Answer:
3/7
Step-by-step explanation:
Expected Value:
3(1/7) + 1(2/7) + 0(2/7) - 1(2/7) = 3/7
Expected value when we take one spin = 3/7
What is the expected value?It is the sum of values multiplied by their respective probabilities.
How do we calculate the expected value after one spin?We have 2 red, 2 purple, 2 yellow, and 1 blue sector.
Total number of Sectors = 7
∴Probability of landing on red sector = 2/7
∴Probability of landing on purple sector = 2/7
∴Probability of landing on yellow sector = 2/7
∴Probability of landing on blue sector = 1/7
Points on blue sector = 3, on yellow sector = 1, on purple sector = 0, and on red sector = -1.
X 3 1 0 -1
P(X) 1/7 2/7 2/7 2/7
Expected Value = ∑X.P(X)
=3.(1/7) + 1(2/7) + 0(2/7) - 1(2/7)
= 3/7
Learn more about Expected Values on
https://brainly.com/question/15858152
#SPJ2
Someone help please!!
Answer:
9 (a) [tex]d = \frac{\sqrt{e}}{\sqrt{3}}[/tex]
9 (b) [tex]d = \frac{\sqrt{7k}}{\sqrt{2}}[/tex]
Step-by-step explanation:
Hope this helped!
Find the difference of (4.2x10^3)-(2.7x10^3)
Show work!
Step-by-step explanation:
Is it helpful ?
plz let me know
Segment [tex]$s_1$[/tex] has endpoints at [tex]$(3+\sqrt{2},5)$[/tex] and[tex]$(4,7)$[/tex]. Segment [tex]$s_2$[/tex] has endpoints at [tex]$(6-\sqrt{2},3)$[/tex] and[tex]$(3,5)$[/tex]. Find the midpoint of the segment with endpoints at the midpoints of [tex]$s_1$[/tex] and [tex]$s_2$[/tex]. Express your answer as [tex]$(a,b)$[/tex].
Answer:
The midpoint of the segment with endpoints at the midpoints of s1 and s2 is (4,5).
Step-by-step explanation:
Midpoint of a segment:
The coordinates of the midpoint of a segment are the mean of the coordinates of the endpoints of the segment.
Midpoint of s1:
Using the endpoints given in the exercise.
[tex]x = \frac{3 + \sqrt{2} + 4}{2} = \frac{7 + \sqrt{2}}{2}[/tex]
[tex]y = \frac{5 + 7}{2} = \frac{12}{2} = 6[/tex]
Thus:
[tex]M_{s1} = (\frac{7 + \sqrt{2}}{2},6)[/tex]
Midpoint of s2:
[tex]x = \frac{6 - \sqrt{2} + 3}{2} = \frac{9 - \sqrt{2}}{2}[/tex]
[tex]y = \frac{3 + 5}{2} = \frac{8}{2} = 4[/tex]
Thus:
[tex]M_{s2} = (\frac{9 - \sqrt{2}}{2}, 4)[/tex]
Find the midpoint of the segment with endpoints at the midpoints of s1 and s2.
Now the midpoint of the segment with endpoints [tex]M_{s1}[/tex] and [tex]M_{s2}[/tex]. So
[tex]x = \frac{\frac{7 + \sqrt{2}}{2} + \frac{9 - \sqrt{2}}{2}}{2} = \frac{16}{4} = 4[/tex]
[tex]y = \frac{6 + 4}{2} = \frac{10}{2} = 5[/tex]
The midpoint of the segment with endpoints at the midpoints of s1 and s2 is (4,5).
Razon trigonometría que se requiere para calcular la altura de la torre si desde una distancia de 50 m se observa su punto mas alto con un ángulo de 48
Answer:
se supone que debes usar el SINE RATIO ya que se trata del lado opuesto y la hipotenusa.
PLZ HELPPP I need to pass this!!
Answer:
x=-1
Step-by-step explanation:
the middlepoint is where its symetrical, and so you take the x part of the point. the point is (-1,4), and all we need is x, so you have x=-1
Find the value of y and show work
Answer:
75
Step-by-step explanation:
∠K and ∠ R are congruent (equal)
Triangle Sum Theory - angles of all triangles add to 180
180 - 79 - 26 = 75
Intravenous fluid bags are filled by an automated filling machine. Assume that the fill volumes of the bags are independent, normal random variables with a standard deviation of 0.08 fluid ounces.
(a)What is the standard deviation of the average fill volume of 22 bags?
(b)The mean fill volume of the machine is 6.16 ounces, what is the probability that the average fill volume of 22 bags is below 5.95 ounces?
