Answer:
Step-by-step explanation:
[tex]2^{1/2} - 2^{-1/3} = 2^{1/2 + 1/3} = 2^{3/6} = 2^{1/2} = \sqrt{2}[/tex]
Answer:
[tex]\sqrt[6]{2}[/tex]
Step-by-step explanation:
2 ^ 1/2 ÷ 2 ^ 1/3
We know that a^b ÷ a^ c = a^(b-c)
2 ^ (1/2 -1/3)
2^ (3/6 - 2/6)
2 ^ 1/6
[tex]\sqrt[6]{2}[/tex]
The ocean surface is at 0 ft elevation. A diver is underwater at a depth of 138 ft. In this area, the ocean floor has a depth of 247 ft. A rock formation rises to a peak 171 ft above the ocean floor. How many feet below the top of the rock formation is the diver?
Answer:
The ocean surface is at 0 ft elevation. A diver is underwater at a depth of 138 ft. In this area, the ocean floor has a depth of 247 ft.
Step-by-step explanation:
Not sure about the answers I gave
Need help with the others
Answer:
Ask me
Step-by-step explanation:
Tell me dear ask..
The thickness X of aluminum sheets is distributed according to the probability density function f(x) = 450 (x2 - x) if 6 < x < 12 0 otherwise 5-1 Derive the cumulative distribution function F(x) for 6 < x < 12. The answer is a function of x and is NOT 1! Show the antiderivative in your solution. 5-2 What is E(X) = {the mean of all sheet thicknesses)? Show the antiderivative in your solution.
Solution :
Given :
[tex]f(x) = \left\{\begin{matrix}\frac{1}{450}(x^2-x) & \text{if } 6 < x < 12 \\ 0 & \text{otherwise}\end{matrix}\right.[/tex]
1. Cumulative distribution function
[tex]$P(X \leq x) = \int_{- \infty}^x f(x) \ dx$[/tex]
[tex]$=\int_{- \infty}^6 f(x) dx + \int_{6}^x f(x) dx $[/tex]
[tex]$=0+\int_6^x \frac{1}{450}(x^2-x) \ dx$[/tex]
[tex]$=\frac{1}{450} \int_6^x (x^2-x) \ dx$[/tex]
[tex]$=\frac{1}{450}\left[\frac{x^3}{3}-\frac{x^2}{2}\right]_6^x$[/tex]
[tex]$=\frac{1}{450}\left[ \left( \frac{x^3}{3} - \frac{x^2}{2}\left) - \left( \frac{6^3}{3} - \frac{6^2}{2} \right) \right] $[/tex]
[tex]$=\frac{1}{450}\left[\frac{x^3}{3} - \frac{x^2}{2} - 54 \right]$[/tex]
2. Mean [tex]$E(x) = \int_{- \infty}^{\infty} \ x \ f(x) \ dx$[/tex]
[tex]$=\int_{6}^{12}x . \left( \frac{1}{450} \ (x^2-x)\right)\ dx$[/tex]
[tex]$=\frac{1}{450} \int_6^{12} \ (x^3 - x^2) \ dx$[/tex]
[tex]$=\frac{1}{450} \left[\frac{x^4}{4} - \frac{x^3}{3} \right]_6^{12} \ dx$[/tex]
[tex]$=\frac{1}{450} \left[ \left(\frac{(12)^4}{4} - \frac{(12)^3}{3} \right) - \left(\frac{(6)^4}{4} - \frac{(6)^3}{3} \right) $[/tex]
[tex]$=\frac{1}{450} [4608 - 252]$[/tex]
= 17.2857
A loan of £1000 has a compound interest rate of 2.7% charged monthly. Express the original loan as a percentage of the total amount awed after 2 months if no payment are made
Answer:
£1054.729
Step-by-step explanation:
To find compound interest you need to use the equation 1000(1.027)^x.
