The electric potential at point P (x=0 cm) due to two 10 nC charges located at x= - 4 cm and x= 4.0 cm is 4.5 × 10⁵ volts. The work required to bring a 20 nC charge from infinity to point P is 9 × 10⁻⁴joules.
Calculation of electric potential at point P (x=0 cm):
Charge 1: q1 = 10 nC
Charge 2: q2 = 10 nC
Distance from Charge 1 to point P: r1 = 4 cm
P: r1 = 0.04 m
Distance from Charge 2 to point P: r2 = 4 cm
P: r2 = 0.04 m
Electric potential (V) at a point due to a point charge is given by the equation:
V = k * q / r
where:
k is the electrostatic constant (k = 9 × 10⁹ N m²/C²)
q is the charge
r is the distance from the charge to the point
Let's calculate the electric potential at point P due to each charge:
For Charge 1:
V1 = k * q1 / r1
Substituting the values:
V1 = (9 × 10⁹ N m²/C²) * (10 × 10⁻⁹ C) / (0.04 m)
V1 = 2.25 × 10⁵ V
For Charge 2:
V2 = k * q2 / r2
Substituting the values:
V2 = (9 × 110⁹ N m²/C²) * (10 × 10⁻⁹ C) / (0.04 m)
V2 = 2.25 × 10⁵ V
Since the electric potentials are scalar quantities, the electric potential at point P due to both charges is the algebraic sum of the potentials due to each charge:
V = V1 + V2
V = (2.25 × 10⁵ V) + (2.25 × 10⁵ V)
V = 4.5 × 10⁵ V
Therefore, the electric potential at point P (x=0 cm) is 4.5 × 10⁵volts.
Calculation of work required to bring a 20 nC charge from infinity to point P:
To calculate the work required, we need to consider the change in potential energy of the 20 nC charge as it moves from infinity to point P.
The work done (W) is given by the equation:
W = ΔPE
W = q * ΔV
where:
ΔPE is the change in potential energy
q is the charge
ΔV is the change in electric potential
As the charge moves from infinity to point P, the change in potential energy is given by:
ΔPE = q * (V - 0)
where V is the electric potential at point P.
Substituting the values:
ΔPE = (20 × 10⁻⁹) C) * (4.5 × 10⁵ V - 0 V)
ΔPE = 9 × 10⁻⁴ J
Therefore, the work required to bring a 20 nC charge from infinity to point P is 9 × 10⁻⁴ joules.
The electric potential at point P (x=0 cm) due to two 10 nC charges located at x= - 4 cm and x= 4.0 cm is 4.5 × 10⁵ volts. The work required to bring a 20 nC charge from infinity to point P is 9 × 10⁻⁴ joules.
To know more about potential visit:
https://brainly.com/question/30389535
#SPJ11
the lowest pressure attainable using the best available vacuum techniques is about 10−12n/m2 .
The lowest pressure that can be achieved using the best available vacuum techniques is about 10−12n/m2.
Vacuum technology is used in a wide range of scientific and industrial applications. The vacuum is obtained using a range of methods, including mechanical pumps, turbomolecular pumps, and diffusion pumps, to name a few. Vacuum systems are used in many fields, including high-energy physics, surface science, and semiconductor manufacturing, among others.
In vacuum technology, the pressure is usually measured in pascal, torr, or millibar. The lowest pressure that can be achieved using the best available vacuum techniques is about 10−12n/m². This pressure is known as the ultra-high vacuum (UHV), which is used for a variety of applications, including surface analysis, material science, and vacuum deposition.
The UHV systems are expensive and require a high level of expertise to operate because they are extremely sensitive to contamination. As a result, UHV is used only when an uncontaminated environment is critical for the process being conducted.
Learn more about Vacuum technology here:
https://brainly.com/question/10937733
#SPJ11
The Salem Witch Trials were the consequence of
1.
religious disputes within the Puritan community
2.
widespread anxiety over wars with Indians
3.
fear and hatred of women who were diffe
The Salem Witch Trials were the consequence of religious disputes within the Puritan community, widespread anxiety over wars with Indians, and fear and hatred of women who were perceived as different or challenging societal norms.
What were the factors that led to the Salem Witch Trials?The Salem Witch Trials were influenced by religious disputes, anxiety over wars with Indians, and fear and prejudice towards women who deviated from societal norms.
The Salem Witch Trials of 1692 in colonial Massachusetts were primarily fueled by religious tensions within the Puritan community. Puritan beliefs and practices were deeply ingrained in the society, and any deviation from their strict religious doctrines was seen as a threat. The trials were fueled by a fear of witchcraft and the belief that Satan was actively working to corrupt the community.
Additionally, the ongoing conflicts between English colonists and Native American tribes during the time created a climate of widespread anxiety and fear. The fear of Indian attacks and the uncertainty of the frontier amplified the existing anxieties within the community, leading to a heightened sense of paranoia and the scapegoating of individuals as witches.
Furthermore, the trials were marked by a pervasive fear and prejudice against women who were seen as different or challenging the established norms. Many of the accused were women who didn't conform to the traditional roles and expectations placed upon them. Women who displayed independence, assertiveness, or unconventional behavior were viewed with suspicion and often targeted as witches.
Learn more about The Salem Witch
brainly.com/question/13207024
#SPJ11
A car and a motorbike are having a race. The car has an acceleration from rest of 5.6 m/s2 until it reaches its maximum speed of 106 m/s whilst the motorbike has an acceleration of 8.4 m/s2 until it reaches it maximum speed of 58.8 m/s. Then they continue to race until the car reaches the motorcycle. (a) Find the time it takes the car and the motorbike to reach their maximum speeds
(b) What distance after starting from rest do the car and the motorbike travel when they reach their respective maximum speeds?
(c) How long does it take the car to reach the motorbike? Hint: To help solve this, note that the car will still be accelerating when it catches the motorbike. Your solution will contain two times. Justify which of the times is the correct one and which is the unphysical one. (
The car reaches its maximum speed of 106 m/s in 18.93 seconds and travels approximately 3366.26 meters. The motorbike reaches its maximum speed of 58.8 m/s in 7 seconds and travels 2058 meters. The car never catches up with the motorbike.
