Answer:
heat and gas sometimes so true
true or false
The Total electric potential due to two or more charges is equal to the algebraic sum of the potentials due to the individual charges.
Answer:
i guess the answer is false
Are all harmful effects of smoking reversible? Explain your answer.
Please help me with this review question.
Answer:
28.7%
Explanation:
efficiency = work output /work input × 100
why the speed of light decreases as it passes from air into another substance?
Answer:
If light enters any substance with a higher refractive index (such as from air into glass) it slows down. The light bends towards the normal line. If light travels enters into a substance with a lower refractive index (such as from water into air) it speeds up. The light bends away from the normal line.
What is a transfer of energy called?
A. Displacement
B. Acceleration
C. Work
D. Torque
A wave has a frequency of 67 Hz and a wavelength of 7.1 meters. What is the speed of this
wave?
Answer:
475.7 m/s
Explanation:
Given,
Frequency ( f ) = 67 Hz
Wavelength ( λ ) = 7.1 m
To find : Speed ( v ) = ?
Formula : -
v = f λ
v
= 67 x 7.1
= 475.7 m/s
Therefore,
the speed of the wave is 475.7 m/s.
Question 10 (10 points)
Listen
In an ionic solution, 5.0x1015 negative ions with charge -e pass to the right each
second while 8.0x1015 positive ions with charge +2e pass to the left. What are the
magnitude and direction (+ or -) of current in the solution? (to the right is the +
direction, to the left is the - direction)
Note: Your answer is assumed to be reduced to the highest power possible.
Your Answer:
x10
Answer
units
Answer:
Please I do not understand the instructions given at the end of the question
Audrey, an astronomer is searching for extra-solar planets using the technique of relativistic lensing. Though there are believed to be a very large number of planets that can be found this way, actually finding one takes time and luck; and finding one planet does not help at all with finding planets of other stars in the same part of the sky. Audrey is good at it, and finds one planet at a time, on average once every three months. a.) Find the expected value and
Answer:
- the expected value is 8
- the standard deviation is 2.8284
Explanation:
Given the data in the question;
The model N(t), the number of planets found up to time t, as a poisson process,
∴ N(t) has distribution of poisson distribution with parameter (λt)
so
the mean is;
λ = 1 every month = 1/3 per month
E[N(t)] = λt
E[N(t)] = (1/3)(24)
E[N(t)] = 8
Therefore, the expected value is 8
For poisson process, Variance and mean are the same,
Var[N(t)] = Var[N(24)]
Var[N(t)] = E[N(24)]
Var[N(t)] = 8
so the standard deviation will be;
σ[N(24)] = √(Var[N(t)] )
σ[N(24)] = √(8 )
σ[N(24)] = 2.8284
Therefore, the standard deviation is 2.8284
I need help with this
Pls help ASAP
Imagine that Maritans launch a rocket toward the Earth at a great speed. While the
rocket is traveling toward us, it will appear
than it actually is.
O more blue
darker
larger
more red
Answer:
The rocket will appear larger than it actually is
A wave has a wavelength of 1.5 meters and period of 0.083s. What is the waves speed?
Please help me with this question. Every help is appreciated.
Answer:
Change in KE = +1.96×10^4 J while the change in ME = 0 J
Help me please with both questions?
Answer:
question #1 is A
Question #2 is C
Explanation:
here is a clever kitchen gadget for drying lettuce leaves after you wash them. It consists of a cylindrical container mounted so that it can be rotated about its axis by turning a hand crank. The outer wall of the cylinder is perforated with small holes. You put the wet leaves in the container and turn the crank to spin off the water. The radius of the container is 10.7 cm. When the cylinder is rotating at 1.65 revolutions per second, what is the magnitude of the centripetal acceleration at the outer wall
Answer:
11.5 m/s²
Explanation:
The centripetal acceleration, a = rω² where r = radius of cylinder = 10.7 cm = 0.107 m and ω = angular speed = 2πN where N = number of revolutions per second = 1.65 rev/s
So, a = rω²
a = r(2πN)²
a = 4π²rN²
substituting the values of the variables into the equation, we have
a = 4π²rN²
a = 4π²(0.107 m)(1.65 rev/s)²
a = 4π²(0.107 m)(2.7225 rev²/s)²
a = 4π² × 0.2913075 mrev²/s)²
a = 11.5 m/s²
A dog runs 51 m west to fetch a ball and brings it back only 27 m before stopping.
