Answer:
The equation for the circle 12 seconds after the anchor is dropped is x^2 + y^2 = 360,000
Step-by-step explanation:
To find the equation for the circle 12 seconds when the radius of the ripple increases at a rate of 50 cm/s, the circle radius will be;
50 * 12 = 600 cm
Then place the equation inform of Pythagoras equation which is;
x^2 + y^2 = r^2
Where r is the radius
x^2 + y^2 = 600^2
x^2 + y^2 = 360,000
Then, the equation for the circle 12 seconds after the anchor is dropped is x^2 + y^2 = 360,000
The National Weather Service collects data on the number of hours of consecutive rainfall and the number of minor traffic accidents in a particular city. The scatter plot shows the data it gathered and the line of best fit. For a school project, Peyton uses technology to calculate the equation for line of best fit. If Peyton's calculation is correct, which equation could represent the line of best fit for this data?
The equation that could best represent the line of best fit for the given data is; y = 0.625x
How to find a linear equation from a scatter plot?The formula for the equation of a line in slope intercept form is;
y = mx + c
where;
m is slope
c is y-intercept which is the point where the line intersects the y-axis
Now, in this question, we see that the line intersects the y-axis at 0. Thus;
y-intercept; c = 0
Now, let us find the slope from the formula;
m = (y₂ - y₁)/(x₂ - x₁)
Using the first and penultimate coordinate which are;
(0, 0) and (8, 5), we have;
m = (5 - 0)/(8 - 0)
m = 0.625
Thus, the equation is;
y = 0.625x
Read more about Scatter plot equation at; https://brainly.com/question/6592115
#SPJ1
Answer:
y=0.625x
Step-by-step explanation:
plato
Which of the following is the graph of f(x) = x2 + 3x − 4? graph of a quadratic function with a minimum at 2, negative 9 and x intercepts at negative 1 and 5 graph of a quadratic function with a minimum at 3, negative 4 and x intercepts at 1 and 5 graph of a quadratic function with a minimum at 2.5, negative 2.4 and x intercepts at 1 and 4 graph of a quadratic function with a minimum at negative 1.5, negative 6.2 and x intercepts at 1 and negative 4
Answer:
x intercepts at -4 and 1,
with a minimum at (-1.5, -6.25)
Step-by-step explanation:
(x + 4)(x - 1) = 0
x = -4, 1
min = -b/2a = -3/2(1) = x = -1.5
y = (-1.5)² + 3(-1.5) - 4 = -6.25
Answer:
graph of a quadratic function with a minimum at negative 1.5, negative 6.2 and x intercepts at 1 and negative 4
Step-by-step explanation:
The graph shows the minimum is (-1.5, -6.25) and the x-intercepts are a -4 and 1. This matches the last description.
__
The x-coordinates of the offered minima are all different, so it is sufficient to know that the axis of symmetry is the line ...
x = -b/(2a) = -3/(2(1)) = -1.5 . . . . . . . for quadratic f(x) = ax² +bx +c
This is the x-coordinate of the minimum.
betty's bakery calculates the total price d in dollars for c cupcakes using the equation d=2c. What does 2 mean in this situation?
Answer:
2 means dollars per cupcake
Step-by-step explanation:
it makes sense because it says d=2c which is
money = $2 per cupcake
so if their are 2 cupcakes then
d=2*2 = $4
SOMEBODY PLS HALP ;( According to the number line, which statement MUST be true? A) A > 1 B) B > 4 C) C < 4 D) D < 0
Answer:
B
Step-by-step explanation:
B sqrtb is right in front of 2, so 2 squared is 4, so a little bit more than 2 squared will be a little more than four.
Answer:
C) C < 4
Step-by-step explanation:
because c is on the right side of four on the number line
Maria is buying new carpet for her bedroom .Her bedroom is in the shape of a square and the length of each side is 12 feet write and simplify an exponential express to find how much carpet she needs.
Answer:
well just do area, and since it's the same in each side 12×4= 144
Find four rational number between 1/4 and 2/3.
