Between which two integers does square root of /500 lie?

Answers

Answer 1

Answer:

22 and 23

Step-by-step explanation:

Step 1: Solve the square root

[tex] \sqrt{100 \times 5} [/tex]

[tex] \sqrt{ {10}^{2} \times 5 } [/tex]

We can move the 10² out because it matches the index of the root

[tex]10 \sqrt{5} [/tex]

Step 2: Input into calculator to find decimals

[tex]10 \sqrt{5} = 22.36[/tex]

Therefore the square root of 500 lies between 22 and 23

Answer 2

22 and 23

Because 5000 is between 222

(484) and 232 (529), the square root of 500 is in between 22 and 23..


Related Questions

What is [tex]3^2*3^5[/tex]?

Answers

Answer:

[tex]3^7[/tex]

Step-by-step explanation:

[tex]3^2*3^5[/tex]

[tex]\text {Apply Product Rule: } a^b+a^c=a^{b+c}\\\\3^2*3^5=3^{2+5}=3^7[/tex]

3^7 or 2187. When you have the same number with exponents, you add the exponents together to get your answer

type in symbols to make 3,7,12,2 equal 45

Answers

Answer:

The answer is (3×7) + (12×2) .

[tex](3 \times 7) + (12 \times 2)[/tex]

[tex] = 21 + 24[/tex]

[tex] = 45[/tex]

the cube root of 2 to the seventh power

Answers

Answer:

4 2^(1/3) or 5.0396841995794926590688424291129134022810058588060319203279004486... decimal

Step-by-step explanation:

Simplify the following:

(2^(1/3))^7

Hint: | For all a>=0, (a^(1/3))^m = a^(m/3). Apply this to (2^(1/3))^7.

Multiply exponents. (2^(1/3))^7 = 2^(7/3):

2^(7/3)

Hint: | Separate the exponent of 2^(7/3) into integer and fractional parts.

2^(7/3) = 2^(6/3 + 1/3) = 2^(6/3)×2^(1/3):

2^(6/3) 2^(1/3)

Hint: | Divide 6 by 3.

6/3 = (3×2)/3 = 2:

2^2 2^(1/3)

Hint: | Evaluate 2^2.

2^2 = 4:

Answer:  4 2^(1/3) or 5.0396841995794926590688424291129134022810058588060319203279004486... decimal

I need help with these 2 questions. PLZZ help!!!

Answers

Answer:

Step-by-step explanation:

if x is the bill and y is the tip ten

x+y>14.50

x<2   and  x≤ 2

when the sign is< then the dot has to be clear , because 2 does not count and x is less than 2 and not equal to 2

when the sign is ≤ the dot on the graph is solid which represent the equal to.

I need help on this :(

Answers

Answer:

26⁹

Step-by-step explanation:

26 * 26⁸

= 26¹ * 26⁸

= 26¹⁺⁸

= 26⁹

X-5y=-15x−5y=−15x, minus, 5, y, equals, minus, 15 Complete the missing value in the solution to the equation. (-5,(−5,left parenthesis, minus, 5, comma ))

Answers

Answer:

The missing value is 2. The coordinate will be (-5, 2)

Step-by-step explanation:

The question is not properly written. Find the correct question below.

If x – 5y = -15 . Complete the missing value in the solution to the equation (-5, ____)

Let the coordinate of the variables be (x, y). Comparing the coordinates (x, y) with the given coordinate (-5, __), we will discover that x = -5. To get the y coordinate, we will substitute x = -5 into the given expression as shown;

If x – 5y = -15

-5 - 5y = -15

Adding 5 both sides

-5-5y+5 = -15+5

-5y = -10

Dividing both sides by -5;

-5y/-5 = -10/-5

y = 2

Hence the missing value in the solution of the equation is 2. The coordinate will be (-5, 2)

Answer:

2

Step-by-step explanation:

I did the khan :)

I need hellp please its my last chance to become a senior please someone

Answers

Answer:

d= 6

r= 6/2

r=3

V= π. r². h

V= π . 3². 14

V= π. 9 . 14

V= π 126 cm³

V= 126 π cm³ (π not in number)

hope it helps^°^

Answer:if you use the formula it is 126 pi cm cubed

The answer is c

Step-by-step explanation:

which choice is the solution set for the inequality below

x < 3

Answers

Answer:

B) x < 9

Step-by-step explanation:

√x < 3

(√x)² > 3²

x < 9

prove tan(theta/2)=sin theta/1+cos theta for theta in quadrant 1 by filling in the calculations and reasons. PLEASE HELP!!!!

