Answer:
y=15x+126
Step-by-step explanation:
the slope is
15 because -8-(-9) is 1 and 6-(-9) is 15 and y is over x so slope 15
To find y intercept start from -8,6 and add 15 to the y value every time you add one to the x value
you will add 8 times and you get 126 as the intercept
Consider a bag of jelly beans that has 30 red, 30 blue, and 30 green jelly beans. a) How many color combinations of 15 beans have at least 6 green beans
Answer:
680
Step-by-step explanation:
Number of red beans = 30
Number of Blue beans = 30
Number of green beans = 30
How many color combinations of 15 beans have at least 6 green beans?
Since at least 6 of the beans must be green,
Then (15 - 6) = 9
Then, the remaining 9 could be either red, blue or green.
Therefore, C(9 + (9 - 1), 3)
C(17, 3) = 17C3
nCr = n! ÷ (n-r)! r!
17C3 = 17! ÷ (17 - 3)! 3!
17C3 = 17! ÷ 14!3!
17C3 = (17 * 16 * 15) / (3 * 2)
17C3 = 4080 / 6
17C3 = 680 ways
Using the combination formula, it is found that there are 17,157,323,000,000,000 color combinations of 15 beans have at least 6 green beans.
The order in which the beans are chosen is not important, hence, the combination formula is used to solve this question.
Combination formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by:
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
Th total number of combinations of 15 beans from a set of 30 + 30 + 30 = 90 is:
[tex]C_{90,15} = \frac{90!}{15!75!} = 45795674000000000[/tex]
With less than 6 green, we have:
0 green:
[tex]C_{30,0}C_{60,15} = \frac{60!}{15!45!} = 53194089000000[/tex]
1 green:
[tex]C_{30,1}C_{60,14} = \frac{30!}{1!29!} \times \frac{60!}{14!46!} = 520376960000000[/tex]
2 green:
[tex]C_{30,2}C_{60,13} = \frac{30!}{2!28!} \times \frac{60!}{13!47!} = 2247585600000000[/tex]
3 green:
[tex]C_{30,3}C_{60,12} = \frac{30!}{3!27!} \times \frac{60!}{12!48!} = 5681396900000000[/tex]
4 green:
[tex]C_{30,4}C_{60,11} = \frac{30!}{4!26!} \times \frac{60!}{11!49!} = 9391696900000000[/tex]
5 green:
[tex]C_{30,5}C_{60,10} = \frac{30!}{5!25!} \times \frac{60!}{10!50!} = 10744101000000000[/tex]
Hence, the total for the number of combinations with less than 5 green is:
[tex]53194089000000 + 520376960000000 + 2247585600000000 + 5681396900000000 + 9391696900000000 + 10744101000000000 = 28638351000000000[/tex]
Subtracting the total amount of combinations from the number with less than 5 green, the number of combinations with at least 6 green is:
[tex]T = 45795674000000000 - 28638351000000000 = 17157323000000000[/tex]
There are 17,157,323,000,000,000 color combinations of 15 beans have at least 6 green beans.
A similar problem is given at https://brainly.com/question/24437717
Open the graphing tool. Move the slider for the equation y = kx3 to a position of your choice, where k ≠ 1. Next, move the slider of y = (kx)3 so the two graphs lie on top of one another. How do the values of k compare with one another in this situation? Why do you think that is?
Answer:
For the functions to coincide, the value of k in y = (kx)3 must be smaller than in y = kx3. This is because the value of y changes more rapidly when k is cubed inside the parentheses. The behavior of the functions is similar since a vertical stretch is similar to a horizontal compression.
Step-by-step explanation:
PLATO
Simplify 10 - [14 = (3 + 4) · 2]+3
Answer:
There is a typo near the equal sign.
There can be two different answers if we think that = sign as + or -.
First way: Making = as +
=> 10 - [14 + (3+4) x 2] +3
=> 10 - [14 + 7 x 2] + 3
=> 10 - [14 + 14] + 3
=> 10 - 28 + 3
=> 10 + 3 - 28
=> 13 - 28
=> -15
=> So, -15 is the answer if we consider "=" sign as "+" sign.
Second way: Making = as -
=> 10 - [14 - (3+4) x 2] + 3
=> 10 - [14 - 7 x 2] + 3
=> 10 - [14 - 14] + 3
=> 10 - 0 + 3
=> 10 + 3
=> 13
=> So, 13 is the answer if we consider "=" sign as "-" sign.
Evaluate 2/3 + 1/3 + 1/6 + … THIS IS CONTINUOUS. It is NOT as simple as 2/3 + 1/3 + 1/6.