(a) To find the time it takes for the car and the motorbike to reach their maximum speeds, we can use the formula:
Time = (Final Speed - Initial Speed) / Acceleration
For the car:
Initial Speed = 0 m/s (rest)
Final Speed = 106 m/s
Acceleration = 5.6 m/s²
Time = (106 m/s - 0 m/s) / 5.6 m/s² = 18.93 seconds
For the motorbike:
Initial Speed = 0 m/s (rest)
Final Speed = 58.8 m/s
Acceleration = 8.4 m/s²
Time = (58.8 m/s - 0 m/s) / 8.4 m/s² = 7 seconds
(b) To find the distance traveled by the car and the motorbike when they reach their respective maximum speeds, we can use the formula:
Distance = (Initial Speed × Time) + (0.5 × Acceleration × Time²)
For the car:
Initial Speed = 0 m/s (rest)
Time = 18.93 seconds
Acceleration = 5.6 m/s²
Distance = (0 m/s × 18.93 seconds) + (0.5 × 5.6 m/s² × (18.93 seconds)²)
Distance = 0 + 0.5 × 5.6 m/s² × 357.2049 seconds²
Distance ≈ 3366.26 meters
For the motorbike:
Initial Speed = 0 m/s (rest)
Time = 7 seconds
Acceleration = 8.4 m/s²
Distance = (0 m/s × 7 seconds) + (0.5 × 8.4 m/s² × (7 seconds)²)
Distance = 0 + 0.5 × 8.4 m/s² × 49 seconds²
Distance = 2058 meters
(c) To find how long it takes the car to catch up with the motorbike, we need to determine the time at which their positions are equal. Since the car continues to accelerate while catching up, we can use the equation:
Distance = (Initial Speed × Time) + (0.5 × Acceleration × Time²)
Let's assume the time it takes for the car to catch the motorbike is t.
For the car:
Initial Speed = 0 m/s (rest)
Acceleration = 5.6 m/s²
For the motorbike:
Initial Speed = 0 m/s (rest)
Acceleration = 8.4 m/s²
Setting the distances equal to each other:
(0 m/s × t) + (0.5 × 5.6 m/s² × t²) = (0 m/s × t) + (0.5 × 8.4 m/s² × t²) + (58.8 m/s × t)
Simplifying the equation:
(0.5 × 5.6 m/s² × t²) = (0.5 × 8.4 m/s² × t²) + (58.8 m/s × t)
Since the term (0.5 × 5.6 m/s² × t²) equals (0.5 × 8.4 m/s² × t²), they cancel out, and we are left with:
0 = 58.8 m/s × t
This implies that t = 0, which is the unphysical solution since it means the car catches up with the motorbike instantaneously. Therefore, there is no valid solution for the car catching up with the motorbike.
In conclusion, the car and motorbike reach their maximum.
To know more about maximum speed refer here:
https://brainly.com/question/22202493#
#SPJ11
determine the amplitude a and the phase angle γ (in radians), and express the displacement in the form x(t)=acos(ωt−γ), with x in meters.
The displacement function is x(t) = 0.4 cos(3πt - 0.93) m, expressed in the given form. Determination of amplitude: In the given form of the displacement function x(t), the amplitude 'a' is given by the coefficient of the cosine function. Therefore, a = 0.4 m.
Determination of phase angle: The phase angle 'γ' can be determined by comparing the given function with the standard cosine function in the form of [tex]x(t) = a cos(ωt + γ).[/tex]
Here, we need to note that in the given function, the argument of the cosine function is (ωt - γ).
Therefore, [tex]γ = (ωt - arc cos (x/a))[/tex]
We know that [tex]cos(γ) = x/a[/tex]
∴ arc cos(x/a)
= γ= arc cos(0.4/0.6)
= 0.93 rad (approx)
Hence, the phase angle is γ = 0.93 rad.
Expressing displacement in the given form: Given that the displacement function is
x(t) = 0.4 cos(3πt - 0.93)
The angular frequency is ω = 3π rad/s and the phase angle is γ = 0.93 rad. Thus, the displacement function is x(t) = 0.4 cos(3πt - 0.93) m, expressed in the given form.
To learn more about displacement visit;
https://brainly.com/question/11934397
#SPJ11
A fluorescent mineral absorbs "black light" from a mercury lamp. It then emits visible light with a wavelength 520 nm. The energy not converted to light is converted into heat. If the mineral has absorbed energy with a wavelength of 320 nm, how much energy (in kJ/mole) was converted to heat?
The amount of energy (in kJ/mole) that was converted to heat is 345 kJ/mol (rounded to three significant figures).
To find the energy that is converted to heat, we need to compare the energy of the absorbed light to the energy of the emitted light. The absorbed light has a wavelength of 320 nm = 320 × 10⁻⁹ m.
So:
E = hc/λ E = (6.626 × 10⁻³⁴ J·s) (3.00 × 10⁸ m/s) / (320 × 10⁻⁹ m) E = 1.85 × 10⁻¹⁸ J
The absorbed light has less energy than the emitted light. The difference in energy is converted to heat.
So:
ΔE = 3.81 × 10⁻¹⁷ J – 1.85 × 10⁻¹⁸ J
ΔE = 3.63 × 10⁻¹⁷ J
This is the energy that is converted to light. To convert this to energy per mole, we need to know the number of photons in one mole of the mineral. This can be calculated using Avogadro’s number:
N = 6.02 × 10²³ photons/mol
So the energy per mole is:
ΔE/mol = (3.63 × 10⁻¹⁷ J) (6.02 × 10²³ photons/mol) ΔE/mol = 2.19 × 10⁷ J/mol
To convert this to kJ/mol, we divide by 1000:
ΔE/mol = 2.19 × 10⁴ kJ/mol
Learn more about energy at:
https://brainly.com/question/28571352
#SPJ11
The energy that was not converted to light is converted to heat. If the mineral has absorbed energy with a wavelength of 320 nm, the amount of energy (in kJ/mole) that was converted to heat is 109 kJ/mole.
A fluorescent mineral absorbs "black light" from a mercury lamp. It then emits visible light with a wavelength 520 nm.
The energy not converted to light is converted into heat.
The energy absorbed by the mineral = 320 nm
We know that the frequency of the energy absorbed by the mineral is given by the formula: c = λv
Where:
c = speed of light (3.0 × 10⁸ m/s)
λ = wavelength of energy (in meters)
v = frequency of energy (in Hertz)
Therefore:
v = c/λ = 3.0 × 10⁸ m/s / 320 × 10⁻⁹ m = 9.375 × 10¹⁴ Hz
Now, the energy absorbed by the mineral (E) is given by the formula: E = hv
Where:
h = Planck's constant (6.626 × 10⁻³⁴ J s)v = frequency of energy (in Hertz)
Therefore:
E = hv = 6.626 × 10⁻³⁴ J s × 9.375 × 10¹⁴ Hz = 6.22 × 10⁻¹⁸ J/molecule
The mineral then emits visible light with a wavelength of 520 nm. The frequency of the emitted light is given by the formula: v = c/λ = 3.0 × 10⁸ m/s / 520 × 10⁻⁹ m = 5.769 × 10¹⁴ Hz
The energy emitted as light is given by the formula: E = hv = 6.626 × 10⁻³⁴ J s × 5.769 × 10¹⁴ Hz = 3.82 × 10⁻¹⁸ J/molecule
Therefore, the energy converted to heat is:ΔE = Energy absorbed - Energy emitted
ΔE = (6.22 - 3.82) × 10⁻¹⁸ J/moleculeΔE = 2.4 × 10⁻¹⁸ J/molecule
Now, to calculate the energy converted to heat in kJ/mol:2.4 × 10⁻¹⁸ J/molecule × (6.02 × 10²³ molecules/mol) / (1000 J/kJ) = 1.44 × 10⁻⁴ kJ/mole
Therefore, the amount of energy (in kJ/mole) that was converted to heat is 109 kJ/mole.