Answers

Answer:

See explanation

Step-by-step explanation:

We have to prove the identity

[tex]tan(\frac{\Theta }{2})=\frac{sin\Theta}{1+cos\Theta }[/tex]

We will take right hand side of the identity

[tex]\frac{sin\Theta}{1+cos\Theta}=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{1+[2cos^{2}(\frac{\Theta }{2})-1]}[/tex]

[tex]=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{2cos^{2}(\frac{\Theta }{2})}=\frac{sin(\frac{\Theta }{2})}{cos(\frac{\Theta }{2})}[/tex]

[tex]=tan(\frac{\Theta }{2})[/tex] [ Tan θ will be positive since θ lies in 1st quadrant ]

1. Suzette ran and biked for a total of 80 miles in 9 hours. Her average running speed was 5 miles per hour (mph) and her average biking speed was 12 mph. Let x = total hours Suzette ran. Let y = total hours Suzette biked. Use substitution to solve for x and y. Show your work. Check your solution. (a) How many hours did Suzette run? (b) How many hours did she bike?

Answers

Answer:

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

Step-by-step explanation:

Speed is rate of distance traveled, it is the ratio of distance traveled to time taken. It is given by:

Speed = distance / time

The total distance ran and biked by Suzette (d) = 80 miles, while the total time ran and biked by Suzette (t) = 9 hours.

For running:

Her speed was 5 miles per hour, let the total hours Suzette ran be x and the total distance she ran be p, hence since Speed = distance / time, therefore:

5 = p / x

p = 5x

For biking:

Her speed was 12 miles per hour, let the total hours Suzette ran be y and the total distance she ran be q, hence since Speed = distance / time, therefore:

12 = q / y

q = 12y

The total distance ran and biked by Suzette (d) = Distance biked + distance ran

d = p + q

80 = p + q

80 = 5x + 12y                 (1)

The total time taken to run and bike by Suzette (t) = time spent to bike + time spent to run

t = x + y

9 = x + y                         (2)

Solving equation 1 and equation 2, multiply equation 2 by 5 and subtract from equation 1:

7y = 35

y = 35/7

y = 5 hours

Put y = 5 in equation 2:

9 = x + 5

x = 9 -5

x = 4 hours

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

15 lwholes 5 over 8 % of a number is 555 find the number

Answers

Answer:

The number is 3,552

15⅝% of 3,552 is 555

Step-by-step explanation:

15⅝% of a number is 555.

To determine what number it is, let the number be x.

Thus,

15⅝%*x = 555

[tex] \frac{125}{8}*\frac{1}{100}*x = 555 [/tex]

[tex] \frac{125}{800}*x = 555 [/tex]

[tex] \frac{125*x}{800} = 555 [/tex]

Multiply both sides by 800

[tex] \frac{125*x}{800}*800 = 555*800 [/tex]

[tex] 125*x = 444,000 [/tex]

Divide both sides by 125

[tex] \frac{125*x}{125} = \frac{444,000}{125} [/tex]

[tex] x = 3,552 [/tex]

The number = 3,552

15⅝% of 3,552 is 555

Consider the following system of equations: y=2x−2 6x+3y=2 The graph of these equations consists of two lines that: 1. intersect at more than one point. 2. intersect in an infinite number of points. 3. intersect at exactly one point. 4. do not intersect.

Answers

Answer:

3.  Intersect at exactly one point.  ( (2/3), (-2/3) )

Step-by-step explanation:

To make the comparison of these lines easier, let's rewrite the 2nd equation into slope-intercept form, as the 1st equation is in slope-intercept form.

