Answer:
$224.932
Step-by-step explanation:
Note: The question is not complete
say the rate is 10%
Given data
Initial depostite= $212
TIme= 6years
rate= 10%
the expression for the compound interest is given as
A=P(1+r)^t
substitute
A=212(1+0.1)^6
A=212(1.01)^6
A=212*1.061
A= $224.932
Hence the final amount at the rate of 10% is $224.932
x - 3y +3=0
a) The length of the perpendicular drawn from the point (a, 3) on the line
3x + 4y + 5 = 0 is 4. Find the value of a.
Answer:
We know that for a line:
y = a*x + b
where a is the slope and b is the y-intercept.
Any line with a slope equal to -(1/a) will be perpendicular to the one above.
So here we start with the line:
3x + 4y + 5 = 0
let's rewrite this as:
4y = -3x - 5
y = -(3/4)*x - (5/4)
So a line perpendicular to this one, has a slope equal to:
- (-4/3) = (4/3)
So the perpendicular line will be something like:
y = (4/3)*x + c
We know that this line passes through the point (a, 3)
this means that, when x = a, y must be equal to 3.
Replacing these in the above line equation, we get:
3 = (4/3)*a + c
c = 3 - (4/3)*a
Then the equation for our line is:
y = (4/3)*x + 3 - (4/3)*a
We can rewrite this as:
y = (4/3)*(x -a) + 3
now we need to find the point where this line ( y = -(3/4)*x - (5/4)) and the original line intersect.
We can find this by solving:
(4/3)*(x -a) + 3 = y = -(3/4)*x - (5/4)
(4/3)*(x -a) + 3 = -(3/4)*x - (5/4)
(4/3)*x - (3/4)*x = -(4/3)*a - 3 - (5/4)
(16/12)*x - (9/12)*x = -(4/3)*a - 12/4 - 5/4
(7/12)*x = -(4/13)*a - 17/4
x = (-(4/13)*a - 17/4)*(12/7) = - (48/91)*a - 51/7
And the y-value is given by inputin this in any of the two lines, for example with the first one we get:
y = -(3/4)*(- (48/91)*a - 51/7) - (5/4)
= (36/91)*a + (153/28) - 5/4
Then the intersection point is:
( - (48/91)*a - 51/7, (36/91)*a + (153/28) - 5/4)
And we want that the distance between this point, and our original point (3, a) to be equal to 4.
Remember that the distance between two points (a, b) and (c, d) is:
distance = √( (a - c)^2 + (b - d)^2)
So here, the distance between (a, 3) and ( - (48/91)*a - 51/7, (36/91)*a + (153/28) - 5/4) is 4
4 = √( (a + (48/91)*a + 51/7)^2 + (3 - (36/91)*a + (153/28) - 5/4 )^2)
If we square both sides, we get:
4^2 = 16 = (a + (48/91)*a + 51/7)^2 + (3 - (36/91)*a - (153/28) + 5/4 )^2)
Now we need to solve this for a.
16 = (a*(1 + 48/91) + 51/7)^2 + ( -(36/91)*a + 3 - 5/4 + (153/28) )^2
16 = ( a*(139/91) + 51/7)^2 + ( -(36/91)*a - (43/28) )^2
16 = a^2*(139/91)^2 + 2*a*(139/91)*51/7 + (51/7)^2 + a^2*(36/91)^2 + 2*(36/91)*a*(43/28) + (43/28)^2
16 = a^2*( (139/91)^2 + (36/91)^2) + a*( 2*(139/91)*51/7 + 2*(36/91)*(43/28)) + (51/7)^2 + (43/28)^2
At this point we can see that this is really messy, so let's start solving these fractions.
