Answer:
The range is from 1.62 to 1.98.
Step-by-step explanation:
We have to solve for the percentage of the particular value if the range of the answer should be +/- 10% of the particular value.
The value given is 1.8, we thus want to find 10% of that: 1.8 * 10/100 = 0.18
Then, add this value to the original value of 1.8: 1.8+0.18 = 1.98
Furthermore, subtract .18 from from the original value of 1.8: 1.8-0.18 = 1.62
The range will be between these two numbers, so the range is from 1.62 to 1.98.
The difference of a number and 6 is the same as 5 times the sum of the number and 2. What is the number?
Step-by-step explanation:
Lets consider the unknown number as x
according to the question,
6-x= 5(x+2)
6-x= 5x+10
-x-5x=10-6
-6x=4
x=4/-6= 2/-3
x= -2/3
hope this helps
please mark me as brainliest.
Answer:
Step-by-step explanation:
Plato!! Answer: -4
Hope this helped
help
Does this graph represent a function? Why or why not?
A- no because it fails the vertical line test
B- yes because it passes the vertical line test
C-yes because it passes the horizontal line test
D- no because it fails the horizontal line test
Answer: No, it fails the vertical line test.
Step-by-step explanation:
Christian and Tanae both leave Disneyland at the same time. Christian travels north at 65 mph. Tanae travels south at 55 mph. How long will it take them to be 540 miles apart? Which of the following equations would you use to solve this word problem?
65t + 55(t − 1) = 540.
65t + 55t = 540.
65t + 55(t + 1) = 540.
None of these choices are correct.
Answer:
Step-by-step explanation:
B looks like it would work.
You add speeds * time when you are travelling in opposite directions.
I don't know why you would add or subtract 1 as in A and C
120 * t = 540
t = 540/120
t = 4.5 hours.
So after 4.5 hours they are 540 miles apart.
Answer:
b
Step-by-step explanation:
Twice the difference of a number and 6
Answer:
2x=6. I think friend it is correct.
Answer:
2(×-6)
Step-by-step explanation:
Correct me if im wrong thanks ●~●
Given the data points below, compute the sum of squared errors for the regression equation
Y
=
2
+
3
X
.
X
0
3
7
10
Y
5
5
27
31
Answer:
The sum of squared errors for the regression equation is 62.
Step-by-step explanation:
The sum of squared errors can be computed as follows:
X Y Y* = 2 + 3X Y - Y* (Y - Y*)^2
0 5 2 3 9
3 5 11 -6 36
7 27 23 4 16
10 31 32 -1 1
20 68 68 0 62
From the above, we have:
Error = Y - Y*
Error^2 = (Y - Y*)^2
Sum of squared errors = Sum of Error^2 = Total of (Y - Y*)^2 = 62
Therefore, the sum of squared errors for the regression equation is 62.
A real estate agent has 12 properties that she shows. She feels that there is a 30% chance of selling any one property during a week. The chance of selling any one property is independent of selling another property. Compute the probability of selling no more than 2 properties in one week. Round your answer to four decimal places.
Answer:
0.2528 = 25.28% probability of selling no more than 2 properties in one week.
Step-by-step explanation:
For each property, there are only two possible outcomes. Either they are sold, or they are not. The chance of selling any one property is independent of selling another property, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
A real estate agent has 12 properties that she shows.
This means that [tex]n = 12[/tex]
She feels that there is a 30% chance of selling any one property during a week.
This means that [tex]p = 0.3[/tex]
Compute the probability of selling no more than 2 properties in one week.
2 or less sold, which is:
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2)[/tex]
In which
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{12,0}.(0.3)^{0}.(0.7)^{12} = 0.0138[/tex]
[tex]P(X = 1) = C_{12,1}.(0.3)^{1}.(0.7)^{11} = 0.0712[/tex]
[tex]P(X = 2) = C_{12,2}.(0.3)^{2}.(0.7)^{10} = 0.1678[/tex]
Then
[tex]P(X \leq 2) = P(X = 0) + P(X = 1) + P(X = 2) = 0.0138 + 0.0712 + 0.1678 = 0.2528[/tex]
0.2528 = 25.28% probability of selling no more than 2 properties in one week.
if f(x)=-5^x-4 and g(x)=-3x-2,find (f+g) (x)
Answer: (f-g)(x) = - 5^x + 3x - 2
Step-by-step explanation:
if f(x) = -5^x - 4 and g(x)= - 3x - 2,find (f-g)(x)
(f-g)(x) = -5^x - 4 - (-3x - 2)
(f-g)(x) = -5^x - 4 + 3x + 2
(f-g)(x) = - 5^x + 3x - 2
If a projectile is fired with an initial speed of vo ft/s at an angle α above the horizontal, then its position after t seconds is given by the parametric equations x=(v0cos(α))t andy=(v0sin(α))t−16t2
(where x and y are measured in feet).