[1] y = 2x - 2

---------------------

[2] 6x + 3y = 2 ==> 3y = 2 - 6x ==> y = -2x + (2/3)

[2] y = -2x + (2/3)

So now that we have both equations in slope-intercept form, we can see that the two equations are both linear, have different slopes, and have different y-intercepts.

Since these equations have both different slopes and different y-intercepts, we know that the lines will cross at least one point.  We can confirm that the lines only cross at a single point using the fact that both equations are linear, meaning there will only be one point of crossing.  To find that point, we can simply set the equations equal to each other.

y = 2x - 2

y = -2x + (2/3)

2x - 2 = -2x + (2/3)

4x = (8/3)

x = (8/12) = (2/3)

And plug this x value back into one of the equations:

y = 2x - 2

y = 2(2/3) - 2

y = (4/3) - (6/3)

y = (-2/3)

Thus these lines only cross at the point ( (2/3), (-2/3) ).

Cheers.

Answer:

I don't understand the question

SAVINGS ACCOUNT Demetrius deposits $120 into his account. One week later, he withdraws $36. Write an addition expression to represent this situation. How much higher or lower is the amount in his account after these two transactions?

Answers

Answer:

+$120 - $36

Higher by $84

Step-by-step explanation:

Addition expression is an equation without the equals to sign

$120 - $36

When the first expression was made, the account was higher by $120

After the second transaction, the account would be higher by $120 - $36 = $84

PLEaSE HELP!!!!!! will give brainliest to first answer

Answers

Answer:

The coordinates of A'C'S'T' are;

A'(-7, 2)

C'(-9, -1)

S'(-7, -4)

T'(-5, -1)

The correct option is;

B

Step-by-step explanation:

The coordinates of the given quadrilateral are;

A(-3, 1)

C(-5, -2)

S(-3, -5)

T(-1, -2)

The required transformation is T₍₋₄, ₁₎ which is equivalent to a movement of 4 units in the leftward direction and 1 unit upward

Therefore, we have;

A(-3, 1) + T₍₋₄, ₁₎ = A'(-7, 2)

C(-5, -2) + T₍₋₄, ₁₎ = C'(-9, -1)

S(-3, -5) + T₍₋₄, ₁₎ = S'(-7, -4)

T(-1, -2) + T₍₋₄, ₁₎ = T'(-5, -1)

Therefore, the correct option is B

Represents the solution to the inequality -9=2/3x-7<5

Answers

Answer:

-3=x <13

Step-by-step explanation:

[tex] - 9 = \frac{2x}{3} - 7 < 5[/tex]

Multiply through by 3

[tex] - 27 = 2x - 21 < 15[/tex]

Add 21 to all sides

[tex] - 6 = 2x < 36[/tex]

Divide through by 2

[tex] - 3 = x < 18[/tex]

The solutin set is

[tex]{- 3 = x < 18}[/tex]

PLEASE help me with this question! No nonsense answers please. This is really urgent.

Answers

Answer:

last option

Step-by-step explanation:

Let's call the original angle x° and the radius of the circle y. The area of the original sector would be x / 360 * πy². The new angle, which is a 40% increase from x, can be represented as 1.4x so the area of the new sector is 1.4x / 360 * πy². Now, to find the corresponding change, we can calculate 1.4x / 360 * πy² ÷  x / 360 * πy² = (1.4x / 360 * πy²) * (360 * πy² / x). 360 * πy² cancels out so we're left with 1.4x / x which becomes 1.4, signifying that the area of the sector increases by 40%.

If an octagon is 24, how many is a pentagon?

Answers

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

Hi my lil bunny!

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

If an octagon is 24, how many is a pentagon?

Ans : Pentagon has 5 sides.

( A five-sided shape is called a pentagon. A six-sided shape is a hexagon, a seven-sided shape a heptagon, while an octagon has eight sides. The names of polygons are derived from the prefixes of ancient Greek numbers. )

❧⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯⎯☙

●✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎❀✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎✴︎●

Have a great day/night!

