Answer:
hydrogen bonds
Explanation:
similarly CH3OH also has a OH group and H hydrogen thus it will also form h-bonding.
What is the cell potential of an electrochemical cell that has the half-reactions shown below?
Ag⁺ + e⁻ → Ag
Fe → Fe³⁺ + 3e⁻
Answer:
E°(Ag⁺/Fe°) = 0.836 volt
Explanation:
3Ag⁺ + 3e⁻ => Ag°; E° = +0.800 volt
Fe° => Fe⁺³ + 3e⁻ ; E° = -0.036 volt
_________________________________
Fe°(s) + 3Ag⁺(aq) => Fe⁺³(aq) + 3Ag°(s) ...
E°(Ag⁺/Fe°) = E°(Ag⁺) - E°(Fe°) = 0.800v - ( -0.036v) = 0.836 volt
Calculate the moment of inertia of a CH³⁵CL₃ molecule around a rotational axis that contains the C-H bond. The C-Cl bond length is 177pm and the HCCl angle is 107⁰f
Answer:
The correct answer is "[tex]4.991\times 10^{-45} \ kg.m^2[/tex]".
Explanation:
According to the question,
[tex]R_{C-Cl} = 177 \ pm[/tex]
or,
[tex]=1.77\times 10^{-10} \ m[/tex]
[tex]\alpha = 107^{\circ}[/tex]
[tex]m_{Cl}=34.97 \ m.u[/tex]
or,
[tex]=34.97\times 1.66\times 10^{-27}[/tex]
[tex]=5.807\times 10^{-26} \ kg[/tex]
The moment of inertia around the rotational axis will be:
⇒ [tex]I=3\times m_{Cl}\times (R_{C-Cl})^2 \ Sin^2 \alpha[/tex]
By putting the values, we get
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2 \ Sin^2 (107)[/tex]
[tex]=3\times 5.807\times 10^{-26}\times (1.77\times 10^{-10})^2\times 0.91452[/tex]
[tex]=4.991\times 10^{-45} \ kg.m^2[/tex]
The data shows the number of years that 30 employees worked for an insurance company before retirement. is the population mean for the number of years worked, and % of the employees worked for the company for at least 10 years. (Round off your answers to the nearest integer.)
Answer:
14
73%
Explanation:
The mean Number of years worked :
. (sum of service years) / employees in the
(8+13+15+3+13+28+4+12+4+26+29+3+10+3+17+13+15+15+23+13+12+1+14+14+17+16+7+27+18+24) /
(417 / 30)
= 13.9 years
= 14 years
The percentage of employees who have worked for atleast 10 years :
Number of employees with service years ≥ 10 years = 22 employees
Total number of employees
Percentage (%) = (22 / 30= * 100% = 0.7333 * 100% = 73.33% = 73%
How many liters of hydrogen can be produced at a pressure of 2 atm and a temperature of 298 K
Answer:
1.17 L of H₂
Explanation:
We'll begin by calculating the number of mole in 2.3 g of Mg. This can be obtained as follow:
Mass of Mg = 2.3 g
Molar mass of Mg = 24 g/mol
Mole of Mg =?
Mole = mass /molar mass
Mole of Mg = 2.3 / 24
Mole of Mg = 0.096 mole
Next, we shall determine the number of mole of H₂ produced by the reaction of 2.3 g (i.e 0.096 mole) of Mg. This can be obtained as follow:
Mg + 2HCl —> MgCl₂ + H₂
From the balanced equation above,
1 mole of Mg reacted to 1 mole of H₂.
Therefore, 0.096 mole of Mg will also react to produce 0.096 mole of H₂.
Finally, we shall determine volume of H₂ produced from the reaction. This can be obtained as follow:
Number of mole (n) of H₂ = 0.096 mole
Pressure (P) = 2 atm
Temperature (T) = 298 K
Gas constant (R) = 0.0821 atm.L/Kmol
Volume (V) of H₂ =?
PV = nRT
2 × V = 0.096 × 0.0821 × 298
Divide both side by 2
V = (0.096 × 0.0821 × 298) /2
V = 1.17 L
Therefore, 1.17 L of H₂ were obtained from the reaction.
Calculate the volume in liters of a 1.60 mol/L sodium nitrate solution that contains of sodium nitrate . Round your answer to significant digits.