16 = (2.49)*a^2 + a*(23.47) + 55.44
0 = (2.49)*a^2 + a*(23.47) + 55.44 - 16
0 = (2.49)*a^2 + a*(23.47) + 39.44
Now we can use the Bhaskara's formula for quadratic equations, the two solutions will be:
[tex]a = \frac{-23.47 \pm \sqrt{23.47^2 - 4*2.49*39.4} }{2*2.49} \\\\a = \frac{-23.47 \pm 12.57 }{4.98}[/tex]
Then the two possible values of a are:
a = (-23.47 + 12.57)/4.98 = -2.19
a = (-23.47 - 12.57)/4.98 = -7.23
Can you please help me with this question
A tax form asks people to identify their age, annual income, number of dependents, and social security number. For each of these four variables, identify the scale of measurement that probably is used and identify whether the variable is continuous or discrete.
Variable Nominal Ordinal Interval Ratio
Social security number
Annual income
Number of dependents
Variable Discrete Continuous
Social security number
Annual income
Number of dependents
Answer:
Types of variables:
Continuous variable include: income
Discrete variable include: number of dependents
Scale of measurement:
Nominal data include: Social security number
There is no ordinal data included
There is no interval data included
Ratio data include: Annual income,
Number of dependents.
Explanation:
Continuous variables are variables that are obtained by just counting, example: counting the number of times someone eats in a day.
Discrete variables are simply variables that are measured and are usually more precise than continuous variables, example: time, weight, length etc.
Nominal data are data types that are in the form of labels or names and do not have any particular order, example :social security number basically identifies a person and is not ranked or ordered in any way.
Ordinal data are data types that also in the form of names but with ranking and order.
Interval data are data types that rank and order data but with continuous measurement that may take on negative values, example measure of temperature.
Ratio data is same as interval data but does not take negative values, example we can not say that someone is -6 years old.
A senior class of 420 students will rent buses and vans for a class trip. Each bus can transport 50 students and 3 chaperones and costs $1200 to rent. Each van can transport 10 students and 1 chaperone and costs $100 to rent. There are 36 chaperones available (so they can't all go in vans). How many vehicles of each type should be rented in order to minimize the cost
Answer:
37 buses and 1 van.
Step-by-step explanation:
The cost to rent a van is $1200 for 50 students and 3 chaperones, while a bus for 10 students and a chaperone is $100 .
The cost of renting buses for 50 students is $500
What we do is rent 37 buses and 1 van
37 buses will take in 370 students with empty 2 spaces in 2 buses for chaperones since the chaperones are 36.
Then rent 1 van to take in 50 students and 1 chaperone.
The total cost here will be
$3700 + $1200 = $ 4900
This will help to safe cost.
Which of the following situations WOULD NOT represent a binomial application? A. Choosing a card randomly from a standard deck and noting its color (remember color has only two outcomes black or red) B. Choosing a card randomly from a standard deck and noting whether its a face card C. Choosing a card randomly from a standard deck and noting its suit D. Choosing a card randomly from a standard deck and noting whether or not it's an ace
Answer:
Choosing a card randomly and noting its suit
Step-by-step explanation:
Choosing a card randomly and noting its suit
This is because binomial distributions only work for bernoulli trials (a trail in which there are only two outcomes)
Respond to each of the four questions.
Describe the steps to graphing a linear equation. Be sure to provide an example to illustrate your description.
Describe the steps to graphing a quadratic equation. Be sure to provide an example to illustrate your description.
Describe how to solve a linear equation. Be sure to provide an example to illustrate your description.
Describe how to solve a quadratic equation. Be sure to provide an example to illustrate your description.
Answer:hello
Step-by-step explanation:
1+1
Can someone please help me with this math problem.