❀*May*❀

The pentagon is 15, when octagon is 24.

What is Polygon?

A polygon is a figure made up of line segments (not curves) in a two-dimensional plane. Polygon is the combination of two words, i.e. poly (means many) and gon (means sides).

Polygon with 8 sides known as Octagon and polygon with 5 sides known as Pentagon.

Here, given that, Octagon = 8 sides = 24

So, 1 side= 3

Then, we get, pentagon = 5 sides = (5×3) = 15

Hence, the pentagon is 15.

To learn more on Polygon click:

https://brainly.com/question/15324224

#SPJ2

Cam’s tent (shown below) is a triangular prism.
Find the surface are, including the floor of his tent
PLEASE HELP

Answers

Answer:

21.4 m²

Step-by-step explanation:

To find the surface area of this whole triangular prism, we have to look at the bases (the triangles), find their surface area, then look at the sides (the rectangles) and find theirs.

Let's start with the triangles. The area of any triangle is [tex]\frac{bh}{2}[/tex]. The base of this triangle is 2m (because there are 2 one meters) and the height is 1.7m.

[tex]\frac{2\cdot1.7}{2} = \frac{3.4}{2} = 1.7[/tex]

So the area of one of these triangles is 1.7m. Multiplying this by two, because there are two triangles in this prism:

[tex]1.7\cdot2=3.4[/tex]

Now let's find the area of the sides.

The side lengths are 2 and 3, so

[tex]2\cdot3=6[/tex], and there are 3 sides (including the bottom/floor) so [tex]6\cdot3=18[/tex].

Now we add.

[tex]18+3.4=21.4[/tex] m².

Hope this helped!

Answer: 21.4 square meters^2

Step-by-step explanation:

Given that p=x^2-y^2/x^2+xy
I. Express p in the simplest form
ii. Find the value of p, if x=-4 and y=-6

Answers

Answer:

When x = -4 and y = -6, p = 37.75

Step-by-step explanation:

Given that p = x² - y²/x² + x·y, we have;

p = (x² × x² -y² + x·y×x²)/x²

p = (x²⁺² - y² + x¹⁺² × y)/x²

p = (x⁴ - y² + x³·y)/x²

Therefore, p in the simplest form is given as follows;

[tex]p = \dfrac{x^4 - y^2 + x^3 \cdot y }{x^2}[/tex]

To find the value of p when x = -4 and y = -6, we plug in the value of x and y into the above equation to get the following equation;

[tex]p = \dfrac{(-4)^4 - (-6)^2 + (-4)^3 \cdot (-6) }{(-4)^2} = 37.75[/tex]

Therefore, the value of p when x = -4 and y = -6 is equal to 37.75.

how do you solve 2m-10=44+8m

Answers

Answer:

m = -9

Step-by-step explanation:

2m-10=44+8m

Subtract 2m from each side

2m-2m-10=44+8m-2m

-10 = 44+6m

Subtract 44 from each side

-10-44 = 44-44+6m

-54 = 6m

Divide by 6

-54/6 = 6m/6

-9 = m

Answer:

solve by solving the salvation for equation don't be a slave get educated from what's gave

The graph below shows Roy's distance from his office (y), in miles, after a certain amount of time (x), in minutes: Graph titled Roys Distance Vs Time shows 0 to 10 on x and y axes at increments of 1.The label on x axis is time in minutes and that on y axis is Distance from Office in miles. Lines are joined at the ordered pairs 0, 0 and 1, 1 and 2, 2 and 3, 3 and 4, 4 and 5, 4 and 6, 4 and 7, 4.5 and 7.5, 5 and 8, 6. Four students described Roy's motion, as shown in the table below: Student Description Peter He drives a car at a constant speed for 4 minutes, then stops at a crossing for 6 minutes, and finally drives at a variable speed for the next 2 minutes. Shane He drives a car at a constant speed for 4 minutes, then stops at a crossing for 2 minutes, and finally drives at a variable speed for the next 8 minutes. Jamie He drives a car at a constant speed for 4 minutes, then stops at a crossing for 6 minutes, and finally drives at a variable speed for the next 8 minutes. Felix He drives a car at a constant speed for 4 minutes, then stops at a crossing for 2 minutes, and finally drives at a variable speed for the next 2 minutes. Which student most accurately described Roy's motion? Peter Shane Jamie Felix