(c)What should the mean fill volume equal in order that the probability that the average of 22 bags is below 6.1 ounces is 0.001?
Answer:
a) 0.0171 fluid ounces.
b) 0% probability that the average fill volume of 22 bags is below 5.95 ounces
c) The mean should be of 6.153 fluid ounces.
Step-by-step explanation:
To solve this question, we need to understand the normal probability distribution and the central limit theorem.
Normal Probability Distribution:
Problems of normal distributions can be solved using the z-score formula.
In a set with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the z-score of a measure X is given by:
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
For a skewed variable, the Central Limit Theorem can also be applied, as long as n is at least 30.
Standard deviation of 0.08 fluid ounces.
This means that [tex]\sigma = 0.08[/tex]
(a)What is the standard deviation of the average fill volume of 22 bags?
This is s when n = 22. So
[tex]s = \frac{\sigma}{\sqrt{n}}[/tex]
[tex]s = \frac{0.08}{\sqrt{22}}[/tex]
[tex]s = 0.0171[/tex]
(b)The mean fill volume of the machine is 6.16 ounces, what is the probability that the average fill volume of 22 bags is below 5.95 ounces?
We have that [tex]\mu = 6.16[/tex]. The probability is the p-value of Z when X = 5.95. So
[tex]Z = \frac{X - \mu}{\sigma}[/tex]
By the Central Limit Theorem
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]Z = \frac{5.95 - 6.16}{0.0171}[/tex]
[tex]Z = -12.3[/tex]
[tex]Z = -12.3[/tex] has a p-value of 0.
0% probability that the average fill volume of 22 bags is below 5.95 ounces.
(c)What should the mean fill volume equal in order that the probability that the average of 22 bags is below 6.1 ounces is 0.001?
[tex]X = 6.1[/tex] should mean that Z has a p-value of 0.001, so Z = -3.09. Thus
[tex]Z = \frac{X - \mu}{s}[/tex]
[tex]-3.09 = \frac{6.1 - \mu}{0.0171}[/tex]
[tex]6.1 - \mu = -3.09*0.0171[/tex]
[tex]\mu = 6.153[/tex]
The mean should be of 6.153 fluid ounces.
Help please which option
Answer:
Step-by-step explanation:
-1<x<3. I hope it helpful!
Simplify -4 + (-3) + 6.
Answer:3/6 in simplest fraction form is 1/2.
Step-by-step explanation:EASY and my chanel is FireFlameZero if u can check dat out
In function notation, f(x) is another way of saying ______.
1.)y
2.)x
3.)or none of the above
Answer:
y
Step-by-step explanation:
In function notation, f(x) is another way of saying y. Then the correct option is A.
What is a function?A function is an assertion, concept, or principle that establishes an association between two variables. Functions may be found throughout mathematics and are essential for the development of significant links.
Tables, symbols, and graphs can all be used to represent functions. Every one of these interpretations has benefits. Tables provide the functional values of certain inputs in an explicit manner. How to compute direct proportionality is succinctly stated in symbolic representation.
The function is represented as,
y = f(x)
In function notation, f(x) is another way of saying y. Then the correct option is A.
More about the function link is given below.
https://brainly.com/question/5245372
#SPJ2
A person invests $3,500 in an account that earns 7.5% interest compounded continuously. What is the value of the investment after 4 years?
I think it's: 4,674.14$
Answer:
A = $4724.36
Step-by-step explanation:
P = $3500
r = 7.5% = 0.075
t = 4years
n = 365
[tex]A = P(1 + \frac{r}{n})^{nt}\\\\[/tex]
[tex]=3500(1 + \frac{0.075}{365})^{365 \times 4}\\\\=3500(1.00020547945)^{365\times4}\\\\= 3500 \times 1.34981720868\\\\= 4724.36023037\\\\= \$ 4724.36[/tex]
the probability that a customer of a network operator has a problem about you needing technical staff's help in a month is 0.01. This operator installs internet for 500 households in a residential area a, Calculate the average number of households in this residential area having internet problems in a certain month
b, Calculate the probability that in 6 consecutive months there is only one month that no customer in this area has a network problem that needs the help of technical staff
Answer:
(a) average calls = 5
(b) probability that there is exactly one call in 6 consecutive monts = 0.038
Step-by-step explanation:
Let event of a customer requiring help in a particular month = H
and event of a customer not requiring help in a particular month = ~H
Given
p= 0.01, therefore
Number of households, n = 500.