Answer:
1.5L of NaNO3 must be present
Explanation:
That contains 200g of sodium nitrate. Round to 2 significant digits
To solve this question we need to convert the mass of NaNO3 to moles using its molar mass (85g/mol). With the moles and the molar concentration we can find the volume in liters of the solution:
Moles NaNO3:
200g * (1mol / 85g) = 2.353 moles NaNO3
Volume:
2.353 moles NaNO3 * (1L / 1.60moles) =
1.5L of NaNO3 must be presentplz help ASAP on my final project I will give you20$
Answer:
hey friend
how can I help you
I need help solving this!
For the reaction C + 2H2 → CH4, how many moles of hydrogen are needed to make 146.6 grams of methane, CH4 ?
Round your answer to the nearest tenth. If you answer is a whole number like 4, report the answer as 4.0
Use the following molar masses. If you do not use these masses, the computer will mark your answer incorrect.:
Element
Molar Mass
Hydrogen
1
Carbon
12
Answer: Moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
Explanation:
Given: Mass of methane = 146.6 g
As moles is the mass of a substance divided by its molar mass. So, moles of methane (molar mass = 16.04 g/mol) are calculated as follows.
[tex]Moles = \frac{mass}{molar mass}\\= \frac{146.6 g}{16.04 g/mol}\\= 9.14 mol[/tex]
The given reaction equation is as follows.
[tex]C + 2H_{2} \rightarrow CH_{4}[/tex]
This shows that 2 moles of hydrogen gives 1 mole of methane. Hence, moles of hydrogen required to form 9.14 moles of methane is as follows.
[tex]Moles of H_{2} = \frac{9.14}{2}\\= 4.57 mol[/tex]
Thus, we can conclude that moles of hydrogen required are 4.57 moles to make 146.6 grams of methane, [tex]CH_{4}[/tex].
In a closed system, If a gas is transported to a container with double the volume of the previous container, the gas was held in, what is the gases' new volume?
The volume of the gas is fixed and will not change.
The volume of the gas will be half the original volume.
The volume of the gas will be the original volume squared.
The volume of the gas will be double the original volume.
Answer:
The volume of the gas is fixed and will not change.
Explanation:
The volume of the gas will not change because there is no change in temperature. Temperature increases the volume of gases enclosed in a container.
The first law of thermodynamics defines chemical energy. defines entropy. is a statement of conservation of energy. provides a criterion for the spontaneity of a reaction.
Answer: The first law of thermodynamics is a statement of conservation of energy.
Explanation:
According to the first law of thermodynamics, heat provided to a system is actually the sum of internal energy and work done by the system or on the system.
Mathematically, [tex]\Delta Q = \Delta U + \Delta W[/tex]
The first law of thermodynamics also means that energy can neither be created nor it can be destroyed. Hence, energy is conserved.
Thus, we can conclude that the first law of thermodynamics is a statement of conservation of energy.
A major component of gasoline is octane when octane is burned in air it chemically reacts with oxygen to produce carbon dioxide and water what mass of carbon dioxide is produced by the reaction of oxygen
gasoline is the chemical that is coming out of the air
What is the formula of the compound Pentasilicon trioxide ?
Answer: the molecular formula of trioxide is ClOClO3 or Cl2O4
hope its helps you.
keep smiling be happy stay safe
The chemical formula is different from the empirical formula in
Answer:be careful and relax
Explanation:
Answer:
Hahaha be careful and relax
What is unit? Write down the units of mass, temperature and power
Explanation:
a single thing, person, or group forming part of a whole There are 36 units in my apartment building. the least whole number : one. a fixed quantity (as of length, time, or value) used as a standard of measurement An inch is a unit of length.mass=kilogram (kg)
temperature=kelvin
power=watt
hope it helps
stay safe healthy and happy..I need help with the practice question at the bottom. Thank you.
As the gas expands on the surrounding, work is done by the system.
Therefore, W= -279J
Absorbtion of heat,q= +216J
∆U=q+W = (216-279)J= -63J
Calculate the average atomic mass for X
Answer:
39.0229 amu
Explanation:
Hello there!
In this case, according to given information, the idea here is to multiply the percent abundance by the mass number of each isotope and then add them all together as shown below:
[tex]=0.0967*38+0.7868*39+0.1134*40+0.0031*41\\\\=3.6746+30.6852+4.536+0.1271\\\\=39.0229amu[/tex]
Regards!
Which procedure could a student use to examine an intensive property of a rectangular block of wood
Find the mass.
Record the length. Measure the volume. Determine the density.
Answer:
density
Explanation:
The procedure that the student could use to examine an intensive property of a rectangular block of wood is to determine its density. Density is intensive because it is the ration between the mass and the volume.
Answer: find the mass option A
Explanation:
Match the description with the type of precipitation being described.