Answers

Answer:

Felix

Step-by-step explanation:

The graph contains 3 segments,

first one is for the first 4minutes,

second one is for the next 2 minutes (standing still)

third one is for the last 2 minutes.

Only Felix has it right, the other students use absolute time in their statements, in stead of the difference between start and end. (e.g., from 4 to 6 is 2 minutes).

The student that most accurately described Roy's motion is Felix.

How to find the function which was used to make graph?

There are many tools we can use to find the information of the relation which was used to form the graph.

A graph contains data of which input maps to which output.

Analysis of this leads to the relations which were used to make it.

We need to find the student that most accurately described Roy's motion.

Here we can see that the graph contains 3 segments, first one is for the first 4 minutes, Second one is for the next 2 minutes (standing still) and the third one is for the last 2 minutes.

Now, Only Felix has it right, the other students use absolute time in their statements, in stead of the difference between start and end.

Therefore, the student that most accurately described Roy's motion is Felix.

Learn more about finding the graphed function here:

https://brainly.com/question/27330212

#SPJ5

PLEASE HELP
Find the area and the perimeter of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximations). The figures below are based on semicircles or quarter circles and problems b), c), and d) are involving portions of a square.

Answers

Answer:

perimeter is  4 sqrt(29) + 4pi  cm

area is 40 + 8pi cm^2

Step-by-step explanation:

We have a semicircle and a triangle

First the semicircle with diameter 8

A = 1/2 pi r^2 for a semicircle

r = d/2 = 8/2 =4

A = 1/2 pi ( 4)^2

  =1/2 pi *16

  = 8pi

Now the triangle with base 8 and height 10

A = 1/2 bh

  =1/2 8*10

  = 40

Add the areas together

A = 40 + 8pi cm^2

Now the perimeter

We have 1/2 of the circumference

1/2 C =1/2 pi *d

         = 1/2 pi 8

        = 4pi

Now we need to find the length of the hypotenuse of the right triangles

using the pythagorean theorem

a^2+b^2 = c^2

The base is 4 ( 1/2 of the diameter) and the height is 10

4^2 + 10 ^2 = c^2

16 + 100 = c^2

116 = c^2

sqrt(116) = c

2 sqrt(29) = c

Each hypotenuse is the same so we have

hypotenuse + hypotenuse + 1/2 circumference

2 sqrt(29) + 2 sqrt(29) + 4 pi

4 sqrt(29) + 4pi  cm

Step-by-step explanation:

First we need to deal with the half circle. The radius of this circle is 4, because the diameter is 8. The formula for the circumference of a circle is 2piR.

2pi4 so the perimeter for the half circle would be 8pi/2.

The area of that half circle would be piR^2 so 16pi/2.

Now moving on the triangle part, we need to find the hypotenuse side of AC. We will use the pythagoram theorem. 4^2+10^2=C^2

16+100=C^2

116=C^2

C=sqrt(116)

making the perimeter of this triangle 2×sqrt(116)

The area of this triangle is 8×10=80, than divided by 2 which is equal to 40.

We than just need to add up the perimeters and areas for both the half circle and triangle.

The area would be equal to 8pi+40

The perimeter would be equal to 4pi+4(sqrt(29))

Complete the square to transform the expression x2 - 2x - 2 into the form a(x - h)2 + k

Answers

Answer:

A

Step-by-step explanation:

Find the vertex form of the quadratic function below.

y = x^2 - 4x + 3

This quadratic equation is in the form y = a{x^2} + bx + cy=ax  

2

+bx+c. However, I need to rewrite it using some algebraic steps in order to make it look like this…

y = a(x - h)^2 + k

This is the vertex form of the quadratic function where \left( {h,k} \right)(h,k) is the vertex or the “center” of the quadratic function or the parabola.