Answer:
8 + 30 ÷ 2 + 4 = 27
8 + 30 ÷ (2 + 4 ) = 13
(8 + 30) ÷ 2 + 4 = 23
Step-by-step explanation:
if f(x)=-5^x-4 and g(x)=-3x-2,find (f+g) (x)
Answer: (f-g)(x) = - 5^x + 3x - 2
Step-by-step explanation:
if f(x) = -5^x - 4 and g(x)= - 3x - 2,find (f-g)(x)
(f-g)(x) = -5^x - 4 - (-3x - 2)
(f-g)(x) = -5^x - 4 + 3x + 2
(f-g)(x) = - 5^x + 3x - 2
The graph below has the same shape as the graph of G(x) = x, but it is
shifted three units to the right. Complete its equation. Enter exponents using
the caret (-); for example, enter x4 as x^4. Do not include "G(x) =" in your
answer.
G(x) =
Step-by-step explanation:
The graph of Fx), shown below in pink, has the same shape as the graph of G(x)-x, but it is shifted to the right two units. Complete its equation below Enter exponents using the caret (a), for example, enter x as x 4. Do not include Fx)-in your answer. .5 5 F(x) = Answer: 0
The equation of the graph is,
⇒ G (x) = (x - 3)⁴
What is mean by Function?A relation between a set of inputs having one output each is called a function. and an expression, rule, or law that defines a relationship between one variable (the independent variable) and another variable (the dependent variable).
Given that;
The graph of function G (x) is shown in image.
Here, The graph is 3 units left to function F (x) = x⁴.
Hence, The equation of the graph is,
⇒ G (x) = (x - 3)⁴
Thus, The equation of the graph is,
⇒ G (x) = (x - 3)⁴
Learn more about the function visit:
https://brainly.com/question/11624077
#SPJ7
25 x 2
help me
plz understand me by opening
Answer:
[tex]25 \times 2 = 50 \\ you \: are \: idiot \: [/tex]
really?! :|
Give two examples of subtraction of fractions ( between 0-1) with different denominators.
SHOW ALL STEPS
Answer:
3/4-1/2=1/4 4/5-3/15
Step-by-step explanation:
3/4-1/2
=3/4-2/4
=1/4
4/5-3/15
=4/5-1/5
=3/5
You have some money to invest in one of two accounts. The first account pays
5% simple interest, and the second pays 4% compound interest. How would
you decide which account to use? Discuss your answer.
Answer:
compound interest
Step-by-step explanation:
compound interest yields higher profit than simple interest
Answer:
the simple interest function will be greater in the beginning, but the
compound interest equation will overtake the simple after a while.
it appears that the 4% compound equation will overtake the simple at about 10 years
Step-by-step explanation:
[tex]1 + .05t = 1(1.04)^t[/tex]
The weight gain of beef steers were measured over a 140 day test period. the average daily gains (lb/day) of 10 steers on the same diet were as follows. The tenth steer had a weight gain of 4.02 lb/day.
3.89 3.51 3.97 3.31 3.21 3.36 3.67 3.24 3.27
determine the mean and median.
Answer:
[tex]\bar x = 3.545[/tex]
[tex]Median = 3.435[/tex]
Step-by-step explanation:
Given
[tex]x:3.89, 3.51, 3.97, 3.31, 3.21, 3.36, 3.67, 3.24, 3.27[/tex]
[tex]10th: 4.02[/tex]
Solving (a): The mean
This is calculated as:
[tex]\bar x = \frac{\sum x}{n}[/tex]
So, we have:
[tex]\bar x = \frac{3.89 +3.51 +3.97 +3.31 +3.21 +3.36 +3.67 +3.24 +3.27+4.02}{10}[/tex]
[tex]\bar x = \frac{35.45}{10}[/tex]
[tex]\bar x = 3.545[/tex]
Solving (b): The median
First, we sort the data; as follows:
[tex]3.21, 3.24, 3.27, 3.31, 3.36, 3.51, 3.67, 3.89, 3.97, 4.02[/tex]
[tex]n = 10[/tex]
So, the median position is:
[tex]Median = \frac{n + 1}{2}th[/tex]
[tex]Median = \frac{10 + 1}{2}th[/tex]
[tex]Median = \frac{11}{2}th[/tex]
[tex]Median = 5.5th[/tex]
This means that the median is the average of the 5th and 6th item
[tex]Median = \frac{3.36 + 3.51}{2}[/tex]
[tex]Median = \frac{6.87}{2}[/tex]
[tex]Median = 3.435[/tex]
Question 4*
4. Sam's goal is to exercise for 400 minutes each
week. This week, he reached 128% of his goal.