To find the interest rate (1.027):
100 + 2.7 = 102.7
102.7 / 100 = 1.027
The value of x is the amount of months if no payment is made in this situation, so 2 would be the x value for this problem.
Hope this helps!
What are the solutions to the system of equations graphed below?
Answer:
D
Step-by-step explanation:
solution is the points where the two graphs intersect.
they intersect at (-3,-3) and (0,6)
What is the equation of a parabola with its vertex at the origin and its focus at (–2, 0)?
Step-by-step explanation:
this is the answerI hope it helps
(-3).(+9)-(-24)-(+6).(+2)
Cole biked at 5 mph for 1 hours. Which of the following choices show how far he biked?
A=5.5 miles
B=6.5 miles
C=7.5 miles
D=10 miles
Answer:
Most Likely A, 5.5 Miles
Step-by-step explanation:
However the question doesn't make sense as the logical answer is simply 5 miles, but the safest choice is 5.5
I need help solving this problem .
Step-by-step explanation:
here is the answer to your question
Which of the following can be constructed by drawing an angle on tracing
paper and then folding the paper so that the rays forming the angle lie upon
each other?
A. Parallel lines
• B. Angle bisector
• C. Median of a line segment
•
D. Perpendicular line segment
B. angle bisector.
i hope this helps
help i’ll give brainliest
Answer:
c c c c c c c c c c c c c c c c c c c c
1. You measure 24 textbooks' weights, and find they have a mean weight of 75 ounces. Assume the population standard deviation is 3.3 ounces. Based on this, construct a 90% confidence interval for the true population mean textbook weight.
2. You measure 37 backpacks' weights, and find they have a mean weight of 45 ounces. Assume the population standard deviation is 10.1 ounces. Based on this, construct a 95% confidence interval for the true population mean backpack weight.
3. You measure 30 watermelons' weights, and find they have a mean weight of 37 ounces. Assume the population standard deviation is 4.1 ounces. Based on this, what is the maximal margin of error associated with a 90% confidence interval for the true population mean watermelon weight.
4. A student was asked to find a 99% confidence interval for widget width using data from a random sample of size n = 16. Which of the following is a correct interpretation of the interval 11.8 < μ < 20.4?
A. There is a 99% chance that the mean of a sample of 16 widgets will be between 11.8 and 20.4.
B. The mean width of all widgets is between 11.8 and 20.4, 99% of the time. We know this is true because the mean of our sample is between 11.8 and 20.4.
C. With 99% confidence, the mean width of all widgets is between 11.8 and 20.4.
D. With 99% confidence, the mean width of a randomly selected widget will be between 11.8 and 20.4.
E. There is a 99% chance that the mean of the population is between 11.8 and 20.4.
5. For a confidence level of 90% with a sample size of 23, find the critical t value.
Answer:
(73.845 ; 76.155) ;
(41.633 ; 48.367) ;
1.273 ;
C. With 99% confidence, the mean width of all widgets is between 11.8 and 20.4. ;
1.717
Step-by-step explanation:
1.)
Given :
Mean, xbar = 75
Sample size, n = 24
Sample standard deviation, s = 3.3
α = 90%
Confidence interval = mean ± margin of error
Margin of Error = Tcritical * s/√n
Tcritical at 90% ; df = 24 - 1 = 23
Tcritical = 1.714
Margin of Error = 1.714 * 3.3/√24 = 1.155
Confidence interval = 75 ± 1.155
Confidence interval = (73.845 ; 76.155)
2.)
Given :
Mean, xbar = 45
Sample size, n = 37
Sample standard deviation, s = 10.1
α = 95%
Confidence interval = mean ± margin of error
Margin of Error = Tcritical * s/√n
Tcritical at 95% ; df = 37 - 1 = 36
Tcritical = 2.028
Margin of Error = 2.028 * 10.1/√37 = 3.367
Confidence interval = 45 ± 3.367
Confidence interval = (41.633 ; 48.367)
3.)