The total displacement of the dog is:
if 400g is 1kg find the ratio in the simplest form
2:5
Explanation:
400g : 1kg
400g: 1000g
4 : 10
2 : 5
The liquid emerges into a vertical jet as it drains from the container, with the velocity profile in the jet remaining uniform. The outlet of the container is located 2.0 m above ground, and the radius of the emerging liquid jet changes with vertical distance from the bottom of the container as it accelerates under the action of gravity. Neglecting viscous losses and surface tension effects in the liquid jet, what is the velocity of the water jet as it strikes the ground when the container begins to drain
Answer:
6.26 m/s
Explanation:
Since we are neglecting viscous losses and surface tension effects in the liquid jet, by conservation of energy, the potential energy loss of the jet = kinetic energy gain of the jet
So, mgh = 1/2mv² where m = mass of water in jet, g = acceleration due to gravity = 9.8 m/s², h = height of outlet = 2.0 mand v = velocity of liquid jet
So, mgh = 1/2mv²
gh = 1/2v²
v² = 2gh
v = √(2gh)
v = √(2 × 9.8 m/s² × 2.0 m)
v = √(39.2 m²/s²)
v = 6.26 m/s
Red light of wavelength 630 nm passes through two slits and then onto a screen that is 1.3 m from the slits. The center of the 3rd order bright band on the screen is separated from the central maximum by 0.90 cm. a) What is the frequency of the light, the slit separation, and the angle of the 3rd order bright band
Answer:
a) f = 4.76 10¹⁴ Hz, b) d = 2.73 10⁻⁴ m, c) θ = 6.923 10⁻³ rad
Explanation:
a) In this problem the frequency of light is asked, let's use the relationship between the speed of the wave, its wavelength and its frequency
c = λ f
f = c /λ
f = [tex]\frac{3 \ 10^8}{630 \ 10^{-9}}[/tex]
f = 4.76 10¹⁴ Hz
b) slit separation (d)
the expression for the constructive interference of the double-slit experiment is
d sin θ = m λ
let's use trigonometry
tan θ = y / L
tan θ = [tex]\frac{sin \theta}{cos \theta}[/tex]
in general the angles are small, so we can approximate
tan θ = sin θ
tan θ = y/L
we substitute
d y / L = m λ
d = m L λ / y
we calculate
d = 3 1.3 630 10⁻⁹ /0.90 10⁻²
d = 2.73 10⁻⁴ m
c) the angle
tan θ = y / L
θ = tan⁻¹ y / L
θ = tan⁻¹ 0.9 10⁻² / 1.3
θ = tan⁻¹ 6,923 10⁻³
let's find the angle in radians
θ = 6.923 10⁻³ rad
the number of perpandicular components of a force is
A car driver spends 3hrs driving at an average speed of 80km/hr, stops for 30 minutes to
have some rest, and then drives at an average speed of 90km/hr for 2 hours.
Calculate the average speed during the whole journey
Answer:
The average speed throughout the journey was 76.36 kilometers per hour.
Explanation:
Given that a car driver spends 3hrs driving at an average speed of 80km / hr, stops for 30 minutes to have some rest, and then drives at an average speed of 90km / hr for 2 hours, to determine the average speed during the whole journey the following calculation must be performed:
80 km / h x 3 = 240 km
90 km / h x 2 = 180 km
240 + 180 = 420 km
3 + 2 + 0.5 = 5.5 hours
420 / 5.5 = 76.36
Thus, the average speed throughout the journey was 76.36 kilometers per hour.
Chris used a non plane mirror to check out an box resting on a shelf. He wanted to find
the focal length of the mirror. The image of the box was located 15 cm behind the mirror
and the box was placed 19 cm from the mirror.
Chris used a non-plane mirror to check out a box resting on a shelf, the focal length of the mirror is mathematically given as
f=8.38cm
What is the focal length of the mirror?Question Parameter(s):
The image of the box was located 15 cm behind the mirror
and the box was placed 19 cm from the mirror.
Generally, the equation for the focal length is mathematically given as
1/f=1/u+1/v
Therefore
1/f=1/15+1/19
f=8.3823529cm
In conclusion, the focal length of the mirror
f=8.3823529cm
Read more about Lens
https://brainly.com/question/13161236
#SPJ2
Please help I will mark you brainliest
I believe the answer is a
A spring has a spring constant of 450 N/m. How much must this spring be stretched to store 49 J of potential energy?