[tex]a=\dfrac{2}{3}\\r=\dfrac{1}{2}[/tex]
The sum exists if [tex]|r|<1[/tex]
[tex]\left|\dfrac{1}{2}\right|<1[/tex] therefore the sum exists
[tex]\displaystyle\\\sum_{k=0}^{\infty}ar^k=\dfrac{a}{1-r}[/tex]
[tex]\dfrac{2}{3}+\dfrac{1}{3}+\dfrac{1}{6}+\ldots=\dfrac{\dfrac{2}{3}}{1-\dfrac{1}{2}}=\dfrac{\dfrac{2}{3}}{\dfrac{1}{2}}=\dfrac{2}{3}\cdot 2=\dfrac{4}{3}[/tex]
Suppose that the neighboring cities of Tweed and Ledee are long-term rivals. Neal, who was born and raised in Tweed, is confident that Tweed residents are more concerned about the environment than the residents of Ledee. He knows that the average electricity consumption of Tweed households last February was 854.11 kWh and decides to test if Ledee residents used more electricity that month, on average. He collects data from 65 Ledee households and calculates the average electricity consumption to be 879.28 kWh with a standard deviation of 133.29 kWh. There are no outliers in his sample data. Neal does not know the population standard deviation nor the population distribution. He uses a one-sample t-test with a significance level of α = 0.05 to test the null hypothesis, H0:µ=854.11, against the alternative hypothesis, H1:μ>854.11 , where μ is the average electricity consumption of Ledee households last February. Neal calculates a t‑statistic of 1.522 and a P-value of 0.066.
Based on these results, complete the following sentences to state the decision and conclusion of the test.
Neal's decision is to__________ the __________ (p 0.066). There is_________ evidence to _________ the claim that the average electricity consumption of ____________ is _________ , ________
Complete Question
The option to the blank space are shown on the first uploaded image
Answer:
Neal's decision is to fail to reject the null hypothesis (p 0.066). There is no sufficient evidence to prove the claim that the average electricity consumption of all Ledee household is greater than , 854.28 kWh
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 854.11[/tex]
The sample size is [tex]n = 65[/tex]
The sample mean is [tex]\= x = 879.28 \ kWh[/tex]
The standard deviation is [tex]\sigma = 133.29 \ kWh[/tex]
The level of significance is [tex]\alpha = 0.05[/tex]
The null hypothesis is [tex]H_o: \mu = 854.11[/tex]
The alternative hypothesis is [tex]H_a : \mu > 854.11[/tex]
The t-statistics is [tex]t = 1.522[/tex]
The p-value is [tex]p-value = 0.066[/tex]
Now from the given data we can see that
[tex]p-value < \alpha[/tex]
Generally when this is the case , we fail to reject the null hypothesis
So
Neal's decision is to fail to reject the null hypothesis (p 0.066). There is no sufficient evidence to prove the claim that the average electricity consumption of all Ledee household is greater than , 854.28 kWh
find the domain of the graphed function.
A particular salad contains 4 units of vitamin A, 5 units of vitamin B complex, and 2 mg of fat per serving. A nutritious soup contains 6 units of vitamin A, 2 units of vitamin B complex, and 3 mg of fat per serving. If a lunch consisting of these two foods is to have at least 10 units of vitamin A and at least 10 units of vitamin B complex, how many servings of each should be used to minimize the total number of milligrams of fat
Answer:
2 servings of salad and 1 serving of soup
Step-by-step explanation:
In the given scenario the aim is to minimise the fat content of the food combination.
Fat content of soup is 3mg while fat content of salad is 2 mg.
Using Soup as 0 and Salad as 2 will not give the required vitamin content
The logical step will be to keep servings of soup to the minimum.
Let's see some combinations of salad and soup. Keeping serving of soup to the minimum of 1
1. 1 serving of salad and one serving of soup will contain 10 mg of vitamin A, 7 mg of vitamin B complex, and 3 mg of fat.
This will not work because amount of vitamin B complex is not up to 10 mg
2. 2 servings of salad and 1 serving of soup. Will contain 14 mg of vitamin A, 12 mg of vitamin B, and 7 mg of fat
This is the best option as we have amount of vitamin A and vitamin B complex in adequate quantity.
Also fat is lowest in this combination because soup the food with highest fat content is at minimum amount of one serving
The expression $16x^2-106x-105$ can be written as $(8x + a)(2x + b),$ where $a$ and $b$ are integers. What is $a + 2b$?
Answer:
-23
Step-by-step explanation:
16x² - 106x - 105
factoring X
14 x -120 = -1680
14 - 120 = -106
16x² + 14x - 120x - 105
(16x² + 14x) -(120x - 105)
factor out 2 and -15 to get the same expression (8x + 7)
2x(8x + 7) - 15(8x + 7)
(8x + 7)(2x - 15)
a = 7
b = -15
a + 2b
7 + (-15 x 2)
7 + (-30)
= -23
Help Quick Please. Will give brainliest.