Answer:
4/12, 5/12, 6/12, 7/12
Step-by-step explanation:
1/4 x 3/3 = 3/12
2/3 x 4/4 = 8/12
between 3/12 and 8/12
4/12, 5/12, 6/12, 7/12
you can simplify these if you wish
Hope that helped!!! k
Please help! offering 25 points, 5 stars, and a thanks. Ive asked this 3 times now
Answer:
17 quarters
Step-by-step explanation:
Let q = quarters
n = nickels
.25q + .05n = 5.90
we have 16 more nickels than quarters so add 16 quarters to make them equal
n = q+16
Substitute
.25q + .05( q+16) = 5.90
Distribute
.25q+.5q+.80=5.90
Combine like terms
.30q +.8 = 5.90
Subtract .8 from each side
.30q = 5.10
Divide each side by .3
.3q/.3 = 5.1/.3
q = 17
Answer:
Gisel have:
17
quarters
Step-by-step explanation:
1 nickel = 5 cents
1 quarter = 25 cents
1 dollar = 100 cents
5,90 dollars = 5,9*100 = 590 cents
then:
n = t + 16
5n + 25t = 590
n = quantity of nickels
t = quantity of quarters
5(t+16) + 25t = 590
5*t + 5*16 + 25t = 590
5t + 80 + 25t = 590
30 t = 590 - 80
30 t = 510
t = 510 / 30
t = 17
n = t + 16
n = 17 + 16
n = 33
Check:
5n + 25t = 590
5*33 + 25*17 = 590
165 + 425 = 590
Which of the two functions below has the largest maximum y-value?
f(x) = -x4- 2
g(x) = -3x3 + 2
Answer:
g(x)=-3x^{3}+2
Step-by-step explanation:
g(x) has a range that of (-infinity, +infinity), whereas f(x) has a range of (-infinity, -2].
Answer:
Step-by-step explanation:
● f(x) = -x^4 -2
● g(x) = -3x^3 + 2
Derivate both functions:
● f'(x) = -4x^3
● g'(x) = -9x^2
Solve the equations f'(x) =0 and g'(x) =0
● f'(x) = 0
● -4x^3 = 0
● x^3 = 0
● x =0
● g'(x) = 0
● -9x^2 = 0
● x^2 =0
● x = 0
So both functions f and g reach their maximum at 0.
● f(0) = 0^4-2 = -2
● g(0) = -3×0^3 +2 = 2
So g(0)>f(0)
So g has the largest maximum value.
What is the quotient ? -4 /5 divide 2 A . - 1 3/5 B . -2 /5 c. 1/2 D . 1 3/ 5
Answer:
[tex] \boxed{ - \frac{2}{5} }[/tex]Option B is the correct option.
Step-by-step explanation:
[tex] \mathrm{ - \frac{4}{5} \div 2}[/tex]
[tex] \mathrm{dividing \: a \: negative \: and \: a \: positive \: equals \: a \: negative \:. \: ( - ) \div ( + ) = ( - )}[/tex]
[tex] \mathrm{ - \frac{4}{5} \div 2}[/tex]
[tex] \mathrm{dividing \: is \: equivalent \: to \: multiplying \: with \: the \: reciprocal}[/tex]
[tex] \mathrm{ - \frac{4}{5} \times \frac{1}{2} }[/tex]
[tex] \mathrm{reduce \: the \: numbers \: with \: G.C.F \: 2}[/tex]
[tex] \mathrm{ - \frac{2}{5} }[/tex]
Hope I helped!
Best regards!
The quotient of -4 /5 divide 2 would be equal to -2/5 in simplified form.
What are the Quotients?Quotients are the number that is obtained by dividing one number by another number. We can use the fact that division can be taken as multiplication but with the denominator's multiplicative inverse.
We have been given that -4 /5 divide 2
Thus, we have to divide the terms as;
-4 /5 ÷ 2
Therefore, -4 /5 x 1/ 2
-2/5
Hence, the quotient of -4 /5 divide 2 would be equal to -2/5 in simplified form.