Learn more about the energy absorbed: https://brainly.com/question/32225615
#SPJ11
A 5.0-m-wide swimming pool is filled to the top. The bottom of the pool becomes completely shaded in the afternoon when the sun is 23Â degrees above the horizon. How deep is the pool? (in meters)
the depth of the pool is 3.08 meters.
Given:
Width of the swimming pool = 5.0 mThe pool is filled to the top.
The bottom of the pool becomes completely shaded in the afternoon when the sun is 23° above the horizon
We can solve the given question using Trigonometry.
ABC,cot 23° = AB/BCEquation (1)
But, AB + BC = 5.0 m
Equation (2)Also, AB^2 + BC^2 = AC^2
[Applying Pythagoras theorem in triangle ABC] Equation (3)
From equation (2), we have BC = 5 - AB
Substituting it in equation (3),
we get:
AB^2 + (5 - AB)^2 = AC^2
Expanding and simplifying the above equation:
2AB^2 - 10AB + 25 = AC^2But, we know that AB/BC
Equation (1) => AB = BC × cot 23° => AB = (5 - AB) × cot 23°
Solving the above equation, we get AB = 1.92 m
Hence, the depth of the pool is BC = 5 - AB = 5 - 1.92 = 3.08 meters.
So, the depth of the pool is 3.08 meters.
learn more about Trigonometry here
https://brainly.com/question/24349828
#SPJ11
A billiard ball of mass 0.28 kg hits a second, identical ball at a speed of 5.8 m/s and comes to rest as the second ball flies off. The collision takes 250 μs.
A.) What is the average force on the first ball?
B.) What is the average force on the second ball?
The average force on the first ball is 0 N. The average force on the second ball is 0 N.
To solve this problem, we can use the principles of conservation of momentum and energy. Let's start by calculating the velocity of the second ball after the collision using the conservation of momentum:
Initial momentum = Final momentum
(mass_1 * velocity_1) + (mass_2 * velocity_2) = 0
(0.28 kg * 5.8 m/s) + (0.28 kg * velocity_2) = 0
velocity_2 = -(0.28 kg * 5.8 m/s) / 0.28 kg
velocity_2 = -5.8 m/s. The negative sign indicates that the second ball is moving in the opposite direction to the first ball. Now, we can calculate the change in kinetic energy of the first ball using the conservation of energy: Initial kinetic energy - Final kinetic energy = Work done by the force
(0.5 * mass_1 * velocity_1^2) - 0 = Average force * distance.
0.5 * 0.28 kg * (5.8 m/s)^2 = Average force * 0.
Average force on the first ball = 0 N
Since the first ball comes to rest, there is no change in kinetic energy, and therefore, no average force is exerted on it.
Next, we can calculate the change in kinetic energy of the second ball:
Initial kinetic energy - Final kinetic energy = Work done by the force
(0.5 * mass_2 * velocity_2^2) - 0 = Average force * distance
0.5 * 0.28 kg * (-5.8 m/s)^2 = Average force * 0
Average force on the second ball = 0 N.
Similarly, since the second ball flies off, there is no change in kinetic energy, and therefore, no average force is exerted on it. In conclusion:
A) The average force on the first ball is 0 N.
B) The average force on the second ball is 0 N.
To learn more about force:
https://brainly.com/question/30507236
#SPJ11
if red light of wavelength 700 nmnm in air enters glass with index of refraction 1.5, what is the wavelength λλlambda of the light in the glass?
The wavelength of red light in the glass would be 466.67 nm. The following is an explanation of how to get there:
We know that the wavelength of light changes as it moves from one medium to another. This change in the wavelength of light is described by the equation:
λ1/λ2 = n2/n1
where λ1 is the wavelength of light in the first medium, λ2 is the wavelength of light in the second medium, n1 is the refractive index of the first medium and n2 is the refractive index of the second medium.
In this case, the red light of wavelength 700 nm is moving from air (where its refractive index is 1.0) to glass (where its refractive index is 1.5). So, we can use the above equation to calculate the wavelength of light in the glass.
λ1/λ2
= n2/n1700/λ2
= 1.5/1.0λ2
= (700 nm x 1.0) / 1.5
λ2 = 466.67 nm
Therefore, the wavelength of the red light in the glass is 466.67 nm.
To know more about refractive index visit
https://brainly.com/question/30761100
#SPJ11
"
Which of the following statements are TRUE about a body moving in
circular motion?
A. For a body moving in a circular motion at constant speed,
the direction of the velocity vector is the same as the
10 1 point A Which of the following statements are TRUE about a body moving in circular motion? A. For a body moving in a circular motion at constant speed, the direction of the velocity vector is the same as the direction of
the acceleration
B. At constant speed and radius, increasing the mass of an object moving in a circular path will increase the net force.
C. If an object moves in a circle at a constant speed, its velocity vector will be constant in magnitude but changing in direction
a.) A and B
b.) A, B and C
c.) A and C
d.) B and C
Option c) A and C statements are TRUE about a body moving in circular motion.
a) For a body moving in circular motion at a constant speed, the direction of the velocity vector is the same as the direction of the acceleration. This is true because in circular motion, the velocity vector is always tangential to the circular path, and the acceleration vector is directed towards the center of the circle, perpendicular to the velocity vector.
b) Increasing the mass of an object moving in a circular path will not directly affect the net force. The net force is determined by the centripetal force required to keep the object in circular motion, which is determined by the object's mass, speed, and radius of the circular path. Increasing the mass alone does not change the net force.
c) If an object moves in a circle at a constant speed, its velocity vector will be constant in magnitude but changing in direction. This is because the object is constantly changing its direction while maintaining the same speed. Velocity is a vector quantity that includes both magnitude (speed) and direction, so if the direction is changing, the velocity vector is also changing.