Suppose a gun fires a bullet into the air with an Initial speed of 2048 ft/s at an angle of 30 o to the horizontal.
(a) After how many seconds will the bullet hit the ground?
(b) How far from the gun will the bullet hit the ground? (Round your answer to one decimal place.)
(c) What is the maximum height attained by the bullet? (Round your answer to one decimal place.)
Answer:
a) The bullet hits the ground after 64 seconds.
b) The bullet hits the ground 113,511.7 feet away.
c) The maximum height attained by the bullet is of 16,384 feet.
Step-by-step explanation:
Equations of motion:
The equations of motion for the bullet are:
[tex]x(t) = (v_0\cos{\alpha})t[/tex]
[tex]y(t) = (v_0\sin{\alpha})t - 16t^2[/tex]
In which [tex]v_0[/tex] is the initial speed and [tex]\alpha[/tex] is the angle.
Initial speed of 2048 ft/s at an angle of 30o to the horizontal.
This means that [tex]v_0 = 2048, \alpha = 30[/tex].
So
[tex]x(t) = (v_0\cos{\alpha})t = (2048\cos{30})t = 1773.62t[/tex]
[tex]y(t) = (v_0\sin{\alpha})t - 16t^2 = (2048\sin{30})t - 16t^2 = 1024t - 16t^2[/tex]
(a) After how many seconds will the bullet hit the ground?
It hits the ground when [tex]y(t) = 0[/tex]. So
[tex]1024t - 16t^2 = 0[/tex]
[tex]16t^2 - 1024t = 0[/tex]
[tex]16t(t - 64) = 0[/tex]
16t = 0 -> t = 0 or t - 64 = 0 -> t = 64
The bullet hits the ground after 64 seconds.
(b) How far from the gun will the bullet hit the ground?
This is the horizontal distance, that is, the x value, x(64).
[tex]x(64) = 1773.62(64) = 113511.7[/tex]
The bullet hits the ground 113,511.7 feet away.
(c) What is the maximum height attained by the bullet?
This is the value of y when it's derivative is 0.
We have that:
[tex]y^{\prime}(t) = 1024 - 32t[/tex]
[tex]1024 - 32t = 0[/tex]
[tex]32t = 1024[/tex]
[tex]t = \frac{1024}{32} = 32[/tex]
At this instant, the height is:
[tex]y(32) = 1024(32) - 16(32)^2 = 16384[/tex]
The maximum height attained by the bullet is of 16,384 feet.
Is AFGH ~ AJKL? If so, identify the similarity postulate or theorem that
applies.
G
K
10
6
30°
30°
Н
A. Similar - SAS
B. Cannot be determined
C. Similar - SSS
D. Similar - AA
Answer: B. Cannot be determined
Explanation:
We can't use SAS since we don't have two pairs of proportional sides. We only know one pair of sides. This also rules out SSS as well since we'd need 3 pairs of proportional sides.
We can't use AA because we don't have two pairs of congruent angles.
Currently, we simply don't have enough information to determine if the triangles are similar or not.
Instruction
Active
Identifying a Graphical Solution
Try it
Which represents the solution of x2 + y2 > 16 and y? < 4x?
HE
of
64
N
2
2
N-
4
2
4
Answer: The Third Graph/ C
Step-by-step explanation:
Pasagot po kasi d kopo alam
Answer:
ano po ba ga gawin jn? para masagutan ko po
Construct the discrete probability distribution for the random variable described. Express the probabilities as simplified fractions. The number of tails in 5 tosses of a coin.
Answer:
[tex]P(X = 0) = 0.03125[/tex]
[tex]P(X = 1) = 0.15625[/tex]
[tex]P(X = 2) = 0.3125[/tex]
[tex]P(X = 3) = 0.3125[/tex]
[tex]P(X = 4) = 0.15625[/tex]
[tex]P(X = 5) = 0.03125[/tex]
Step-by-step explanation:
For each toss, there are only two possible outcomes. Either it is tails, or it is not. The probability of a toss resulting in tails is independent of any other toss, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Fair coin:
Equally as likely to be heads or tails, so [tex]p = 0.5[/tex]
5 tosses:
This means that [tex]n = 5[/tex]
Probability distribution:
Probability of each outcome, so:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 0) = C_{5,0}.(0.5)^{0}.(0.5)^{5} = 0.03125[/tex]
[tex]P(X = 1) = C_{5,1}.(0.5)^{1}.(0.5)^{4} = 0.15625[/tex]
[tex]P(X = 2) = C_{5,2}.(0.5)^{2}.(0.5)^{3} = 0.3125[/tex]
[tex]P(X = 3) = C_{5,3}.(0.5)^{3}.(0.5)^{2} = 0.3125[/tex]
[tex]P(X = 4) = C_{5,4}.(0.5)^{4}.(0.5)^{1} = 0.15625[/tex]
[tex]P(X = 5) = C_{5,5}.(0.5)^{5}.(0.5)^{0} = 0.03125[/tex]
h=255-21t-16t^2
PLEASE HELP!!