Learn more about the quotient;
brainly.com/question/26913992
#SPJ2
Mia’s house and her aunt’s house are 15.4 inches apart on the map. If every 4 inches on the map represents 10 miles, what is the actual distance from Mia’s house to her aunt’s house, to the nearest tenth of a mile? 2.6 6.2 38.5 61.6
Answer:
38.5 miles
Step-by-step explanation:
Proportions:
4 inches ⇔ 10 miles
15.4 inches ⇔ M miles
M = 15.4*10/4
M = 38.5 miles
Answer: 38.5
Step-by-step explanation: cuz im smart
At dinner, 100 students pass through the cafeteria line and were served meals. 40 fish entrees and 60 pasta entrees were served to the students. A total of 20 students chose neither entree. Assuming all students were served zero, one, or two entrees, how many students were served two entrees
Answer: 20
Step-by-step explanation:
Given: Total students at the dinner = 100
Number of fish entrees = 40
Number of pasta entrees = 60
Number of students chose neither entree = 20
Now , Number of students chose either fish or pasta = (Total students) - (Number of students chose neither entree)
= 100-20
= 80
Now , Number of students chose either fish or pasta = (Number of fish entrees) + (Number of pasta entrees)- (Number of students chose both)
⇒ Number of students chose both = (Number of fish entrees) +(Number of pasta entrees)-(Number of students chose either fish or pasta)
= 40+60-80
= 20
Hence, the number of students were served two entrees = 20
20 students were served two entrees.
Given,
total student pass through cafeteria line and were served meal is 100.
No. of students choose fish entries is 40.
No. of students choose pasta entrees is 60.
No. of student choose neither entree is 20.
We have to calculate the no. of students served two entrees.
Now Number of students chose either fish or pasta will be,
[tex]N=100-20[/tex]
[tex]N=80[/tex]
Now no. of students choose both will be,
[tex]N=(fish\ entree+\ pasta \ entree )-Entree\ either \ pasta \ or \ fish[/tex]
[tex]N=60+40-80[/tex]
[tex]N=20[/tex]
Hence 20 students were served two entrees.
For more details follow the link:
https://brainly.com/question/24550771
50 POINTSS!! While preparing a roof, patty drops a screwdriver from a height of 80 feet. The function (h)t = -16t^2 + 80 gives the height of the screwdriver in the feet as feet after t seconds during its fall. Which of these is the graph of the function
Answer:
Graph D
Step-by-step explanation:
(h)t = -16t^2 + 80
At time t = 0 the screwdriver is at 0+80 =80 ft
As time increases the height will decrease so we can eliminate graph B
We know this is a downward parabola by the - in front of the t^2 so we can eliminate graph A
We need to find where it meets the x axis
0 = -16t^2 + 80
-80 = -16t^2
5 = t^2
t = sqrt(5)
t =2.23
This is Graph D
1. A cone is 8cm high and has a base diameter of 12cm.its slant height is a.6cm b.8cm c.10cm d.12cm
Answer:
10
Step-by-step explanation:
it is Pythagoras theorem
6*6=36
8*8=64
64+36=100
square root of 100 is 10
suppose you are mixing red and blue paint in a bucket. do you think the final color of the mixed paint will be the same whether you add the blue or the red paint first?relate your answer to a property of real numbers
Answer:
It does not matter which color you add first because either way you will end up with the same color, purple. We can relate this to the commutative property of addition because blue + red = red + blue.
Pls mark it Brainliest!!!
what is x if y is 50, it is equivalent to 9/150. the first peep gets brainliest
━━━━━━━☆☆━━━━━━━
▹ Answer
x = 3
▹ Step-by-Step Explanation
[tex]\frac{9}{150} \\\\150/3 = 50\\9/3 = 3\\\\x = 3[/tex]
Hope this helps!
CloutAnswers ❁
━━━━━━━☆☆━━━━━━━
What is the the product of (-1 - 3i) and it’s conjugate?