Given :
Mean, xbar = 37
Sample size, n = 30
Sample standard deviation, s = 4.1
α = 90%
Margin of Error = Tcritical * s/√n
Tcritical at 90% ; df = 30 - 1 = 29
Tcritical = 1.700
Margin of Error = 1.700 * 4.1/√30 = 1.273
5.)
Sample size, n = 23
Confidence level, = 90%
df = n - 1 ; 23 - 1 = 22
Tcritical(0.05, 22) = 1.717
I will mark you brainliest if you provide evidence you know what your doing
Work out the problem and make the answer clear
Option C
SOLUTION:
We need to find the value of B - CF
First find the value CF:
[tex]CF=\left[\begin{array}{ccc}12&0&1.5\\1&-6&7\\\end{array}\right] \left[\begin{array}{ccc}-2&0\\0&8\\2&1\end{array}\right][/tex]
[tex]CF=\left[\begin{array}{ccc}12(-2)+0 *0+1.5*2&12*0+0.8+1.5*1\\1*(-2)+(-6)*0+7.2&1*0+(-6)*8+7.1\\\end{array}\right][/tex]
[tex]CF=\left[\begin{array}{ccc}-21&1.5\\12&-41\\\end{array}\right][/tex]
Now find value of B - CF:
[tex]B-CF=\left[\begin{array}{ccc}2&8\\6&3\\\end{array}\right] -\left[\begin{array}{ccc}-21&1.5\\12&-41\\\end{array}\right][/tex]
[tex]B-CF=\left[\begin{array}{ccc}23&6.5\\-6&44\\\end{array}\right][/tex]
∴ the value of B - CF is [tex]\left[\begin{array}{ccc}23&6.5\\-6&44\\\end{array}\right][/tex]
I hope this helps....
Which of the following is equivalent to the expression log2a=r? 2a = r logr2 = a 2r = a log2r = a
9514 1404 393
Answer:
(c) 2^r = a
Step-by-step explanation:
The relationship between log forms and exponential forms is ...
[tex]\log_2(a)=r\ \Leftrightarrow\ 2^r=a[/tex]
__
Additional comment
I find this easier to remember if I think of a logarithm as being an exponent.
Here, the log is r, so that is the exponent of the base, 2.
This equivalence can also help you remember that the rules of logarithms are very similar to the rules of exponents.
Answer: Choice C) [tex]2^r = a[/tex]
This is the same as writing 2^r = a
==========================================================
Explanation:
Assuming that '2' is the base of the log, then we'd go from [tex]\log_2(a) = r[/tex] to [tex]2^r = a[/tex]
In either equation, the 2 is a base of some kind. It's the base of the log and it's the base of the exponent.
The purpose of logs is to invert exponential operations and help isolate the exponent. A useful phrase to help remember this may be: "if the exponent is in the trees, then we need to log it down".
The general rule is that [tex]\log_b(y) = x[/tex] converts to [tex]y = b^x[/tex] and vice versa.
Would you kindly help me.Im having a hard time understanding and I've been crying a lot trying to understand it
The graph of y=x^3 is transformed as shown in the graph below. Which equation represents the transformed function?
y = x cubed minus 4
y = (x minus 4) cubed
y = (negative x minus 4) cubed
y = (negative x) cubed minus 4
Answer:
y = (-x)^3 - 4
Step-by-step explanation:
Ok, for the function:
y = x^3
When x = 0, we have:
y = 0^3 = 0
So the original graph passes through the point (0, 0)
If we look at the given graph, we can see that the y-intercept (the value of y when x = 0) is:
y = -4
So, this is the graph of y = x^3 moved down 4 units.
You can also see that the graph goes downward as x increases (and up as x decreases) while for the function:
y = x^3
as x increases, we should see that y also increases.
Then we have a reflection across the x-axis.
Ok, now let's describe a vertical shift.