1. Its formation requires very strong updrafts
2. Its formation requires falling through a layer of above freezing air
3. Precipitation from cumuliform clouds is typically of this nature
4. Precipitation from stratus clouds is typically of this nature
Options:
a. Hail
b. Drizzle
c. Shower
d. Freezing Rain
Answer:
1. Its formation requires very strong updrafts = a. Hail
2. Its formation requires falling through a layer of above-freezing air = d. Freezing Rain
3. Precipitation from cumuliform clouds is typically of this nature = c. Shower
4. Precipitation from stratus clouds is typically of this nature = Drizzle
Explanation:
Hail formation requires very strong updrafts, these updrafts are the upward moving air created in a thunderstorm. This period of noticeable thunderstorms creates hails.
Freezing rain requires the presence of warm air, it requires falling through a layer of above-freezing air to the colder air below to produce an ice coating on anything it drops on.
Showers are produced by cumuliform clouds which look like cotton balls. Since cumuliform clouds precipitate too, these clouds can have fluctuating rain in a day in the form of showers.
Drizzle which raises low visibility is considered a type of liquid precipitation since it also falls from a cloud. Drizzle which is obviously smaller in diameter when compared to that of raindrops, however, is common with stratus clouds.
Which of the five type of equilibrium problems best applies to this question: Consider the following reaction at equilibrium. What effect will reducing the volume of the reaction mixture have on the system
Answer:
d
Explanation:
What is the volume of a flask containing 0.199mol of Cl2at a temperature of 313K and a pressure of 1.19atm
Answer:
43.0 L
Explanation:
Step 1: Given and required data
Moles of chlorine gas (n): 0.199 molTemperature (T): 313 KPressure (P): 1.19 atmIdeal gas constant (R): 0.0821 atm.L/mol.KStep 2: Calculate the volume of the flask (V)
We will use the ideal gas equation.
P × V = n × R × T
V = n × R × T / P
V = 1.99 mol × (0.0821 atm.L/mol.K) × 313 K / 1.19 atm = 43.0 L
The answer is 4.30 L
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?
Answer:
By how many times would you expect Al2(SO4)3 to depress the F.P of water compared to sucrose C12H22011 ?.
Explanation:
The freezing point of a pure solvent decreases further by adding a nonvolatile solute.
This is called depression in freezing point.
When an ionic solute is dissolved then the depression in the freezing point is proportional to the number of ions present in the solution.
In aluminum sulfate, there are five ions formed as shown below:
[tex]Al_2(SO_4)_3(aq)->2Al^3^+(aq)+3SO_4^2^-(aq)[/tex]
But sucrose is a covalent compound and it does not undergo dissociation.
Hence, aluminum sulfate decreases the freezing point of water by five times compared to sucrose.
Explanation:
Which of the following was NOT explained by Dalton's atomic theory?
ANSWER:
A. the Law of Multiple Proportions
B. the difference between elements and compounds
C.?the difference between isotopes of an element
D. the Law of Conservation of Mass
Answer:
i think 1. law of muliple proportion
Explanation:
please like
g in the following three compounds(1,2,3) arrange their relative reactivity towards the reagent CH3Cl / AlCl3. Justify your order
Answer:
3 > 2> 1
Explanation:
Aromatic compounds undergo electrophilic substitution reaction with several electrophiles.
Some substituted benzenes are more reactive towards electrophilic aromatic substitution than unsubstituted benzene.
Certain groups of substituents increase the ease with which an aromatic compound undergoes aromatic substitution.
If we look at the compounds closely, we will notice that only toluene leads to easy reaction with CH3Cl / AlCl3. Thus is due to the +I inductive effect of -CH3 which stabilizes the negatively charged intermediate produced in the reaction.
A beaker is filled to the 500 mL mark with alcohol. What increase in volume (in mL) does the beaker contain when the temperature changes from 5° C to 30° C? (Neglect the expansion of the beaker, evaporation of alcohol and absorption of water vapor by alcohol.) The volume coefficient of expansion γγ for alcohol = 1.12 x 10-4 K-1
Answer:
"1.4 mL" is the appropriate solution.