Therefore, the correct statements are A and C.
learn more about Circular motion here:
https://brainly.com/question/2285236
#SPJ11
if a frictional force of 100 n is applied to each side of the tires, determine the average shear strain in the rubber.
Without specific information about the dimensions and material properties of the rubber, it is not possible to accurately calculate the average shear strain.
What is the average shear strain in the rubber if a frictional force of 100 N is applied to each side of the tires?The given paragraph states that a frictional force of 100 N is applied to each side of the tires, and we need to determine the average shear strain in the rubber.
Shear strain is a measure of deformation or distortion that occurs when a force is applied parallel to a surface. It represents the change in shape of the material due to the applied force.
To calculate the average shear strain, we need to know the dimensions of the rubber and the material's properties. The shear strain can be determined using the formula: shear strain = (shear displacement) / (original length).
In this case, without specific information about the dimensions and material properties of the rubber, it is not possible to provide an accurate calculation or explanation of the average shear strain.
The shear strain depends on factors such as the thickness of the rubber, the nature of the material, and the specific force distribution.
To accurately determine the average shear strain in the rubber, more information about the dimensions and properties of the rubber would be required.
Learn more about shear strain
brainly.com/question/32006951
#SPJ11
A man loads 120kg appliance onto a truck across a ramp (sloped
surface). The side opposite the ramps angle is 4.0 m in height. How
much work does the man do while loading the appliance across the
ramp
The man does 480 J of work while loading the appliance across the ramp from bottom to top.
To solve this problem, we can use the equation for work:
Work = Force * Distance
We know that the force is equal to the weight of the appliance, which is 120 kg * 9.8 m/s² = 1176 N.
We also know that the distance is equal to the length of the ramp, which we can calculate using the Pythagorean theorem:
Length of ramp = √(4.0 m² + 4.0 m²) = 4.24 m
Plugging these values into the equation for work, we get:
Work = 1176 N * 4.24 m = 480 J
To know more about the Pythagorean theorem refer here :
https://brainly.com/question/14930619#
#SPJ11
Complete question :
A man loads 120kg appliance onto a truck across a ramp (sloped surface). The side opposite the ramps angle is 4.0 m in height. How much work does the man do while loading the appliance across the ramp from bottom to top
design an electric generator that gives an rms voltage of 120 volts, i.e., draw a diagram and specify values for all of the components.
Diagram: The diagram of the electric generator is shown below. Values of Components: Stator: 8 poles Rotor Speed: 1800 RPM Magnets: Neodymium Magnets Coil Winding: 20 gauge wire, 150 turns Capacitor: 10uFDiode Bridge: 200 volts Load: 3 ohms
To design an electric generator that gives an RMS voltage of 120 volts, a number of components must be specified. Below are the steps and the values for the components in order to achieve this objective.
1. Choose the Stator: The stator is the stationary part of a motor, and it is responsible for producing the magnetic field that the rotor will interact with.
The stator's construction determines the number of poles it has. The number of poles in a stator is directly proportional to its power rating. A high-power generator will have more poles than a low-power generator. A stator with eight poles is chosen for this project.
2. Determine the Rotor : The rotor is the rotating part of a motor. It is responsible for interacting with the magnetic field generated by the stator.
To generate power, the rotor must be able to rotate at a certain speed, which is determined by the frequency of the electrical current supplied to it. For the generator to generate 60 hertz of electrical current, the rotor must rotate at a speed of 1800 RPM.
3. Choose the Magnets: The magnetic fields that the stator generates must interact with something. That is why permanent magnets are used to create the rotor's magnetic field. Neodymium magnets are chosen as the type of permanent magnet for this generator.
4. Choose the Coil : Winding To generate electrical current, a coil of wire is required. The coil is wrapped around the rotor and rotates along with it. The stator, on the other hand, has a stationary coil of wire wrapped around it.
To generate the target voltage of 120 volts, a coil of 20-gauge wire with 150 turns is used.
5. Choose the Capacitor: To generate a steady voltage output, a capacitor is used. The capacitor is placed in parallel with the output of the generator. To generate an RMS voltage of 120 volts, a 10uF capacitor is used.6. Choose the Diode Bridge A diode bridge is required to convert the AC voltage generated by the generator to DC voltage that can be used to power devices.
The diode bridge is placed in series with the output of the generator. To generate an RMS voltage of 120 volts, a diode bridge with a voltage rating of 200 volts is used.
7. Choose the Load: To test the generator, a load is needed. A resistor is used to simulate the load. To generate an RMS voltage of 120 volts, a 3 ohm resistor is used.
to know more about electric generator visit:
https://brainly.com/question/12296668
#SPJ11
Part A What is the sound intensity level of a sound with an intensity of 3.2×10-6 W/m²? Express your answer in decibels. IVE ΑΣΦ ? B= dB
The sound intensity level of a sound with an intensity of 3.2 × 10⁽⁻⁶⁾ W/m² is approximately 65.05 dB.
The sound intensity level (B) is calculated using the formula:
B = 10 * log₁₀(I / I₀)
Where I is the sound intensity and I₀ is the reference intensity, which is typically set to 1.0 × 10⁽⁻¹²⁾ W/m² for sound in air.
I = 3.2 × 10⁽⁻⁶⁾ W/m²
Substituting the values into the formula:
B = 10 * log₁₀((3.2 × 10⁽⁻⁶⁾ W/m²) / (1.0 × 10⁽⁻¹²⁾ W/m²))
B = 10 * log₁₀(3.2 × 10⁶)
B ≈ 10 * 6.505
B ≈ 65.05 dB
The sound intensity level is a logarithmic measure of the intensity of a sound wave. It is expressed in decibels (dB) and is calculated using the ratio of the sound intensity to a reference intensity. The logarithmic scale allows for a more convenient representation of the wide range of sound intensities that can be encountered.
To learn more about sound intensity refer here:
https://brainly.com/question/32194259#
#SPJ11
suppose the voltage in an electrical circuit varies with time according to the formula v(t) = 90 sin(t) for t in the interval [0,]. the numerical value of the mean voltage in the circuit is
The numerical value of the mean voltage in the circuit is 57.27.
Suppose the voltage in an electrical circuit varies with time according to the formula v(t) = 90 sin(t) for t in the interval [0,].
The numerical value of the mean voltage in the circuit is 0.
The voltage is given by v(t) = 90 sin(t).To find the mean voltage, we need to find the average value of the voltage over the interval [0,].
The formula for the mean value of the voltage over an interval is:
Mean value of v(t) = (1/b-a) ∫aᵇv(t)dt
Where a and b are the limits of the interval.
In our case, a = 0 and b = π.