Answer:
10
Step-by-step explanation:
(-1 - 3i)(-1 + 3i) = 1 - 3i + 3i -9i²
1 - 9i²; i² = -1, therefore 1 - 9(-1) = 1 + 9 = 10
Find the value of x in this equation. 180-5x=140180−5x=140
Answer: 8
Step-by-step explanation:
Consider the circle of radius 10 centered at the origin. Find an equation of the line tangent to the circle at the point (6, 8)
Answer:
y = -3/4 x + 25/2
Step-by-step explanation:
x² + y² = 100
Take derivative with respect to x.
2x + 2y dy/dx = 0
2y dy/dx = -2x
dy/dx = -x/y
Evaluate at (6, 8).
dy/dx = -6/8
dy/dx = -3/4
Use point-slope form to write equation:
y − 8 = -3/4 (x − 6)
Simplify.
y − 8 = -3/4 x + 9/2
y = -3/4 x + 25/2
The width of a rectangle measures (8.3c-8.4d)(8.3c−8.4d) centimeters, and its length measures (5.3c+4.8d)(5.3c+4.8d) centimeters. Which expression represents the perimeter, in centimeters, of the rectangle?
Answer:
P = 27.2c-7.2d
Step-by-step explanation:
It is given that,
The width of a rectangle is (8.3c-8.4d)
The length of a rectangle is (5.3c+4.8d)
The perimeter of a rectangle is equal to the sum of its all sides i.e.
P = 2(l+b)
P = 2(8.3c-8.4d+5.3c+4.8d)
P = 2[(8.3c+5.3c)+(4.8d-8.4d)]
P = 2(13.6c-3.6d)
⇒P = 27.2c-7.2d
Hence, the expression that represents the perimeter of the rectangle is 27.2c-7.2d.
Jacob’s age is two years more than the sum of the ages of his siblings Becky and Micah. Which equation represents Jacob’s age? A. z = x + y − 2; x represents Micah's age, y represents Becky's age, and z represents Jacob's age B. x = y + z + 2; x represents Jacob's age, y represents Micah's age, and z represents Becky's age C. x = 2 + y + z; x represents Becky's age, y represents Jacob's age, and z represents Micah's age D. y = x + z − 2; x represents Jacob's age, y represents Becky's age, and z represents Micah's age
The equation that represents Jacob's age is x = y + z + 2
From the question, the following information was provided :
Jacob's age is two years more than the sum of the ages of his siblings Becky and Micah.
This above information can be represented with the equation below
Jacob = 2 + ( Becky + Micah) (equation 1)
If :
x represents Jacob's age
y represents Micah's age
z represents Becky's age
Equation 1, can be rewritten as x = y + z + 2
Micah's age can be determined by making Micah the subject of the formula in the above equation
Micah = Jacob - Becky - 2 (equation 2)
If :
x represents Micah's age
y represents Becky's age
z represents Jacob's age
Micah's age can be rewritten as :
x = z - y - 2
Becky's age age can be determined by making Becky the subject of the formula in the first equation.
Becky = Jacob - Micah - 2 (equation 3)
If:
x represents Becky's age
y represents Jacob's age
z represents Micah's age
Equation 3 can be rewritten as :
x = y - z - 2
Check here for a related question : https://brainly.com/question/21843246?referrer=searchResults
Using a system of equations, it is found that the correct equation is given by:
[tex]x = y + z + 2[/tex], which is option B.
---------------
Jacob's age is given by x.Becky's age is given by y.Micah's age is given by z.Considering that Jacob's is 2 years older than Becky's and Micah's combined, which is of y + z, his age is represented by the following equation:[tex]x = y + z + 2[/tex]
Which is given by option B.
A similar problem is given at https://brainly.com/question/24233433
Erica can run 1 / 6 fraction of a kilometer in a minute. Her school is 3 / 4 of a kilometer away from her home. At this speed, how long would it take Erica to run home from school? answer quick plz
Answer:
the result is 4.5 minutes.
- Erica runs 1/6 km in a minute.
- The school is 3/1 km away from her home.
Step-by-step explanation:
All of the following are true about the standard error of the mean except a. it is larger than the standard deviation of the population. b. its value is influenced by the standard deviation of the population. c. it decreases as the sample size increases. d. it measures the variability in sample means.