Before I start, I realize that a = 1a=1. Therefore, I can immediately apply the “completing the square” steps.

STEP 1: Identify the coefficient of the linear term of the quadratic function. That is the number attached to the xx-term.

STEP 2: I will take that number, divide it by 22 and square it (or raise to the power 22).

STEP 3: The output in step #2 will be added and subtracted on the same side of the equation to keep it balanced.

Think About It: If I add 44 on the right side of the equation, then I am technically changing the original meaning of the equation. So to keep it unchanged, I must subtract the same value that I added on the same side of the equation.

STEP 4: Now, express the trinomial inside the parenthesis as a square of a binomial, and simplify the outside constants.

After simplifying, it is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {2, - 1} \right)(2,−1).

Visually, the graph of this quadratic function is a parabola with a minimum at the point \left( {2, - 1} \right)(2,−1). Since the value of “aa” is positive, a = 1a=1, then the parabola opens in upward direction.

Example 2: Find the vertex form of the quadratic function below.

The approach to this problem is slightly different because the value of “aa” does not equal to 11, a \ne 1a  

​  

=1. The first step is to factor out the coefficient 22 between the terms with xx-variables only.

STEP 1: Factor out 22 only to the terms with variable xx.

STEP 2: Identify the coefficient of the xx-term or linear term.

STEP 3: Take that number, divide it by 22, and square.

STEP 4: Now, I will take the output {9 \over 4}  

4

9

​  

 and add it inside the parenthesis.

By adding {9 \over 4}  

4

9

​  

 inside the parenthesis, I am actually adding 2\left( {{9 \over 4}} \right) = {9 \over 2}2(  

4

9

​  

)=  

2

9

​  

 to the entire equation.

Why multiply by 22 to get the “true” value added to the entire equation? Remember, I factored out 22 in the beginning. So for us to find the real value added to the entire equation, we need to multiply the number added inside the parenthesis by the number that was factored out.

STEP 5: Since I added {9 \over 2}  

2

9

​  

 to the equation, then I should subtract the entire equation by {9 \over 2}  

2

9

​  

 also to compensate for it.

STEP 6: Finally, express the trinomial inside the parenthesis as the square of binomial and then simplify the outside constants. Be careful combining the fractions.

It is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {{{ - \,3} \over 2},{{ - 11} \over 2}} \right)(  

2

−3

​  

,  

2

−11

​  

).

Example 3: Find the vertex form of the quadratic function below.

Solution:

Factor out - \,3−3 among the xx-terms.

The coefficient of the linear term inside the parenthesis is - \,1−1. Divide it by 22 and square it. Add that value inside the parenthesis. Now, figure out how to make the original equation the same. Since we added {1 \over 4}  

4

1

​  

 inside the parenthesis and we factored out - \,3−3 in the beginning, that means - \,3\left( {{1 \over 4}} \right) = {{ - \,3} \over 4}−3(  

4

1

​  

)=  

4

−3

​  

 is the value that we subtracted from the entire equation. To compensate, we must add {3 \over 4}  

4

3

​  

 outside the parenthesis.

Therefore, the vertex \left( {h,k} \right)(h,k) is \left( {{1 \over 2},{{11} \over 4}} \right)(  

2

1

​  

,  

4

11

​  

).

Example 4: Find the vertex form of the quadratic function below.

y = 5x^2 + 15x - 5  

Solution:

Factor out 55 among the xx-terms. Identify the coefficient of the linear term inside the parenthesis which is 33. Divide it by 22 and square to get {9 \over 4}  

4

9

​  

.

Add {9 \over 4}  

4

9

​  

 inside the parenthesis. Since we factored out 55 in the first step, that means 5\left( {{9 \over 4}} \right) = {{45} \over 4}5(  

4

9

​  

)=  

4

45

​  

 is the number that we need to subtract to keep the equation unchanged.