Answer:
72[tex]\sqrt{3}[/tex] units²
Step-by-step explanation:
The area (A) of the triangle is calculated as
A = [tex]\frac{1}{2}[/tex] bh ( b is the base and h the perpendicular height )
Here b = ST = a = 12 and h = RS
To calculate RS use the tangent ratio in the right triangle and the exact value
tan60° = [tex]\sqrt{3}[/tex] , thus
tan60° = [tex]\frac{opposite}{adjacent}[/tex] = [tex]\frac{RS}{ST}[/tex] = [tex]\frac{RS}{12}[/tex] = [tex]\sqrt{3}[/tex] ( multiply both sides by 12 )
RS = 12[tex]\sqrt{3}[/tex]
Thus
A = [tex]\frac{1}{2}[/tex] × 12 × 12[tex]\sqrt{3}[/tex] = 6 × 12[tex]\sqrt{3}[/tex] = 72[tex]\sqrt{3}[/tex] units²
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
Complete Question
Two samples from the same population both have M = 84 and s2 = 20, but one sample has n = 10 and the other has n = 20 scores. Both samples are used to evaluate a hypothesis stating that μ = 80 and to compute Cohen’s d. How will the outcomes for the two samples compare?
a.
The larger sample is more likely to reject the hypothesis and will produce a larger value for Cohen’s d.
b.
The larger sample is more likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
c.
The larger sample is less likely to reject the hypothesis and will produce a larger value for Cohen’s d.
d.
The larger sample is less likely to reject the hypothesis, but the two samples will have the same value for Cohen’s d.
Answer:
The Cohen's d value is [tex]d = 0.895[/tex]
The correct option is b
Step-by-step explanation:
From the question we are told that
The sample mean of each population is [tex]M = 84[/tex]
The variance of each population is [tex]s^2 = 20[/tex]
The first sample size is [tex]n_1 = 10[/tex]
The second sample size is [tex]n_2 = 20[/tex]
The null hypothesis is [tex]H_o : \mu = 80[/tex]
Generally the standard deviation is mathematically evaluated as
[tex]s = \sqrt{20 }[/tex]
=> [tex]s = 4.47[/tex]
The first test statistics is evaluated as
[tex]t_1 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_1} } }[/tex]
=> [tex]t_1 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{10} } }[/tex]
=> [tex]t_1 = 2.8298[/tex]
The second test statistics is evaluated as
[tex]t_2 = \frac{M - \mu }{ \frac{\sigma }{ \sqrt{n_2} } }[/tex]
=> [tex]t_2 = \frac{84 - 80 }{ \frac{4.47 }{ \sqrt{20} } }[/tex]
=> [tex]t_2 = 4.0[/tex]
The sample with the larger test statistics (sample size) will more likely reject the null hypothesis
Generally the Cohen's d value is mathematically evaluated as
[tex]d = \frac{M - \mu }{s }[/tex]
=> [tex]d = \frac{ 84 - 80 }{4.47 }[/tex]
=> [tex]d = 0.895[/tex]
Given that the the sample mean and sample size are the same for both sample the Cohen's d value will be the same
which expression is equivalent to(x²y)³?
Answer:
x^6 y^3
Step-by-step explanation:
(x²y)³
We know that (ab) ^c = a^c * b^c
(x²y)³ = x^2 ^3 * y^3
We know that a^b^c = a^(b*c)
(x²y)³ = x^2 ^3 * y^3 = x^( 2*3) y^3 = x^6 y^3
Question
Consider this expression.
4/2² - 6²
Type the correct answer in the box. Use numerals instead of words. For help, see this worked example e.
When a =
-5 and b = 3, the value of the expression is
Submit
Answer:
16
Step-by-step explanation:
4 * sqrt( a^2 - b^2)
Let a = -5 and b =3
4 * sqrt( (-5)^2 - 3^2)
Do the squaring first
4 * sqrt( 25 - 9)
Subtract inside the square root
4 * sqrt( 16)
Take the square root
4 * 4
Multiply 16
Answer:
[tex]\Large \boxed{16}[/tex]
Step-by-step explanation:
[tex]4\sqrt{a^2-b^2 }[/tex]
[tex]\sf Plug \ in \ the \ values \ for \ a \ and \ b.[/tex]
[tex]4\sqrt{-5^2-3^2 }[/tex]
[tex]4\sqrt{25-9 }[/tex]
[tex]4\sqrt{16}[/tex]
[tex]4 \times 4=16[/tex]
Identify the decimals labeled with the letters A, B, and C on the scale below. Letter A represents the decimal Letter B represents the decimal Letter C represents the decimal
[tex]10[/tex] divisions between $15.59$ and $15.6$ so each division is $\frac{15.60-15.59}{10}=0.001$
A is 5 division from $15.59$, so, A is $15.59+5\times 0.001=15.595$
similarly, C is 4 division behind $15.59$ so it is $15.590-4\times0.001=15.586$
and B is $15.601$
Solve x/10 = -7 A. x = 3 B. x = -0.7 C. x = -17 D. x = -70
Answer:
x = -70
Step-by-step explanation:
x/10 = -7
Multiply each side by 10
x/10*10 = -7*10
x = -70
which operation should you perform first when evaluating the expression 3²+ 2
Answer:
You should calculate 3² first.