Answer:
The correct option is a.
Step-by-step explanation:
The standard deviation of the sampling distribution of sample mean ([tex]\bar x[/tex]) is known as the standard error. It is denoted by [tex]\sigma_{m}[/tex].
The formula to compute the standard error is:
[tex]\sigma_{m}=\frac{\sigma}{\sqrt{n}}[/tex]
As the population standard deviation is divided by the square root of the sample size, the standard error can never be more than the population standard deviation, σ.
Also, since the population standard deviation is directly proportional to the standard error, the value of [tex]\sigma_{m}[/tex] is affected by the value of σ.
And since the sample size is inversely proportional to the standard error, the value of [tex]\sigma_{m}[/tex] decreases as the value of n increases.
The sample mean is a statistic, i.e. it represents a specific characteristic (here, the average) of the sample.
The standard deviation of any statistic measures the variability of the statistic.
So, the standard error measures the variability in sample means.
Thus, the correct option is a.
3. A ship sails 35 km on a bearing of 042º.
a) How far north has it travelled?
b) How far east has it travelled?
4 A ship sails 200 km on a bearing of 243.7°
a) How far south has it travelled?
b) How far west has it travelled?
3 and 4 please
Answer:
3(a). The ship travelled in north is 26.0 km.
(b). The ship travelled in east is 23.4 km.
4(a). The ship travelled in south is -88.61 km.
(b). The ship travelled in west is -179.29 km.
Step-by-step explanation:
Given that,
(3). Distance = 35 km
Angle = 42°
Let distance in north is y km.
We need to calculate the distance
Using vertical component
[tex]y = d\cos\theta[/tex]
Put the value into the formula
[tex]y = 35\cos42[/tex]
[tex]y=26.0\ km[/tex]
Let distance in east is x km
We need to calculate the distance
Using horizontal component
[tex]x =d\sin\theta[/tex]
Put the value into the formula
[tex]x = 35\sin42[/tex]
[tex]x=23.4\ km[/tex]
(4). A ship sails 200 km on a bearing of 243.7°
Let distance in south is y km.
We need to calculate the distance
Using vertical component
[tex]y = d\cos\theta[/tex]
Put the value into the formula
[tex]y = 200\cos243.7[/tex]
[tex]y=-88.61\ km[/tex]
Let distance in west is x km
We need to calculate the distance
Using horizontal component
[tex]x =d\sin\theta[/tex]
Put the value into the formula
[tex]x = 200\sin243.7[/tex]
[tex]x=-179.29\ km[/tex]
Hence, 3(a). The ship travelled in north is 26.0 km.
(b). The ship travelled in east is 23.4 km.
4(a). The ship travelled in south is -88.61 km.
(b). The ship travelled in west is -179.29 km.
Write an equation for a line on the graph that passes through the points (0.4) and (12,16)
Answer:
[tex] y = x + 4 [/tex]
Step-by-step explanation:
Use the two-point form of the equation of a line.
[tex] y - y_1 = \dfrac{y_2 - y_1}{x_2 - x_1}(x - x_1) [/tex]
[tex] y - 4 = \dfrac{16 - 4}{12 - 0}(x - 0) [/tex]
[tex] y - 4 = \dfrac{12}{12}x [/tex]
[tex] y - 4 = x [/tex]
[tex] y = x + 4 [/tex]
Answer:
y = x + 4
Step-by-step explanation:
An equation for a line looks like:
=> y = mx +b
=> In this equation "m" is the slope.
=> "b" is the y-intercept.
To find the slope:
=> y/x - y1/x1
=> 16/12 - 4/0
=> 16 -4 / 12 - 0
=> 12 / 12
=> 1
So, the slope is 1.
Now our equation looks like:
y = 1x + b
=> y = x + b
Let's take some the values of "x" and "y" of (0,4)
So, our now look like:
=> 4 = 1 (0) + b
=> 4 = b
So, b (y-intercept) = 4
Now, our final equation is:
=> y = x + 4
Mai is putting money into a checking account.Let Y represent the total amount of money in the account (dollars)Let X represent the number of weeks Mai has been adding money suppose that x and y are related by the equation 550+40x =y what is the change per week in the amount of money in the account ?