Binomial distribution:
x = number of households requiring help in a particular month
P(x,n,p) = C(x,n)*p^x*(1-p)^(n-x)
where
C(x,n) = n!/(x!(n-x)!) is the the number of combinations of x objects out of n
(a) Average number of households requiring help = np = 500*0.01 = 5
(b)
Probability that there are no calls requiring help in a particular month
P(0), q= C(0,n)*p^0(1-p)^(n-0)
= 1*1*0.99^500
= 0.006570483
Applying binomial probability over six months,
q = 0.006570483
n = 6
x = 1
P(x,n,q)
= C(x,n)*q^x*(1-q)^(n-x)
= 6!/(1!*5!) * 0.006570483^1 * (1-0.006570483)^5
= 0.038145
Therefore the probability that in 6 consecutive months there is exactly one month that no customer has called for help = 0.038
What number must you add to complete the square? x^2+26x=11
Answer:
[tex] {x}^{2} + 26x = 11 \\ x = 0.4 \: and \: - 26.4[/tex]
help what's the answer??
Một người gửi tiết kiệm tại ngân hàng một số tiền là 120 triệu đồng vào đầu mỗi năm theo thể thức lãi kép kỳ hạn một năm với lãi suất cố định 6,5%/ năm.
a) Hỏi sau 3 năm, số tiền gốc cộng lãi mà người đó nhận được là bao nhiêu ?
b) Hỏi sau bao nhiêu năm thì tổng số tiền nhận được lần đầu vượt quá 1,1 tỷ đồng.
Answer: lil t j
Step-by-step explanation:
I’m not a goat but I fit the description we walk around with then bands in my pocket
In a math class, there are 6 students with brown hair, 8 students with black hair, and 9 students with blonde hair? One student is selected at random. What is the sample space? *
Brown, black .
Black, blonde.
Brown, black, blonde.
Brown, blonde.
Explanation:
The sample space is simply the list of possible outcomes. We list all the hair colors possible in this class.
HI CAN SOMEONE THAT REALLY KNOWS ABOUT THIS HELP ME WITH FINAL EXAM...
The data represented by the following stem-and-leaf plot range from
to
489
5147
6235
769
A. 49; 79
B. 48; 79
C. 48; 76
D. 49; 76
Of the animals at a pet show, 3/8 were cats and 4/8 were dogs. The rest of the animals were rabbits. What fraction of the animals were rabbits?
Answer:
1/8 Of the animals are rabbits.
Step-by-step explanation:
3/8 Cats + 4/8 Dogs = 7/8
1/8 Is all you have room left for so 1/8 would be rabbits.
Answer:
1/8.
Step-by-step explanation:
Fraction of rabbits = 1 - (3/7 + 4/8)
= 1 - 7/8
= 8/8 - 7/8
= 1/8.
When we expand (2x + 1/2)^6, what is the coefficient on the x^4 term?
Answer: The coefficient before x^4 is 60
Step-by-step explanation:
Hey! So I am not an expert at this, but you have to use the binomial theorem
I have attached of the Pascals Triangle (one shows the row numbering as well)
Basically in a pascal triangle, you add the two numbers above it to get the next number below
As you can see, the rows start from 0 instead of 1
The 6th row contains the numbers 1, 6, 15, 20, 15, 6, 1 which would be the coefficient terms
NOTE: the exponents always add to 6, the first term starts at 6 and decrease it's exponent by 1 each time (6, 5, 4, 3, 2, 1, 0) and the second term increases it's exponent by 1 each time (0, 1, 2, 3, 4, 5, 6)
Using this information the third term from the sixth row (15) would be where it is x^4 (I have circled it on the second image)
It would be 15 × 2^4 × (1/2)^2 = 60
The reason why it is 2^4 and (1/2)^2 is because the third term has the exponents 4 and 2 (bolded on the NOTE) which means that the first term must be put to the power of 4 and the second term must be put to the 2nd power
Sorry for the lousy explanation. I really hope this makes sense! Let me know if this helped :)
What is the solution to the inequality x(x – 3) > 0?
Answer:
The solution to the inequality is [tex](-\infty, 0) \cup (3, \infty)[/tex]
Step-by-step explanation:
We have a product, which is positive if both terms is positive or if both is negative.