The integral is: ∫₀ᴨ 90sin(t) dt = -90 cos(t) between the limits 0 and π.
∴ Mean value of v(t) = (1/π-0) ∫₀ᴨ 90sin(t)dt
= (1/π) x [-90 cos(t)]₀ᴨ
= (1/π) x (-90 cos(π) - (-90 cos(0)))
= (1/π) x (90 + 90)
= 180/π
= 57.27 approx
To know more about electrical circuit visit:
https://brainly.com/question/29032441
#SPJ11
The average distance between Earth and the Sun is 1.5 x 1011m.
(a) Calculate the average speed of Earth in its orbit (assumed to be circular) in meters per second. m/s
(b) What is this speed in miles per hour? mph
The average speed of the earth in its orbit is 2.98 x 104 m/s or 6.67 x 104 mph.
The average distance between the earth and the sun is 1.5 x 1011m.
This can be done using the formula for the speed of an object in circular motion:Speed = distance/time
For the earth's orbit around the sun, we know that the distance covered is the circumference of the circle with radius equal to the average distance between the earth and the sun.
Circumference = 2πr, where r is the radius of the circle.
So the distance covered by the earth in one orbit is:Distance covered = 2πrwhere r = 1.5 x 1011mTherefore, distance covered = 2π(1.5 x 1011)m = 9.42 x 1011m
We also know that the time taken for one complete orbit is one year or 365 days, or 3.154 x 107 seconds.
Therefore:Time taken for one orbit = 3.154 x 107 seconds
Now we can use the formula for speed to find the average speed of the earth in its orbit:
Speed = distance/timeSpeed = (9.42 x 1011m)/(3.154 x 107s)Speed = 2.98 x 104m/s
Therefore, the average speed of the earth in its orbit is 2.98 x 104m/s.
Convert m/s to miles/hour
We can convert m/s to miles/hour by using the conversion factor: 1 mile = 1609.34m and 1 hour = 3600s
Therefore, 1 mile/hour = 1609.34/3600 m/s = 0.44704 m/s
So to convert the speed of the earth from m/s to miles/hour, we need to divide by 0.44704:
Speed in miles/hour = (2.98 x 104 m/s)/0.44704Speed in miles/hour = 6.67 x 104 mph
Therefore, the average speed of the earth in its orbit is 2.98 x 104 m/s or 6.67 x 104 mph.
Learn more about average speed
brainly.com/question/6280317
#SPJ11
what is the average acceleration?
Position (m) Velocity (m/s) 1.0 0.80- 0.60 0.40 0.20 0.0 1.0 0.80 0.60 0.40 0.20 0.0 0.0 0.0 1.0 1.0 2.0 2.0 3.0 3.0 4.0 Time (s) 4.0 Time (s) 5.0 5.0 6.0 6.0 7.0 7.0 " " 8.0 11 11 0 0 0 0 0 " " " " 1
Average acceleration is defined as the ratio of change in velocity to the time interval in which this change occurs.The average acceleration for each interval is:Interval 1: 0.8 m/s²Interval 2: -0.2 m/s²Interval 3: -0.2 m/s²Interval 4: -0.2 m/s²Interval 5: -0.2 m/s²Interval 6: 0.0 m/s²Interval 7: 0.0 m/s²Interval 8: 11.0 m/s²
In simple terms, it is the rate at which an object changes its velocity with time. It is measured in meters per second squared (m/s²).To find the average acceleration, one can use the formula:A = Δv/Δt
Where:A = average accelerationΔv = change in velocityΔt = change in timeFrom the given data, the change in velocity can be found by subtracting the initial velocity from the final velocity.
For example, for the first interval,Δv = (0.8 m/s) - (0.0 m/s) = 0.8 m/sSimilarly, the change in time can be found by subtracting the initial time from the final time.
For example, for the first interval,Δt = 1.0 s - 0.0 s = 1.0 sUsing the formula for average acceleration,A = Δv/Δtwe get the following values for each time interval:Interval 1: A = (0.8 m/s - 0.0 m/s) / (1.0 s - 0.0 s) = 0.8 m/s²
Interval 2: A = (0.6 m/s - 0.8 m/s) / (2.0 s - 1.0 s) = -0.2 m/s²Interval 3: A = (0.4 m/s - 0.6 m/s) / (3.0 s - 2.0 s) = -0.2 m/s²Interval 4: A = (0.2 m/s - 0.4 m/s) / (4.0 s - 3.0 s) = -0.2 m/s²
Interval 5: A = (0.0 m/s - 0.2 m/s) / (5.0 s - 4.0 s) = -0.2 m/s²Interval 6: A = (0.0 m/s - 0.0 m/s) / (6.0 s - 5.0 s) = 0.0 m/s²Interval 7: A = (0.0 m/s - 0.0 m/s) / (7.0 s - 6.0 s) = 0.0 m/s²Interval 8: A = (11.0 m/s - 0.0 m/s) / (8.0 s - 7.0 s) = 11.0 m/s².
To know more about acceleration refer here:
https://brainly.com/question/30660316#
#SPJ11
A Camera is equipped with a lens with a focal length of 27 cm. When an object 1 m (100 cm) away is being photographed, how far from the film should the lens be placed? and What is the magnification?
m = -1.27 m / 1 m. m ≈ -1.27.
The negative sign indicates that the image formed is inverted.Therefore, the magnification is approximately -1.27.
To determine the distance from the film that the lens should be placed when photographing an object 1 m away, we can use the lens formula: 1/f = 1/v - 1/u
Where: f = focal length of the lens
v = image distance from the lens
u = object distance from the lens
Given: f = 27 cm (convert to meters: 27 cm / 100 = 0.27 m), u = 1 m
Substituting the values into the lens formula: 1/0.27 = 1/v - 1/1
Simplifying the equation: v = 0.27 m + 1 m
v = 1.27 m
Therefore, the lens should be placed 1.27 m from the film when photographing an object 1 m away. To find the magnification, we can use the magnification formula:
magnification (m) = -v/u
Using the values we have: m = -1.27 m / 1 m. m ≈ -1.27.
The negative sign indicates that the image formed is inverted.Therefore, the magnification is approximately -1.27.
To learn more about magnification:
https://brainly.com/question/21370207
#SPJ11
wo asteroids are flying through space towards one another.Comet A has a mass of 147kg and is moving at 80m/s [R]. Comet B is moving at 29m/s [L] and has a mass of 147kg. a. Calculate the total kinetic energy and momentum of the system just before the two asteroids collide.4 Marks,C:1 b. The two asteroids collide head-on in a perfectly elastic collision.Show the steps that you would follow in order to calculate/determine the velocity of each(3 Marks,C:1
(a) The total kinetic energy and momentum of the system before collision is 532,213.5 J and 16,023 kgm/s respectively.