Answer:
3.15 seconds is the answer.
Explanation
when the ball touches the ground, h =0
hence,
0=255-21t-16t²
16t²+21t-225=0
here a=16 ,b=21, c= -225
[tex]t= \frac{ - b± \sqrt{ {b }^{2} - 4ac} }{2a} \\ \\ t= \frac{ - 21± \sqrt{ {21}^{2} - 4 \times 16 \times - 225} }{2 \times 16} \\ = \frac{ - 21 ± \sqrt{441 - ( - 14400)} }{32} \\ = \frac{ - 21± \sqrt{14841} }{32} \\ = \frac{ - 21±121.82}{32} \\ \\ t = \frac{ - 21 + 121.82}{32} \: or \: \: t = \frac{ - 21 - 121.82}{32} \\ t = 3.15 \: \: or \: \: t = - 4.46[/tex]
time cannot be negative, hence t = -4.46 can be avoided
The ball takes 3.15 seconds to hit the ground.
The diameters of bolts produced in a machine shop are normally distributed with a mean of 5.8 millimeters and a standard deviation of 0.07 millimeters. Find the two diameters that separate the top 8% and the bottom 8%. These diameters could serve as limits used to identify which bolts should be rejected. Round your answer to the nearest hundredth, if necessary.
Answer:
5.70 < X < 5.89
Step-by-step explanation:
Z = ±1.40507156
z = (x - μ)/σ
1.40507156 = (x - 5.8)/.07
5.70 < X < 5.89
Pleaseeeeee o someone help me
Answer:
63 cm and 63 cm
Step-by-step explanation:
Both are 63 cm because 9*7 is 63, and those are the measurements of both faces
what number when multiplied by 5 is one third of the sum of 64 and 56?
Answer:
8
Step-by-step explanation:
Create an expression to model the situation. One can do this by simply rewriting the written expression in terms of numbers and variables. Use the variable (x) to represent the unknown value.
[tex]5(x)=\frac{1}{3}(64+56)[/tex]
Simplify this expression,
[tex]5(x)=\frac{1}{3}(64+56)\\5x=\frac{1}{3}(120)\\5x=40\\[/tex]
Use inverse operations to solve for (x),
[tex]5x=40\\x=8[/tex]
Calculate the number of ways to form a set of three distinct items such that no two of the selected items are in the same row or same column
Answer:
1200
Explanation:
Order does not matter, if we said xyz order, it would still not make a difference if it was zyx or yzx hence we use the combination formula:
nCr = n! / r! * (n - r)!
where n= total number of items
r= number of items chosen at a time
Combinations are used when the order of events do not matter in calculating the outcome.
We calculate using the formula:
(30×20×12)÷3!=1200
There are therefore 1200 ways for the three distinct items to not be in same row or column
Peter organizes morning hikes for his friends every Saturday. When the hiking trail is 3 km long, 19 friends join him and when the trail is 5 km long, only 7 friends tag along. There exists a linear relationship between the distance of the hiking trail (in km) and the number of friends who tag along. The number of friends depend on the distance of the trail. Determine how many friends will tag along to a hiking trail of 2 km.
Answer:
25
Step-by-step explanation:
x = distance of the hike
y = number of friends coming along
so, we are looking for a linear relationship between these two.
y = ax + b
we need to find the factor a and the constant offset b.
19 = a×3 + b
7 = a×5 + b
7 - b = a×5
a = (7-b)/5
19 = (7-b)×3/5 + b
19 = (21 - 3b)/5 + b
95 = 21 - 3b + 5b
74 = 2b
b = 37
a= (7-37)/5 = -30/5 = -6
so, the relationship is
y = -6x + 37
for 2km hiking
y = -6×2 + 37 = -12 + 37 = 25 friends
What is the most specific name for a quadrilateral with one pair of parallel sides?
A. trapezoid
B. rectangle
C. parallelogram
D. quadrilateral
help me pls
Answer:
C: parallelogram
Step-by-step explanation:
The circumference of a circle is 14 inches. Find the circle's radius and diameter.
Please help :)
Can someone help me with this? Thanks!