Explanation:
According to the question,
[tex]v_0=500[/tex][tex]\alpha =1.12\times 10^{-4}[/tex][tex]\Delta \epsilon = 25[/tex]Now,
Increase in volume will be:
⇒ [tex]\Delta V = \alpha\times v_0\times \Delta \epsilon[/tex]
By putting the given values, we get
[tex]=1.12\times 10^{-4}\times 500\times 25[/tex]
[tex]=1.12\times 10^{-4}\times 12500[/tex]
[tex]=1.4 \ mL[/tex]
An unknown weak acid with a concentration of 0.530 M has a pH of 5.600. What is the Ka of the weak acid
Answer:
Ka = 3.45x10⁻⁶
Explanation:
First we calculate [H⁺], using the given pH:
pH = -log[H⁺][H⁺] = [tex]10^{-pH}=10^{-5.6}[/tex] [H⁺] = 2.51x10⁻⁶ MTo solve this problem we can use the following formula describing a monoprotic weak acid:
[H⁺] = [tex]\sqrt{C*Ka}[/tex]We input the data that we already know:
2.51x10⁻⁶ = [tex]\sqrt{0.530*Ka}[/tex]And solve for Ka:
Ka = 3.45x10⁻⁶A
(c) 2 C(s) + MnO2(s)
Mn(s) + 2 CO(g)
O combination reaction
O decomposition reaction
O combustion reaction
O single-displacement reaction
Answer: The reaction, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Explanation:
A chemical reaction in which one element of a compound is replaced by another element participating in the reaction.
For example, [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex]
Here, the element manganese is replaced by carbon atom. As only one element gets replaced so, it is a single-displacement reaction.
Thus, we can conclude that [tex]2C(s) + MnO_{2}(s) \rightarrow Mn(s) + 2CO(g)[/tex] is a single-displacement reaction.
Predict the products of below reaction, and whether the solution at equilibrium will be acidic, basic, or neutral.
N2O5 + 3H2O → __________
Answer: The product of the given reaction is [tex]HNO_{3}[/tex] and the solution at equilibrium will be acidic.
Explanation:
When two or more chemical substances react together then it forms new substances and these new substances are called products.
For example, [tex]3N_{2}O_{5} + 3H_{2}O \rightarrow 6HNO_{3}[/tex]
This shows that nitric acid [tex](HNO_{3})[/tex] is the product formed and it is an acidic substance.
Hence, the solution at equilibrium will be acidic in nature.
Thus, we can conclude that the product of the given reaction is [tex]HNO_{3}[/tex] and the solution at equilibrium will be acidic.
The length of a covalent bond depends upon the size of the atoms and the bond order.
a. True
b. False
Answer:
True
Explanation:
The length of covalent bond depends upon the size of atoms and the bond order.
what type of properties change ina physical change? Give an example to support your answer?
pls quick who will give the answer first will get the brainliest
Explanation:
We can observe some physical properties, such as density and color, without changing the physical state of the matter observed. Other physical properties, such as the melting temperature of iron or the freezing temperature of water, can only be observed as matter undergoes. A physical change physical change involves a change in physical properties. Examples of physical properties include melting, transition to a gas, change of strength, change of durability, changes to crystal form, textural change, shape, size, color, volume and density.hope it helps.stay safe healthy and happy.Perform the following operation and express the answer in scientific notation.
7.296×10² ÷ 9.6×10^-9
Answer:
7.6×10¹⁰
Explanation:
7.296×10²÷9.6×10⁻⁹
To solve such problem,
We group the whole number ans solved seperately and also group the indices and solve the seperately
Step1 : 7.296/9.6 = 0.76
Step 2: applying the law of indices,
10²÷10⁻⁹ = 10⁽²⁺⁹⁾ = 10¹¹
Therefore,
7.296×10²÷9.6×10⁻⁹ = 0.76×10¹¹ = 7.6×10¹⁰
Cal is titrating 57.7 mL of 0.311 M HBr with 0.304 M Ba(OH)2. How many mL of Ba(OH)2 does Cal need to add to reach the equivalence point?
Answer:
118.06 mL
Explanation:
The neutralization reaction between HBr (acid) and Ba(OH)₂ (base) is the following:
2HBr + Ba(OH)₂ → BaBr₂ + 2H₂O
According to the equation, 2 moles of HBr react with 1 mol Ba(OH)₂. Thus, at the equivalence point the moles of acid and base react completely:
2 moles HBr = 1 mol Ba(OH)₂
We can replace the moles by the product of the molar concentration (M) and volume (V):
2 x (M HBr) x (V HBr) = M Ba(OH)₂ x V Ba(OH)₂
Now, we introduce the data in the equation to calculate the volume in mL of Ba(OH)₂:
V Ba(OH)₂ = (2 x (M HBr) x (V HBr))/M Ba(OH)₂
= (2 x 0.311 M x 57.7 mL)/(0.304 M)
= 118.06 mL
Therefore, 118 mL of Ba(OH)₂ are needed.