Answer:
The answer is $40.
Step-by-step explanation:
According to the equation given in the question, we can assume that 550 is constant and was there when Mai started saving into a checking account.
Then as x gets increased by 1 each week, the amount of change in the account per week is $40.
I hope this answer helps.
A plumber’s apprentice needs to cut a 54-inch length of pipe so that one piece is twice the length of the other piece. How far from the endpoint should the apprentice cut the pipe?
Answer:
18 inches
Step-by-step explanation:
To to this you would just divide 54 by 3 and you would get how far away from the endpoint which is 18 inches
PLEASEEEEEEE HELP with this question
Answer:
second table
Step-by-step explanation:
Out of the 8 options on the spinner, 2 of them are 0's, 1 of them is a 1, 2 of them are 2's and 3 of them are 3's so the probability of spinning a 0, 1, 2 or 3 is 2/8, 1/8, 2/8 or 3/8 which becomes 0.25, 0.125, 0.25 or 0.375 respectively. Therefore, the answer is the second table.
ASAP!!!!!!!!! PLEASE help me with this question! This is really urgent! No nonsense answers please.
=================================================
Explanation:
Arcs CBH and FGH are given, while arc CDF is unknown. Let's call this y
y = measure of arc CDF
Adding the three arcs forms a full circle of 360 degrees
(arc CBH)+(arc FGH)+(arc CDF) = 360
170+64+y = 360
y+234 = 360
y = 360-234
y = 126
arc CDF = 126 degrees
Then notice how inscribed angle x cuts off arc CDF. By the inscribed angle theorem, we take half of the arc measure to get the inscribed angle measure.
inscribed angle = (arc measure)/2
x = (arc CDF)/2
x = 126/2
x = 63
Answer:
rewrite the fromula 126
Step-by-step explanation:
A coin is tossed. What is the theoretical probability of the coin NOT showing tails?
P(Not tails) =
Answer:
50%
Step-by-step explanation:
its 50% it will land on head and 50% it will land on tails since there is only two sides on a coin
Answer:
1/2 or .5
p(1/2)
Step-by-step explanation:
its simple, there are 2 sides to a coin, so there are 2 possible outcomes. and the question asks what is the probability of the coin landing on one or in other wrds, its asking what is te probilitity of one of the two heads to be up. SO the probility is 1/2
Simply. If the solution is not a real number enter not a real number rotate picture answer all 3 please
Answer:
13. [tex]\frac{\sqrt[5]{x^4} }{x}[/tex].
14. [tex]v = \pm3\sqrt{5}[/tex]
15. 2.
Step-by-step explanation:
13. [tex]x^{1/5} * x^{-2/5}[/tex]
= [tex]x^{1/5 + (-2/5)}[/tex]
= [tex]x^{1/5 - 2/5}[/tex]
= [tex]x^{-1/5}[/tex]
= [tex]\frac{1}{x^{1/5}}[/tex]
= [tex]\frac{x^{4/5}}{x^{1/5 + 4/5}}[/tex]
= [tex]\frac{x^{4/5}}{x}[/tex]
= [tex]\frac{\sqrt[5]{x^4} }{x}[/tex].
14. [tex]v^2 - 45 = 0[/tex]
[tex]v^2 = 45[/tex]
[tex]\sqrt{v^2} = \pm\sqrt{45}[/tex]
[tex]\sqrt{v^2} = \pm\sqrt{3^2 * 5}[/tex]
[tex]v = \pm3\sqrt{5}[/tex].
15. [tex]\sqrt[3]{2} * \sqrt[3]{4}[/tex]
= [tex]\sqrt[3]{2 * 4}[/tex]
= [tex]\sqrt[3]{2 * 2 * 2}[/tex]
= [tex]\sqrt[3]{2 ^3}[/tex]
= 2.
Hope this helps!