=0.0940 H, that is driven at a frequency of 70.0 Hz. Determine the phase angle of the circuit in degrees. write 3 importance/ benefits of life insurance. what is the answer to 1/8=s-3/4 Some lemon, lime, and cherry lollipops are placed in a bowl. Some have achocolate center, and some do not. Suppose one of the lollipops is chosenrandomly from all the lollipops in the bowl. According to the table below, if itis known to be lemon, what is the probability that it HAS a chocolate center?