How many minutes did he exercise?
Answer: Get at least 150 minutes of moderate aerobic activity or 75 minutes of vigorous aerobic activity a week, or a combination of moderate and vigorous activity. The guidelines suggest that you spread out this exercise during the course of a week. Greater amounts of exercise will provide even greater health benefit.
Step-by-step explanation:
If Sam reached 128% of his goal to exercise each week, he would have exercised for 512 minutes.
How many minutes did Sam exercise this week?Given the parameters:
Sam's goal is to exercise for 400 minutes each week.
This week, he reached 128% of his goal.
The number of minutes =?
To determine how many minutes Sam exercised this week, we simply calculate 128% of his goal.
Number of minutes = 128% × Sam's goal of exercise
Number of minutes = 128% × 400 minutes
Note that: 128% = 128/100
Number of minutes = 128/100 × 400 minutes
Number of minutes = 128 × 4 minutes
Number of minutes = 512 minutes
Therefore, Sam exercised for 512 minutes this week.
Learn more about Percentages here: https://brainly.com/question/14103344
#SPJ3
Simplify the expression
Answer: …
Step-by-step explanation: you need an image
Answer:
what expression?
Step-by-step explanation:
9. Mariah has 28 centimeters of reed
and 10 meters of reed for weaving
baskets. How many meters of reed
does she have? Write your answer as a
decimal and explain your answer.
A cell site is a site where electronic communications equipment is placed in a cellular network for the use of mobile phones. The numbers y of cell sites from 1985 through 2011 can be modeled byy = 269573/1+985e^-0.308t where t represents the year, with t = 5 corresponding to 1985. Use the model to find the numbers of cell sites in the years 1998, 2003, and 2006.
Answer:
(a) 3178
(b) 14231
(c) 33152
Step-by-step explanation:
Given
[tex]y = \frac{269573}{1+985e^{-0.308t}}[/tex]
Solving (a): Year = 1998
1998 means t = 8 i.e. 1998 - 1990
So:
[tex]y = \frac{269573}{1+985e^{-0.308*8}}[/tex]
[tex]y = \frac{269573}{1+985e^{-2.464}}[/tex]
[tex]y = \frac{269573}{1+985*0.08509}[/tex]
[tex]y = \frac{269573}{84.81365}[/tex]
[tex]y = 3178[/tex] --- approximated
Solving (b): Year = 2003
2003 means t = 13 i.e. 2003 - 1990
So:
[tex]y = \frac{269573}{1+985e^{-0.308*13}}[/tex]
[tex]y = \frac{269573}{1+985e^{-4.004}}[/tex]
[tex]y = \frac{269573}{1+985*0.01824}[/tex]
[tex]y = \frac{269573}{18.9664}[/tex]
[tex]y = 14213[/tex] --- approximated
Solving (c): Year = 2006
2006 means t = 16 i.e. 2006 - 1990
So:
[tex]y = \frac{269573}{1+985e^{-0.308*16}}[/tex]
[tex]y = \frac{269573}{1+985e^{-4.928}}[/tex]
[tex]y = \frac{269573}{1+985*0.00724}[/tex]
[tex]y = \frac{269573}{8.1314}[/tex]
[tex]y = 33152[/tex] --- approximated
A town recently dismissed 5 employees in order to meet their new budget reductions. The town had 4 employees over 50 years of age and 16 under 50. If the dismissed employees were selected at random, what is the probability that no more than 1 employee was over 50
Answer:
0.7513 = 75.13% probability that no more than 1 employee was over 50
Step-by-step explanation:
The employees are chosen from the sample without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x successes is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of successes.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
4 + 16 = 20 employees, which means that [tex]N = 20[/tex]
4 over 50, which means that [tex]k = 4[/tex]
5 were dismissed, which means that [tex]n = 5[/tex]
What is the probability that no more than 1 employee was over 50?