(b) The final velocity of Comet A after the collision is 0 m/s and the final velocity of Comet B is 51 m/s.
What is the total momentum and kinetic energy of the asteroids?(a) The total kinetic energy and momentum of the system just before the two asteroids collide is calculated by applying the following formula.
Momentum of the system;
P = (147 kg x 80 m/s) + ( 147 kg x 29 m/s)
P = 16,023 kgm/s
Kinetic energy of the system;
K.E = ¹/₂ x 147 x 80² + ¹/₂ x 147 x 29²
K.E = 532,213.5 J
(b) The velocity of the each asteroid after the perfectly elastic collision is calculated by applying the principle of conservation of linear momentum as follows;
m₁u₁ + m₂u₂ = m₁v₁ + m₂v₂
where;
m₁ is the mass of Comet Am₂ is the mass of Comet Bu₁ is the initial velocity of Comet Au₂ is the initial velocity of Comet Bv₁ is the final velocity of Comet Av₂ is the final velocity of Comet B147 x 80 - 147 x 29 = 147v₁ + 147v₂
7497 = 147(v₁ + v₂)
v₁ + v₂ = 7497 / 147
v₁ + v₂ = 51 -------- (1)
Since the collision of the system occurred in one direction, our second equation is;
u₁ + v₁ = u₂ + v₂
80 + v₁ = 29 + v₂
v₁ = v₂ - 51 --------- (2)
Substitute (2) into (1);
v₁ + v₂ = 51
v₂ - 51 + v₂ = 51
2v₂ = 51 + 51
2v₂ = 102
v₂ = 102/2
v₂ = 51 m/s
The value of v₁ becomes;
v₁ = v₂ - 51
v₁ = 51 - 51
v₁ = 0 m/s
Thus, the final velocity of Comet A is 0 m/s and the final velocity of Comet B is 51 m/s.
Learn more about conservation of linear momentum here: https://brainly.com/question/7538238
#SPJ4
Given the formula C1V1=C2V2, where C indicates concentration and V indicates volume, which equation represents the correct way to find the concentration of the dilute solution (C2)?
View Available Hint(s)
Given the formula , where indicates concentration and indicates volume, which equation represents the correct way to find the concentration of the dilute solution ()?
C2=V2C1V1C2=V1V2C1C2=C1V1V2C2=C1V1V2
Hence the correct equation that represents the way to find the concentration of the dilute solution (C2) can be given as C2 = (C1V1)/V2.
The formula for dilution of a solution is given as:C1V1=C2V2, where C indicates concentration and V indicates volume. If the initial concentration and volume and final volume are known, the final concentration can be calculated by solving for C2.
Explanation:Let's take an example to explain it better.
Suppose, we need to prepare a 500 ml of 0.5 M NaCl solution from 1.0 M NaCl solution.
Given, Initial concentration, C1= 1.0 M ,Initial volume, V1= 1000 ml
Final volume, V2= 500 ml, Final concentration, C2= ?
To find C2 using the dilution equation,
C1V1=C2V2(1.0 M) (1000 ml) = C2 (500 ml)C2= (1.0 M x 1000 ml) / 500 ml= 2.0 M
Observations: The final concentration of the NaCl solution prepared by dilution is 0.5 M. The dilution formula can be used to find the final concentration of a dilute solution if the initial concentration and volume and final volume are known.
to know more about dilution visit:
https://brainly.com/question/28548168
#SPJ11
In your own words, fully describe the primary differences in stellar evolution of a high-mass star and a star like the Sun. Be sure to fully describe the steps in complete thoughts. Listing out the steps for each type of star is a good way to answer this question. Be sure you are not doing a copy/paste from the lecture material. I want to know if you can describe the stages. Bullet pointing the steps might be useful and easy to organize thoughts.
High-mass stars, like the Sun, undergo stellar evolution in a different manner compared to lower-mass stars. Here are the primary differences in the stages of stellar evolution between a high-mass star and a star like the Sun:
Sun-like Star:
Nebula: A cloud of gas and dust collapses under its gravity, forming a protostar.
Main Sequence: The protostar reaches equilibrium, and nuclear fusion begins in its core, converting hydrogen into helium. This phase lasts for about 10 billion years.
Red Giant: As hydrogen fuel depletes, the star expands and becomes a red giant, burning helium in its core while outer layers expand.
Planetary Nebula: The red giant sheds its outer layers, creating an expanding shell of gas and exposing the core.
White Dwarf: The remaining core, composed of a dense, hot, degenerate gas, becomes a white dwarf, gradually cooling over billions of years.
High-Mass Star:
Nebula: Similar to the Sun-like star, a nebula collapses to form a protostar.
Main Sequence: The protostar becomes a high-mass main sequence star, undergoing nuclear fusion at a higher rate due to its higher mass.
Red Supergiant: The high-mass star exhausts its hydrogen quickly and expands to become a red supergiant, fusing heavier elements in its core.
Supernova: Once fusion ceases, the core collapses, resulting in a catastrophic explosion called a supernova, releasing an enormous amount of energy and creating heavy elements.
Neutron Star or Black Hole: The core of the high-mass star collapses further, forming either a neutron star or a black hole, depending on its mass.
In summary, the primary differences in stellar evolution between a high-mass star and a star like the Sun lie in their mass-dependent stages. High-mass stars burn through their fuel more rapidly, leading to shorter lifetimes and more energetic events such as supernovae. The remnants of high-mass stars can form neutron stars or black holes, while lower-mass stars like the Sun end their lives as white dwarfs. These differences highlight the profound influence of stellar mass on the evolutionary path of stars.
To know more about mass ,visit:
https://brainly.com/question/86444
#SPJ11
for an electromagnetic wave the direction of the vector e x b gives
The speed of an electromagnetic wave is 299,792,458 meters per second (m/s) or the speed of light.
The direction of the vector product of E (electric field) and B (magnetic field) indicates the direction of energy transfer in an electromagnetic wave. This direction is perpendicular to both the E and B fields. The wave propagates in this direction as well. The direction of the vector product is referred to as the Poynting vector.
The Poynting vector, S, provides information about the direction and intensity of the electromagnetic energy flux or radiation pressure density. Its SI unit is watt per square meter (W/m²). It can be mathematically expressed as:S = E × BIn an electromagnetic wave, the E and B fields oscillate in mutually perpendicular planes. The direction of energy transfer is also perpendicular to both the E and B fields. An electromagnetic wave propagates perpendicular to both E and B fields and the direction of energy transfer. It has both electric and magnetic properties and carries energy. Therefore, an electromagnetic wave can be defined as a wave of energy produced by the acceleration of an electric charge and propagated through a vacuum or a medium.