For a general function f(x), a vertical shift of N units is written as:
g(x) = f(x) + N
if N is positive, the shift is upwards
if N is negative, the shift is downwards.
And for a function f(x), a reflection across the x-axis is written as:
g(x) = - f(x)
Here we first apply the reflection across the x-axis, so we get:
g(x) = -f(x)
now we apply the shift 4 units downwards
g(x) = - f(x) - 4
replacing f(x) by our function, x^3
we get:
g(x) = -x^3 - 4
And because of the odd power, we can write:
-x^3 = (-x)^3
Then the function is:
g(x) = (-x)^3 - 4
The correct option is the last one.
y = (-x)^3 - 4
Levi makes the minimum salary for actuary. Andres maybe the median salary for cpa. Who makes more money
Answer:
Andres
why?
Because he is median salary for cpa
Find the perimeter of the
polygon if ZB = D.
3 om
B
4 cm
D
5 cm
C
P = [?] cm
Answer:
16 cm
Step-by-step explanation:
4 + 4 + 3 + 5 = 16
The = sign means that B (which is 4 cm) is equal to D (which had no number)
And because it says that B = D (with the squiggly line (or a tilde)) And the L's (which means that the letters represent an angle) All you have to do is add the numbers together, and you get 16.
Sorry if I explained it badly, you at least got the answer.
(And also, if I'm wrong, please tell me.)
Answer:
P = 32 cm
Step-by-step explanation:
Im just putting the right answer up so you don't accidentally put in the wrong one.
A bricklayer needs to order 6 300 kg of building sand.
a) Write 6 300 kg in grams, giving your answer in standard form.
One grain of this sand approximately weighs 7 x 10°g.
b) How many grains of sand are there in 6 300 kg of sand? Give your answer in standard from.
Answer:
It would be 6300000. I can't write this in standard form.
Step-by-step explanation:
Answer:
6.3 x 10^6
Step-by-step explanation:
Given the function
Calculate the following values:
Answer:
f(-1) = 1
f(0) = 20
f(2) = 38
Step-by-step explanation:
f(-1) = 9×-1 + 10 = -9 + 10 = 1
f(0) = 9×0 + 20 = 0 + 20 = 20
f(2) = 9×2 + 20 = 18 + 20 = 38
we needed to use the second definition for f(0), because that is the same as saying x=0.
and that is in the domain of the second function definition ( x>=0).
Which division problem does the diagram below best illustrate?
A diagram with 8 ovals containing 4 squares each.
O 16 divided by 4 = 4
O 32 divided by 4 = 8
O 36 divided by 4 = 9
O 8 divided by 2 = 4
Answer:
The answer is 32 divided by 4
Step-by-step explanation:
Because in each box there is 4. There are 8 ovals all together. So 8×4, you get 32 and divide it by the number of squares in an oval which is 4
Answer:
the answer is 32 divided by 4=8
Step-by-step explanation:
because when you look at the ovals there's eight ovals and in side there's four squares..
HOPE THIS HELPS!!!!!
Write an equation that expresses the following relationship.
d varies directly with w and inversely with p.
In your equation, use k as the constant of proportionality.
9514 1404 393
Answer:
d = kw/p
Step-by-step explanation:
When d varies directly with w, the equation is ...
d = kw
When d varies inversely with p, the equation is ...
d = k/p
When d does both, the equation is ...
d = kw/p
Yess again pls help!
Tyyy
Write an equation of the line that passes through the point (4, –5) with slope 2.
A. y−4=−2(x+5)
B. y+5=−2(x−4)
C. y+5=2(x−4)
D. y−4=2(x+5)
a + b·c = a + c·b is an example of the associative property.
Answer:
yes , This is an example of the associative property.