Probability of at most one over 50, which is:
[tex]P(X \leq 1) = P(X = 0) + P(X = 1)[/tex]
In which
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 0) = h(0,20,5,4) = \frac{C_{4,0}*C_{16,5}}{C_{20,5}} = 0.2817[/tex]
[tex]P(X = 1) = h(1,20,5,4) = \frac{C_{4,1}*C_{16,4}}{C_{20,5}} = 0.4696[/tex]
Then
[tex]P(X \leq 1) = P(X = 0) + P(X = 1) = 0.2817 + 0.4696 = 0.7513[/tex]
0.7513 = 75.13% probability that no more than 1 employee was over 50
Mrs. Rodger got a weekly raise of $145. If she gets paid every other week, write an integer describing how the raise will affect her paycheck.
Answer:
her salary will increase by $ 145 for every week
Step-by-step explanation:
x=1st paycheck (integer).
weekly raise = $ 145.
After completing the 1st week she will get $ (x+145).
Similarly after completing the 2nd week she will get
$ (x + 145) + $ 145.
= $ (x + 145 + 145)
= $ (x + 290)
So in this way end of every week her salary will increase by $ 145.
-moves "The string of a kite is perfectly taut" and always makes an angle of 35 degrees above horizontal. (a) If the kite flyer has let out 500 feet of string, how high is the kite? (b) If the string is let out at a rate of 10 feet per second, how fast is the kite's height increasing?
Answer:
a) [tex]h=286.8ft[/tex]
b) [tex]\frac{dh}{dt}=5.7ft/s[/tex]
Step-by-step explanation:
From the question we are told that:
Angle [tex]\theta=35[/tex]
a)
Slant height [tex]h_s=500ft[/tex]
Generally the trigonometric equation for Height is mathematically given by
[tex]h=h_ssin\theta[/tex]
[tex]h=500sin35[/tex]
[tex]h=286.8ft[/tex]
b)
Rate of release
[tex]\frac{dl}{dt}=10ft/sec[/tex]
Generally the trigonometric equation for Height is mathematically given by
[tex]h=lsin35[/tex]
Differentiate
[tex]\frac{dh}{dt}=\frac{dl}{dt}sin35[/tex]
[tex]\frac{dh}{dt}=10sin35[/tex]
[tex]\frac{dh}{dt}=5.7ft/s[/tex]
the voltage in a lightbulb is given by the equation V= IR. in this equation V is the voltage, I is the current , and R is the resistance. what is the current in a lightbulb with a voltage of 35.0 V and a resistance of 175
Answer:
a
Step-by-step explanation:
In a pool of water filled to a depth of 10 ft, calculate the fluid force on one side of a 3 ft by 4 ft rectangular plate if it rests vertically on its 4 ft edge at the bottom of the pool. Remember that water weighs 62.4 lb/ft3
9514 1404 393
Answer:
6,364.8 lb
Step-by-step explanation:
The centroid of the plate is its center, so is 1.5 ft above the bottom of the pool, or 8.5 ft below the surface. The area of the plate is (3 ft)(4 ft) = 12 ft². Then the fluid force is ...
(62.4 lb/ft³)(8.5 ft)(12 ft²) = 6,364.8 lb
A large container holds 4 gallons of chocolate milk that has to be poured into bottles. Each bottle holds 2 pints.
If the ratio of gallons to pints is 1: 8,
bottles are required to hold the 4 gallons of milk.