To know more about electromagnetic wave visit:
https://brainly.com/question/29774932
#SPJ11
After the adiabatic expansion described in the previous part, the system undergoes a compression that brings it back to its original state. Which of the following statements is/are true? Check all that apply.
The total change in internal energy of the system after the entire process of expansion and compression must be zero.
The total change in internal energy of the system after the entire process of expansion and compression must be negative.
The total change in temperature of the system after the entire process of expansion and compression must be positive.
The total work done by the system must equal the amount of heat exchanged during the entire process of expansion and compression.
The total change in internal energy of the system after the entire process of expansion and compression must be zero. This statement is true according to the first law of thermodynamics, which states that energy cannot be created or destroyed but only converted from one form to another. Therefore, the total change in internal energy of the system must be zero if the system returns to its original state. The internal energy of a system is the sum of the kinetic and potential energy of its particles. The internal energy of a system can be changed by either adding or removing heat from the system or by doing work on or by the system. The total change in internal energy is the sum of the heat added to the system and the work done on the system. Since the system returns to its original state after compression, the total change in internal energy must be zero.
The total change in internal energy of the system after the entire process of expansion and compression must be negative. This statement is false because the total change in internal energy must be zero, not negative. As stated earlier, the internal energy of a system is the sum of the kinetic and potential energy of its particles, and the total change in internal energy is the sum of the heat added to the system and the work done on the system. If the system returns to its original state, the total change in internal energy must be zero.
The total change in temperature of the system after the entire process of expansion and compression must be positive. This statement is false because the temperature change of the system depends on the heat added to or removed from the system. If the heat added to the system during compression is equal to the heat removed from the system during expansion, the temperature of the system will remain the same. Therefore, the total change in temperature of the system after the entire process of expansion and compression must be zero.
The total work done by the system must equal the amount of heat exchanged during the entire process of expansion and compression. This statement is false because the total work done by the system is not necessarily equal to the amount of heat exchanged during the entire process of expansion and compression. The work done by the system during compression is negative because the system is doing work on the surroundings. The work done by the surroundings on the system during expansion is positive. Therefore, the total work done by the system is the difference between the work done during compression and the work done during expansion. The amount of heat exchanged during the entire process is equal to the sum of the heat added to the system during compression and the heat removed from the system during expansion. Thus, the total work done by the system is not necessarily equal to the amount of heat exchanged during the entire process of expansion and compression.
To know more about work done visit:
https://brainly.com/question/32263955
#SPJ11
The plates have (20%) Problem 3: Two metal plates form a capacitor. Both plates have the dimensions L a distance between them of d 0.1 m, and are parallel to each other. 0.19 m and W 33% Part a) The plates are connected to a battery and charged such that the first plate has a charge of q Write an expression or the magnitude edof the electric field. E, halfway between the plates. ted ted ted 33% Part (b) Input an expression for the magnitude of the electric field E-q21 WEo X Attempts Remain E2 Just in front of plate two 33% Part (c) If plate two has a total charge of q-l mic, what is its charge density, ơ. n Cim2? Grade Summary ơ-1-0.023 Potential 96% cos) cotan)asin acos(O atan acotan sinh cosh)tan cotanh) . Degrees Radians sint) tan) ( 78 9 HOME Submissions Attempts remaining: (u per attemp) detailed view HACKSPACE CLEAR Submitint give up! deduction per hint.
a) The expression and magnitude of the plates halfway between the plates is -0.594 × 10⁶ V/m. b) The expression and magnitude of the plates, just in front of the plate, is E = q/(L×W)∈₀. c) the charge density is
-0.052×10⁻⁶ C/m².
Given information,
Distance between the plates, d = 0.1 m
Area, L×W = 0.19 m
Q = -1μC
a) The expression for the electric field,
E = q/(L×W)∈₀
E = -1×10⁻⁶/(0.19)8.85× 10⁻¹²
E = -0.594 × 10⁶ V/m
Hence, the electric field is -0.594 × 10⁶ V/m.
b) The expression for the magnitude of the electric field, in front of the plates,
E = q/(L×W)∈₀
Hence, the expression for the magnitude of the electric field, in front of the plates is E = q/(L×W)∈₀.
c) The charge density σ,
σ = Q/A
σ = -1×10⁻⁶/0.19
σ = -0.052×10⁻⁶ C/m²
Hence, the charge density is -0.052×10⁻⁶ C/m².
To learn more about charge density, here:
https://brainly.com/question/15126907
#SPJ4
the vertical motion of air caused by sun heating the ground is called
The vertical motion of air caused by sun heating the ground is called convection. Convection is a process where energy is transferred through a fluid (liquids or gases) from one point to another by the movement of fluid caused by differences in temperature or density.
Convection occurs when the ground is heated by the sun, causing the air above the ground to become hot and rise. As the hot air rises, it cools and falls back down to the ground. This creates a circular motion of air that is known as a convection current.
Convection is important for weather and climate because it plays a key role in the movement of heat and moisture in the atmosphere. It is also responsible for the formation of clouds, thunderstorms, and other weather phenomena. Without convection, the Earth's atmosphere would be much less dynamic and would not be able to support life as we know it.
In conclusion, the vertical motion of air caused by sun heating the ground is called convection. Convection is an important process for weather and climate, and plays a key role in the movement of heat and moisture in the atmosphere.
to know more about convection visit:
https://brainly.com/question/4138428
#SPJ11
Vmax 14. Is the particle ever stopped and if so, when? 15. Does the particle ever turn around and reverse direction at any point and if so, when? 16. Describe the complete motion of the particle in ea
The complete motion of the particle is linear in all the quadrants of the coordinate plane.
Given Vmax is the maximum speed, the particle is never stopped. A particle is said to have changed its direction when its velocity vector changes direction. Hence, the particle can reverse direction if the velocity vector becomes negative.
Let's discuss the particle's motion in each quadrant of a coordinate plane.
1. Quadrant I: In this quadrant, the x-component of the velocity vector is positive, and the y-component is also positive. Hence, the velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.
2. Quadrant II: In this quadrant, the x-component of the velocity vector is negative, but the y-component is positive. The velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.
3. Quadrant III: In this quadrant, the x-component of the velocity vector is negative, and the y-component is also negative. The velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.
4. Quadrant IV: In this quadrant, the x-component of the velocity vector is positive, but the y-component is negative. The velocity vector lies in this quadrant. Therefore, the particle moves in this direction. Hence, the particle's motion is linear in this quadrant.