Express the trinomial as a square of binomial, and combine the constants to get the final answer.

Therefore, the vertex \left( {h,k} \right)(h,k) is {{ - \,3} \over 2},{{ - \,65} \over 4}  

2

−3

​  

,  

4

−65

​  

.

Answer:

(x - 1 )^2 - 3

Step-by-step explanation:

( x - 1 )^2 + ( -3)

x^2 - 2x + 1 - 3

x^2 - 2x - 2

Two co-interior angles
formed between the
two parallel lines are in the ratio of 11.7.
Find the measures
of angles

Answers

Answer:

110° and 70°

Step-by-step explanation:

The angles are supplementary, thus sum to 180°

sum the parts of the ratio, 11 + 7 = 18

divide 180° by 18 to find the value of one part of the ratio

180° ÷ 18 = 10° ← value of 1 part of the ratio

Thus

11 parts = 11× 10° = 110°

7 parts = 7 × 10° = 70°

The angles are 110° and 70°

State whether the given measurements determine zero, one, or two triangles. A = 58°, a = 25, b = 28

Answers

Answer:

1

Step-by-step explanation:

I believe it is 1. Just picture or draw a diagram of the constraints. Don't quote me on this though...

Answer:

Step-by-step explanation:

apply sine formula

[tex]\frac{a}{sin ~A} =\frac{b}{sin~B} \\\frac{25}{sin~58} =\frac{28}{sin ~B} \\sin~B=\frac{28}{25} \times sin~58\\B=sin^{-1} (\frac{28}{25} \times sin ~58)=71.77 \approx 72 ^\circ[/tex]

so third angle=180-(58+72)=180-130=50°

∠C=50°

[tex]cos ~C=\frac{a^2+b^2-c^2}{2ab} \\or ~2abcos~C=a^2+b^2-c^2\\2*25*28*cos ~50=25^2+28^2-c^2\\c^2=625+784-1400 *cos~50\\c^2=1409-899.90\\c^2=509.1\\c=\sqrt{509.1} \approx 22.56 \approx 22.6[/tex]

so one triangle is formed.

20. A pool holds 1440 cubic feet of water, the city charges $1.75 per cubic meter of water used.
How much will it cost to fill the pool?

Answers

Answer:Conversion units

Step-by-step explanation: 1 ft^3= 0.028m^3 .: 1440ft^3=40.776m^3, so $1.75x40.776=$71.358~ $71.36.:

Answer:

$71.36

Step-by-step explanation:

1 foot = 0.3048 metros

1 cubic feet = (0.3048metros)³ = 0.02932 cubic meters   (aprox.)

1440 cubic feet = 1440*0.02932 = 40.7763 m

$1.75 por cubic meter:

1.75*40.7763 = $71.36

I need help asap!!!​

Answers

There are 360° total in a circle, so AB is half of the circle so it’s 180°. CBA is 180° also. 180°+55°=235°, 360-235= 125° which is AC

1. Solve each equation.
a. 5x – 2=8
b. 4x – 3= 2x + 9
C. 6x + 3 = 2x + 8
And show work

Answers

Answer:

a. 5×=8+2

5×=10

b. 4×-2×=9+3

2×=13

c. 6×-2×=8-3

4×=5

AB =
Round your answer to the nearest hundredth.
B
?
2
25°
С
A

Answers

Answer:

? = 4.73

Step-by-step explanation:

Since this is a right triangle we can use trig functions

sin theta = opp / hyp

sin 25 = 2 / ?

? sin 25 = 2

? = 2 / sin 25

? =4.732403166

To the nearest hundredth

? = 4.73

How do u simplify each expression by combining like terms?