Step-by-step explanation:
You and a friend were invited to a
party. You both were asked to bring
pizzas and chips. Your friend brought
three pizzas and four bags of chips
and spent $48.05. You brought five
pizzas and two bags of chips and
spent $67.25. What is the cost of
each? Answer should be in (Pizza, Chips)
Answer:
Pizza = 12.35
Chips = 2.75
Step-by-step explanation:
Let :
Pizza = x
chips = y
3x + 4y = 48.05 - - - (1)
5x + 2y = 67.25 - - - (2)
Multiply (1) by 5 and (2) by 3
15x + 20y = 240.25
15x + 6y = 201.75
Subtract :
20y - 6y = 240.25 - 201.75
14y = 38.50
y = 38.50/ 14
y = 2.75
Put y = 2.75 in (1)
3x + 4(2.75) = 48.05
3x + 11 = 48.05
3x = 48.05 - 11
3x = 37.05
x = 37.05 / 3
x = 12.35
Pizza = 12.35
Chips = 2.75
If you select a random sample of 6 people, what is the probability that all but one of them are using Chrome as their browser? (show all work - use data below)
Use the data provided below:
Chrome: 52.57%
Safari: 31.17%
Firefox: 4.29%
Edge: 2.91%
IE: 2.47%
Samsung: 2.36%
Answer:
0.1143 = 11.43% probability that all but one of them are using Chrome as their browser
Step-by-step explanation:
For each person, there are only two possible outcomes. Either they use Chrome, or they do not. The probability of a person using Chrome is independent of any other person, which means that the binomial probability distribution is used to solve this question.
Binomial probability distribution
The binomial probability is the probability of exactly x successes on n repeated trials, and X can only have two outcomes.
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
In which [tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
And p is the probability of X happening.
Chrome: 52.57%
This means that [tex]p = 0.5257[/tex]
Sample of 6 people
This means that [tex]n = 6[/tex]
What is the probability that all but one of them are using Chrome as their browser?
5 using Chrome, so:
[tex]P(X = x) = C_{n,x}.p^{x}.(1-p)^{n-x}[/tex]
[tex]P(X = 5) = C_{6,5}.(0.5257)^{5}.(1-0.5257)^{1} = 0.1143[/tex]
0.1143 = 11.43% probability that all but one of them are using Chrome as their browser
A multiple regression model is ^Y = 8.114 + 2.005X1 + 0.774X2. Which of the following values is the estimate for the intercept parameter?
a. 0.774.
b. 8.114.
c. 1.000.
d. 2.005.
Answer:
B. 8.114
Step-by-step explanation:
The intercept parameter is the zero-grade component of the multilinear equation, that is, the component independent from [tex]x_{1}[/tex] and [tex]x_{2}[/tex]. Hence, the intercept parameter of the multilinear regression is 8.114. (Correct answer: B)
A radioactive substance decays exponentially: The mass at time t is m(t) = m(0)e^kt, where m(0) is the initial mass and k is a negative constant. The mean life M of an atom in the substance is
[infinity]
M = âk â« te^kt dt.
0
For the radioactive carbon isotope, 14C, used in radiocarbon dating, the value of k is -0.000121. Find the mean life of a 14C atom.
Answer:
mean life = 8264.5 s
Step-by-step explanation:
k = - 0.000121
The relation is given by
[tex]m = mo e^{kt}[/tex]
Now, the mean life is the life time for which the sample retains.
The mean life is the reciprocal of the decay constant.
The relation between the mean life and the decay constant is
[tex]\tau =\frac{1}{k}\\\\\tau = \frac{1}{0.000121} = 8264.5 seconds[/tex]
PLEASE HELPPPP WILL GIVE BRAINLIESTTTT
Factor the following expressions completely. Show and check all work on your own paper.
9x2-18x+9
Hi there!
[tex]\large\boxed{9(x - 1)^{2}}[/tex]
9x² - 18x + 9
We can begin by factoring out a 9 from each term:
9(x² - 2x + 1)
Now, find two terms that add up to -2 and equal 1 when multiplied. We get:
9(x - 1)(x - 1)
Or:
9(x - 1)²