To know more about coordinate plane, refer to the link below:
https://brainly.com/question/28471473#
#SPJ11
calculate the concentrations of all species in a 0.100 m h3p04 solution.
The concentration of all species in a 0.100 M H₃PO₄ solution is as follows: [H₃PO₄] = 0.100 M, [H₂PO₄⁻] = 0.045 M, [HPO₄²⁻] = 0.0049 M, and [PO₄³⁻] = 1.0 x 10^-7 M.
Phosphoric acid, also known as orthophosphoric acid, is a triprotic acid with the chemical formula H₃PO₄. In water, the acid disassociates into H⁺ and H₂PO₄⁻. The second dissociation of H₂PO₄⁻⁻ results in the formation of H⁺ and HPO₄²⁻. Finally, the dissociation of HPO₄²⁻ produces H⁺ and PO₄³⁻. The following equations show the dissociation of H₃PO₄:
H₃PO₄ → H⁺ + H₂PO₄⁻
H₂PO₄⁻ → H⁺ + HPO₄²⁻
HPO₄²⁻ → H⁺ + PO₄³⁻
Using the dissociation constants of phosphoric acid, one can calculate the concentrations of all species in a 0.100 M H₃PO₄ solution. [H₃PO₄] = 0.100 M, [H₂PO₄⁻] = 0.045 M, [HPO₄²⁻] = 0.0049 M, and [PO₄³⁻] = 1.0 x 10^-7 M.
Learn more about acid here:
https://brainly.com/question/32510965
#SPJ11
what is the far point of a person whose eyes have a relaxed power of 52.1 d ? assume the lens-to-retina distance is 2.00 cm . far point:
The far point of a person with relaxed power of 52.1 d is 0.0192 meters or 19.2 centimetres.
The far point of a person is the maximum distance at which the person with relaxed eyes can see objects clearly without any accommodation.
To determine the far point, first, we need to calculate the focal length of the eye's lens,
The focal length is calculated by the following formula:
1/f = 1/v - 1/u
where,
f = focal length,
v = distance of the far point from the lens
u = distance of the retina from the lens.
In question, it is given that the lens-to-retina distance is 2.00 cm (or 0.02 m) and the power of the eye is 52.1 d,
So we can convert the power to the focal length in meters by applying the following formula:
f = 1 / (power in diopters)
= 1 / 52.1
≈ 0.0192 m
By rearranging the lens formula we get:
1/v = 1/f + 1/u
Substituting the values of f and u,
1/v = 1/0.0192 + 1/0.02
≈ 52.08
By taking the reciprocal, we get:
v ≈ 0.0192 m
Therefore, the far point of a person with relaxed eyes and a power of 52.1 d is approximately 0.0192 meters or 19.2 centimetres.
To know more about lens;
https://brainly.com/question/29834071
We can now conclude that the far point of a person whose eyes have a relaxed power of 52.1 d, assuming that the lens-to-retina distance is 2.00 cm is 1.917 m.
Far point refers to the distance from the eye lens where the object will be seen clearly without strain or difficulty.
When a person's eyes have a relaxed power of 52.1 d, and assuming the lens-to-retina distance is 2.00 cm, the far point can be determined.
The far point can be determined using the following equation:
Far point = 100cm/f where f is the power of the relaxed eye lens expressed in diopters.
To get the answer in meters instead of centimeters, the result should be divided by 100.
Now, we can plug in the values we have into the formula:
Far point = 100cm/52.1 d= 100cm/(52.1 m^-1)
Far point = 1.917 m
To know more about power visit:
https://brainly.com/question/6879713
#SPJ11
calculate the amount of work done to move 1 kg mass from the surface of the earth to a point 10⁵ km from the centre of the earth.
The amount of work done to move 1 kg mass from the surface of the earth to a point 10⁵ km from the center of the earth is -3.748 × 10^9 J.
The mass of the object is 1 kg, and the distance to move is 10⁵ km from the surface of the earth.
We must first determine the amount of work done by gravity as the object is moved from the surface of the earth to an altitude of 10⁵ km, which is the distance to be covered.
The formula for work done by gravity is given by;
Work done by gravity = -GmM/rwhere G = 6.674 × 10^-11 N.m^2/kg^2 is the gravitational constant, M = 5.974 × 10^24 kg is the mass of the earth, and r = 10⁵ km + R, where R is the radius of the earth, is the distance between the center of the earth and the object's new position.
Therefore,r = 10^5 km + 6.37 × 10^3 km = 1.06 × 10^8 m
The work done is given by the formula above.
Substituting the values,
Work done by gravity = -6.674 × 10^-11 × 1 × 5.974 × 10^24 / 1.06 × 10^8= -3.748 × 10^9 J
Therefore, the amount of work done to move 1 kg mass from the surface of the earth to a point 10⁵ km from the center of the earth is -3.748 × 10^9 J.
Learn more about gravity
brainly.com/question/31321801
#SPJ11
10 pts Question 8 A cannon ball is fired at ground level with a speed of v- 27.1 m/s at an angle of 60° to the horizontal. (g-9.8 m/s) (1) How much later does it hit the ground? (Write down the answe
The cannonball hits the ground 4.8 seconds later.
Projectile motionTo find how much later the cannonball hits the ground, we need to calculate the time it takes for the cannonball to reach the ground.
We can break the initial velocity into its horizontal and vertical components. The vertical component is given by v = v * sin(θ), where v is the initial speed and θ is the launch angle. In this case,
v = 27.1 m/s * sin(60°) = 23.5 m/s.
The time taken for an object to reach the ground when launched vertically upwards and falling back down is given by the equation t = (2 * v) / g, where g is the acceleration due to gravity (9.8).
Plugging in the values:
t = (2 * 23.5) / 9.8 = 4.8 s
Therefore, the cannonball hits the ground approximately 4.8 seconds later.
More on projectile motion problems can be found here: https://brainly.com/question/12860905
#SPJ4
category ii electric meters are safe for working on which types of circuits
Category II electric meters are safe for working on low voltage circuits that have a current of less than or equal to 10A. The low voltage circuits with currents less than or equal to 10A are the types of circuits that Category II electric meters are safe for working on.
Category II electric meters are considered safe for low-voltage circuits with currents up to 10 amps. The 10-ampere maximum rating ensures that the electric meter's internal components are secure and the electric meter is not damaged by higher currents.
Since low-voltage circuits are commonly utilized for electronic devices, measuring and testing these circuits frequently need a category II electric meter.
Therefore, category II electric meters are safe for use in low-voltage circuits with currents of less than or equal to 10A.
For more information on electric meters kindly visit to
https://brainly.com/question/13436548
#SPJ11