Answer:
64 Bottles
Step-by-step explanation:
that is the procedure above
evaluate the expression when b=3
y = -7
4b-y
Answer:
5
Step-by-step explanation:
Given :
b = 3 y = -7To Find :
Value of 4b - y .Solution:
Put on the respective values ,
⇒ 4b - y = 4 × 3 - 7
⇒ 4b - y = 12 - 7
⇒ 4b - y = 5
Hence the required answer is 5 .
Answer: 5
Step-by-step explanation:
We can plug in the numbers for variables. So, our new equation would becomes 4x3-7. We first evaluate 4x3=12. Then, 12-7=5. Hence, your answer is 5.
what is the range of the funcion y=x^2
Answer:
Range = [0, infinity)
Step-by-step explanation:
Minimum point of the graph is at (0,0) and it is a u shaped graph. Hence, range is 0 inclusive to infinity
A group of 40 bowlers showed that their average score was 192. Assume the population standard deviation is 8. Find the 95% confidence interval of the mean score of all bowlers.
Answer:
[tex]CI=189.5,194.5[/tex]
Step-by-step explanation:
From the question we are told that:
Sample size [tex]n=40[/tex]
Mean [tex]\=x =192[/tex]
Standard deviation[tex]\sigma=8[/tex]
Significance Level [tex]\alpha=0.05[/tex]
From table
Critical Value of [tex]Z=1.96[/tex]
Generally the equation for momentum is mathematically given by
[tex]CI =\=x \pm z_(a/2) \frac{\sigma}{\sqrt{n}}[/tex]
[tex]CI =192 \pm 1.96 \frac{8}{\sqrt{40}}[/tex]
[tex]CI=192 \pm 2.479[/tex]
[tex]CI=189.5,194.5[/tex]
Approximate 5.7255 to the nearest thousand
round 5.7255 to thousands place
place after thousands place (5) rounds up the 5 before it
therefore 5.726 ur ans
MARK above ANS as branliest
Which choice is equivalent to(√6)( √8). How do you solve
A. 4√6
B. 4√3
C. 16√3
D. 3√16
Answer:
B
Step-by-step explanation:
(6)^1/2 × (8)^1/2
6^1/2 × 2 (2)^1/2
4 (3)^1/2
The time for a professor to grade a student’s homework in statistics is normally distributed with a mean of 13.3 minutes and a standard deviation of 2.0 minutes. What is the probability that randomly selected homework will require less than 17 minutes to grade?
Answer:
0.96784
Step-by-step explanation:
17-13.3/2
=1.85
p(x<1.85)
=0.96784
The probability that randomly selected homework will require less than 17 minutes to grade is 0.9678.
Mean [tex]\mu[/tex]=13.3 minutes
Standard deviation[tex]\sigma[/tex]=2 minutes
What is a z-score?The value of the z-score tells you how many standard deviations you are away from the mean.
So, the z-score of the above data
[tex]z=\frac{x-\mu}{\sigma}[/tex]
[tex]z=\frac{17-13.3}{2}[/tex]
[tex]z=1.85[/tex]
From the standard normal table, the p-value corresponding to z=1.85
Or, p(x<1.85)=0.9678 or 96.78%
Hence, the probability that randomly selected homework will require less than 17 minutes to grade is 0.9678.
To get more about the z-score visit:
https://brainly.com/question/25638875
the volume of a rectangular pyramid with a length of 7 feet, a width of 6 feet, and a height of 4.5 feet.
Answer:
Volume = 63 feet
Step-by-step explanation:
To find the volume of a cube or a rectangular prism, the formula is
(L x W x H)/3. In other words, it is the length of the prism, times the width of the prism, times the height of the prism, whole divided by three, since it has a "triangular shape."
Let's substitute in values for these letters, L, W, and H. You said the length was 7, the width was 6, and the height was 4.5. Therefore, it will result in
(7 x 6 x 4.5)/3. That results in 189/3, which is 63.
Hope this helped!!!