Answer:
W = 1/2 K x^2
x^2 = 2 * W / K = 2 * 49 J / (N/m) = .218 / m^2
x = .467 m
a disk of radius 25 cm spinning at a rate of 30 rpm slows to a stop over 3 seconds. what is the angular acceleration?
b. how many radians did the disk turn while stopping?
c. how many revolutions?
Answer:
too many
Explanation:
What is the approximate surface temperature of the 'White Dwarfs'?.
2,500-5,000 K
5,000-10,000
10,000-15,000 K
15,000 K-35,000 K
Answer:
5,000-10,000 K
Explanation:
make me your brainlist pls
A go-cart is traveling at a rate of 25 m/sec for 20 seconds. How far will the go cart travel?
Answer:
Distance travel by go-cart = 500 meter
Explanation:
Given:
Speed of go cart = 25 m/s
Time travel = 20 seconds
Find:
Distance travel by go-cart
Computation:
Distance = Speed x time
Distance travel by go-cart = Speed of go cart x Time travel
Distance travel by go-cart = 25 x 20
Distance travel by go-cart = 500 meter
An organ pipe open at both ends has a length of 0.80 m. If the velocity of sound in air is 340 m/s, what is the frequency of the second harmonic of this pipe
Answer:
the frequency of the second harmonic of the pipe is 425 Hz
Explanation:
Given;
length of the open pipe, L = 0.8 m
velocity of sound, v = 340 m/s
The wavelength of the second harmonic is calculated as follows;
L = A ---> N + N--->N + N--->A
where;
L is the length of the pipe in the second harmonic
A represents antinode of the wave
N represents the node of the wave
[tex]L = \frac{\lambda}{4} + \frac{\lambda}{2} + \frac{\lambda}{4} \\\\L = \lambda[/tex]
The frequency is calculated as follows;
[tex]F_1 = \frac{V}{\lambda} = \frac{340}{0.8} = 425 \ Hz[/tex]
Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
The frequency of the second harmonic of the pipe is 425 Hz.
What is the frequency?Frequency is the number of oscillations per second in the sinusoidal wave.
Given is length of the open pipe, L = 0.8 m, and velocity of sound, v = 340 m/s
The wavelength of the second harmonic is represented as
L = A → N + N→N + N→A
where, L is the length of the pipe in the second harmonic, A represents antinode of the wave, N represents the node of the wave
Length = λ/4 +λ/2 +λ/4
Length = λ
The frequency is calculated
frequency = speed of light / wavelength
Put the values, we get
f = 340/0.80
f = 425 Hz
Therefore, the frequency of the second harmonic of the pipe is 425 Hz.
Learn more about frequency.
https://brainly.com/question/25867078
#SPJ5
If a reflected ray is 55 degrees from the normal line, they what is the angle of the
incident ray from normal?
Answer:
xplanation:
Angle of reflection is measured between the incident ray and the angle which it makes with the normal at the point where incident ray strikes the mirror surface.
Further on reflection, it makes the same angle i.e. angle of reflection is equal to angle of reflection.
Hence, as angle of incidence is 55∘ angle of reflection too is 55∘ and the angle between the incident ray and the reflected ray is 55∘+55∘=110∘
A copper wire of resistivity 2.6 × 10-8 Ω m, has a cross sectional area of 35 × 10-4 cm2
. Calculate
the length of this wire required to make a 10 Ω coil.
Answer:
the length of the wire is 134.62 m.
Explanation:
Given;
resistivity of the copper wire, ρ = 2.6 x 10⁻⁸ Ωm
cross-sectional area of the wire, A = 35 x 10⁻⁴ cm² = ( 35 x 10⁻⁴) x 10⁻⁴ m²
resistance of the wire, R = 10Ω
The length of the wire is calculated as follows;
[tex]R = \frac{\rho L}{A} \\\\L = \frac{RA}{\rho} \\\\L= \frac{10 \times (35\times 10^{-4}) \times 10^{-4}}{2.6 \times 10^{-8}} \\\\L = 134.62 \ m[/tex]
Therefore, the length of the wire is 134.62 m.
What is the speed of a ball that is attached to a string and swings in a horizontal circle of radius 2.0 m with the central acceleration of 15 m/s^2?
Answer:
5.48 m/s.
Explanation:
Use the formula a=v^2/r.