Both positive:
[tex]x > 0[/tex]
[tex]x - 3 > 0 \rightarrow x > 3[/tex]
Then the intersection of these two is: [tex]x > 3[/tex]
Both negative:
[tex]x < 0[/tex]
[tex]x - 3 < 0 \rightarrow x < 3[/tex]
Then the intersection of those two is: [tex]x < 0[/tex]
Then:
Union of two solutions:
[tex]x < 0[/tex] or [tex]x > 3[/tex]
Then
[tex](-\infty, 0) \cup (3, \infty)[/tex]
a basketball team playd 64 games they won 28 more than they lost
Write the equation of the circle with center C(-5,8) and radius = 7
Answer:
( h + 5 )^2 + ( y - 8 ) ^2 = 49
Step-by-step explanation:
Equation of a circle:
( x - h )^2 + ( y - k )^2 = r^2
Where ( h , k ) = center and r = radius
We are given that the circle has a center at ( -5 , 8 ) meaning that h = -5 and k = 8
We are also given that the circle has a radius of 7 meaning that r = 7
Now that we have identified each variable we plug the values into the equation
( h - (-5)^2 + ( y - 8 )^2 = 7^2
Our final step is to simplify
we get that the equation of the circle is
( h + 5 )^2 + ( y - 8 ) ^2 = 49
By the way ^ means exponent
!PLS HELP I WILL GIVE BRAINLEST!
The net of a rectangular prism is shown
What is the surface area of this prism?
The answer would be 18 square units
Step-by-step explanation:
When talking about surface area, just add up all the units that is listed in the question. - just a tip ;)
Anyways, Hope this helps!! If it's wrong, feel free to curse me out.. haha...
Consider all four-digit numbers that can be made from the digits 0-8 (assume that numbers cannot start with 0). What is the probability of choosing a random number from this group that is less than or equal to 4000
Answer:
The probability is:
P = 0.375
Step-by-step explanation:
First, we need to find the total number of four-digit numbers that can be made with the digits 0-8, such that the first digit can not be zero.
To do this, we first need to find the number of selections that we have, in this case, there are 4, one for each digit in our 4-digit number.
Now let's count the number of options that we have for each one of these selections:
first digit: we have 8 options (because the 0 can not be here)
second digit: we have 9 options (because now the zero can be taken)
third digit: we have 9 options
fourth digit: we have 9 options.
The total number of combinations is equal to the product of all the numbers of options, this is:
C = 8*9*9*9 = 5,832
Now we need to find how many of these are less or equal than 4000.
So now let's count the options again:
first digit: 3 options {1, 2, 3}
second digit: 9 options
third digit: 9 option
fourth digit: 9 options
Total number of combinations:
C' = 3*9*9*9 = 2,187
Here we should also count the combination for the number 4000 itself, as it was not counted in our previous calculation, then we have:
C' = 2,187 + 1 = 2,188 combinations.
The probability of randomly choosing a number that is smaller than or equal to 4000 will be equal to the quotient between the number of combinations that are smaller than or equal to 4000 (2,188 combinations) and the total number of combinations (5,832)
this is:
P = 2,188/5,832 = 0.375
add negative 4 plus negative 6
-10
thats it, thats what i know
The radius of a plant pot is 4.5 cm, and its height is 6 cm. What is the volume of the pot?
Use the value 3.14 for , and round your answer to the nearest whole number.
Be sure to include the correct unit in your answer.
Answer:
381 cm³
Step-by-step explanation:
Volume of the pot = volume of a cylinder
Volume of the pot = πr²h
Where,
π = 3.14
radius (r) = 4.5 cm
h = 6 cm
Substitute
Volume of the pot = 3.14*4.5²*6
Volume of the pot = 381.51 ≈ 381 cm³ (nearest whole number)
(08.07 MC)
A polynomial function is shown below:
f(x) = x3 − 3x2 − 4x + 12
Which graph best represents the function? (5 points)
Answer:
Graph A (first graph from top to bottom)
Step-by-step explanation:
Given [tex]f(x)=x^3-3x^2-4x+12[/tex], since the degree of the polynomial is 3, the function must be odd and will resemble the shown shape in the graphs. The degree of 3 indicates that there are 3 zeroes, whether distinct or non-distinct. Therefore, the graph must intersect the x-axis at these three points.
Factoring the polynomial:
[tex]f(x)=x^3-3x^2-4x+12,\\f(x)=(x+2)(x-2)(x-3),\\\begin{cases}x+2=0, x=-2\\x-2=0, x=2\\x-3=, x=3\end{cases}[/tex]
Thus, the three zeroes of this function are [tex]x=-2, x=2, x=3[/tex] and the graph must intersection the x-axis at these points. The y-intercept of any graph occurs when [tex]x=0[/tex]. Thus, the y-coordinate of the y-intercept is equal to [tex]y=0^3-3(0^2)-4(0)+12,\\y=12[/tex] and the y-intercept is (0, 12).
The graph that corresponds with this is graph A.
Yam
190
Groundnuts
90
Vegetables
30. What is the ratio of the land used
for groundnuts to the land for
vegetables
Answer:
3:1
Step-by-step explanation:
90:30 simplified is 3:1
I need help please I dont understand
What are the rational roots of f(d) = 5d - 6 + d-8?