Answers

Answer:

1. 8y - 9y = -1y

( 8 - 9 = -1)

3. 8a - 6 +a - 1

( i have showed the like terms here)

8a - 1a= 7a

-6 - 1 = -7

7a - 7

5. -x - 2 + 15x

( i have showed the like terms here)

-x + 15x = 14x

(x = 1)

14x + 2

7.  8d - 4 - d - 2

( i have showed the like terms here)

8d - d = 7d

-4 -2 = -6

7d - 6

8. 9a + 8 - 2a - 3 - 5a

( i have showed the like terms here)

9a - 2a - 5a = 2a

8 - 3= 5

2a + 5

Other Questions
solution for 2x is equal to 10 An IT firm came across a startup company that offers a new system of computer storage. It is currently in the experimental phase. Which aspect of the technology will the firm consider before adopting it? ainternal storage bgraphics cphysical features dcommercial potential the length of a mathematical text book the is approximately 18.34cm and its width is 11.75 calculate ?the approximate perimeter of the front cover?the approximate area of the front cover of the book? whats prewriting phase a countrys population in 1995 was 206 million. In 1998 it was 210 million. Estimate the population in 2008 using the exponential growth formula. Round your answer to the nearest million This client has just been informed that he has been promoted and will be earning $190,000 per year instead of $140,000 per year. The customer intends to use this extra income to fund his 13-year old child's college education. Based on the customer's existing asset mix, the best recommendation would be for the customer to invest the extra $50,000 per year into a(n): The tosylate of (2R,3S)-3-phenylbutan-2-ol undergoes an E2 elimination on treatment with sodium ethoxide. Draw the structure of the alkene that is produced. Use the Pythagorean theorem to find the length of the hypotenuse in the triangle shown below.4,3 A golf ball is hit off a tee toward the green. The height of the ball is modeled by the function h(t) = 16t2 + 96t, where t equals the time in seconds and h(t) represents the height of the ball at time t seconds. What is the axis of symmetry, and what does it represent? t = 3; It takes the ball 3 seconds to reach the maximum height and 6 seconds to fall back to the ground. t = 3; It takes the ball 3 seconds to reach the maximum height and 3 seconds to fall back to the ground. t = 6; It takes the ball 6 seconds to reach the maximum height and 3 seconds to fall back to the ground. t = 6; It takes the ball 6 seconds to reach the maximum height and 6 seconds to fall back to the ground. Can somebody explain how trigonometric form polar equations are divided/multiplied? Rod cells in the retina of the eye detect light using a photopigment called rhodopsin. 1.8 eV is the lowest photon energy that can trigger a response in rhodopsin. Part A What is the maximum wavelength of electromagnetic radiation that can cause a transition Your forest has three domains: certguide and its two children domains west.certguide and east.certguide. The west domain runs at domain functional level 2012 R2. The east domain runs at domain functional level 2008. You have been tasked with bringing the entire forest to forest functional level 2016. How would you approach raising the east.certguide domain Please Help! Three times the quantity of a number increased by 7 is equal to the same number decreased by 15 Which of the following is a community member who owes loyalty to their government and is entitled to protection from it?A. CitizenB. ImmigrantC. Only political leadersD. Anyone over the age of 18 The location where sea floor spreading occurs is called the The following statements are from Enlightenment philosophers: Constant experience shows us that every man invested with power is apt to abuse it. By pursuing his own interest, he frequently promotes that of the society more effectually than when he really intends to promote it. You are free at all times, in all places, as soon as you do what you wish to do. The liberty of man in society is to be under no other legislative power but that established by consent in the commonwealth. Which statement reflects the idea of social contract? 1 2 3 4 What happens when two objects when they are brought closer together The mass of both objects decrease The mass of both objects increase The gravitational force between them decreases The gravitational force between them increases Break-Even Sales and Sales to Realize Income from OperationsFor the current year ended October 31, Friedman Company expects fixed costs of $14,300,000, a unit variable cost of $250, and a unit selling price of $380.a. Compute the anticipated break-even sales (units).unitsb. Compute the sales (units) required to realize income from operations of $2,405,000.units hey can someone help me out here because i dont know none of this "Let's assume that the government decides to regulate a natural monopoly by forcing them to produce at a point where the natural monopoly's demand curve intersects average cost. In this case, the price will __________ and the quantity will ________ when compared to the natural monopoly if it were allowed to operate unregulated."