9514 1404 393
Answer:
x ∈ {5, 7}(5,7)Step-by-step explanation:
The graph shows the function value is zero for x=5 and x=7. These are the elements of the solution set.
x ∈ {5, 7}
__
The graph is below the x-axis between these points, so that is the region where f(x) < 0
5 < x < 7 . . . . . for f(x) < 0
In interval notation: (5, 7).
A bank gives you a loan of 1,500,000 Baht to buy a house. The interest rate of the loan is 0.01% per day (Using 1 year = 365 days)
How much interest you pay after 10 years
Answer:
15.000 is cost so relate it with 265..hope it is help u.
Area of composite shapes ?
Answer: 58
Step-by-step explanation: you add them all together
Its 108 the other answer is the perimeter not the area.
Lucian was hiking through a field directly toward his car, which was parked on a long, straight road perpendicular to his path, when he came to a swamp. He turned 55 degrees to the right and hiked 3 miles in that direction to reach the road. How far did he need to walk down the road to reach his car? (Please include a labeled diagram so step by step solution is easy to follow).
Suppose a research company takes a random sample of 45 business travelers in the financial industry and determines that the sample average cost of a domestic trip is $1,192, with a sample standard deviation of $279. Construct a 98% confidence interval for the population mean (for domestic trip) from these sample data. Round your answers to 3 decimal places.
Answer:
98% confidence interval for the population mean =(1095.260,1288.740)
Step-by-step explanation:
We are given that
n=45
[tex]\mu=1192[/tex]
Standard deviation,[tex]\sigma=279[/tex]
We have to construct a 98% confidence interval for the population mean.
Critical value of z at 98% confidence, Z =2.326
Confidence interval is given by
[tex](\mu\pm Z\frac{\sigma}{\sqrt{n}})[/tex]
Using the formula
98% confidence interval is given by
[tex]=(1192\pm 2.326\times \frac{279}{\sqrt{45}})[/tex]
[tex]=(1192\pm 96.740)[/tex]
=[tex](1192-96.740,1192+96.740)[/tex]
=[tex](1095.260,1288.740)[/tex]
Hence, 98% confidence interval for the population mean (1095.260,1288.740)
Multiply 25 x 47 x 3
The diagram below shows rectangle ABC is a midtsin of
BC, such that D,E and F are on the same line API AD
i = 53, 13" BE-sm
and DE 2 EF
84
2176
F
with reasons
3.1 Prove
AB - BF
3.2. Calculate AD
3.3 Complece. In are rigter angled A BEF, son 53, 13" - BE
Answer:
4x2+3=
Step-by-step explanation:
Candice is preparing for her final exam in Statistics. She knows she needs an 74 out of 100 to earn an A overall in the course. Her instructor provided the following information to the students. On the final, 200 students have taken it with a mean score of 68 and a standard deviation of 4. Assume the distribution of scores is bell-shaped. Calculate to see if a score of 74 is within one standard deviation of the mean.
a) Yes, 74 is the upper limit of one standard deviation from the mean.
b) Yes, the upper level of one standard deviation is 72.
c) Yes, 74 is greater than the 64, one standard deviation below the mean.
d) No, 74 is greater than the mean of 68.
Answer:
Hence the correct option is option b) Yes, the upper level of one standard deviation is 72.
A score of 74 is not within one standard deviation of the mean.
Step-by-step explanation:
Here the given details are,
Mean = 68
SD = 4
Distribution is normal.
Z-score for x = 74 is given as below:
[tex]Z = (X - mean)/SD\\Z = (74 - 68)/4\\Z = 1.5[/tex]
So, the score of 74 is 1.5 standard deviations from the mean.
[tex]Mean + 1\timesSD = 68 + 1\times4 = 72Mean - 1\timesSD = 68 - 1\times4 = 64[/tex]
Therefore the score is not lies between 64 and 72.
Yes, the upper level of one standard deviation is 72.
) A patient drank 12 ounces of orange juice. How many milliliters did the patient drink?
Answer:
He drank 354.882 mills of orange juice
Step-by-step explanation: One ounce is equal to 29.5735 mills, so you multiply 29.5735 by 12
Answer: 355 Millileters
I WILL MARK THE ANSWER AS BRAINLIEST IF RIGHT
PLEASE HELP ME BE CORRECT BEFORE ANSWERING PLEASE
9514 1404 393
Answer:
D neither
Step-by-step explanation:
Reflection across a vertical line is required to change the figure left-to-right without changing it top-to-bottom. Translation along a directed line segment must then map corresponding points.
Sequence A involves reflection over a horizontal line, so can be rejected immediately. Sequence B does the translation so that point N gets moved to the location of point B. However, point N corresponds to point D (see the similarity statement), so that translation is inappropriate.
Neither sequence will map KLMN to ABCD.