Step-by-step explanation:
In PEMDAS, E (which stands for exponents) comes before A (which stands for addition) so therefore you should calculate 3² first.
Explanation:
The acronym PEMDAS helps determine the order of operations
P = parenthesis
E = exponents
M = multiplication
D = division
A = addition
S = subtraction
With the expression [tex]3^2+2[/tex] we have two operations going on here: exponents and addition.
Since exponents comes before addition (E comes before A in PEMDAS), this means we evaluate [tex]3^2[/tex] first, then add later.
If f(x)=4x-6 and g(x) vx+2 what is (f*g)(7)
Answer: The value of (f*g)(7) is 66.
Step-by-step explanation:
Given functions: [tex]f(x)= 4x-6\text{ and } g(x)=\sqrt{x+2}[/tex]
Since, product of two functions: [tex](u*v)(x)=u(x)\times v(x)[/tex]
[tex](f*g)(x)=f(x)\times g(x)\\\\=4x-6\times \sqrt{x+2}\\\\\Rightarrow\ (f*g)(x)=(4x-6) \sqrt{x+2}[/tex]
[tex](f*g)(7)=(4(7)-6)\sqrt{7+2}\\\\=(28-6)\sqrt{9}\\\\=22\times 3=66[/tex]
Hence, the value of (f*g)(7) is 66.
A la propiedad fundamental de las proporcionas, comprueba si las siguientes son o no hay elementos a) 5/7 a 15/21 b) 20/7 a 5/3 c) 16/8 a 4/2
Answer:
fucuvucybycych tcy bic ttx TV ubtx4 cub yceec inivtxr xxv kb
Step-by-step explanation:
t tcextvtcbu6gt CNN tx r.c tct yvrr TV unu9gvt e tch r,e xxv t u.un4crcuv3cinycycr xxv yctzrctvtcrzecycyvubr xiu nyfex tut uhyh
The U.S. National Whitewater Center in Charlotte uses a pump station to provide the flow of water necessary to operate the rapids. The pump station contains 7 pumps, each with a capacity to deliver 80,000 gallons per minute (gpm). The water channels and ponds in the facility contain 13 million gallons of water. If the pump station is operating 5 pumps simultaneously, assuming ideal conditions how long will it take to completely pump the volume of the system through the pump station
Answer:
t = 32,5 minutes
Step-by-step explanation:
Volume to fill = 13000000 Gal
5 pumps delivering 80000 gal/min
5 * 80000 = 400000 gal/min
If we divide the total volume by the amount of water delivered for the 5 pumps, we get the required time to fill the volume, then
t = 13000000/ 400000
t = 32,5 minutes
Which is the graph of g(x) = (0.5)x + 3 – 4?
Answer:
Graph (A)
Step-by-step explanation:
Given question is incomplete; find the question in the attachment.
Given function is g(x) = [tex](0.5)^{x+3}-4[/tex]
Parent function of the given function is,
f(x) = [tex](0.5)^{x}[/tex]
When the function 'f' is shifted by 3 units left over the x-axis, translated function will be,
h(x) = f(x+3) = [tex](0.5)^{x+3}[/tex]
When h(x) is shifted 4 units down, translated function will be,
g(x) = h(x) - 4
g(x) = [tex](0.5)^{x+3}-4[/tex]
g(x) has a y-intercept as (-4).
From the given graphs, Graph A shows the y-intercept as (-4).
Therefore, Graph A will be the answer.
Answer:
The Answer A is correct
Step-by-step explanation:
I took the edg2020 test
2. A 10 Mg truck hauls a 20 Mg trailer. If the unit starts from rest on a level road with a
tractive force of 20 kN between the driving wheels of the truck and the road, calculate the
acceleration of the unit and the tension in the horizontal draw-bar.
Drawbar
20 Mg Trailer
10 Mg Truck
a=0.667 m/s2
T= 13.3 KN
Oro
W
Answer:
The acceleration on the unit is 0.667 m/s^2
The tension on the draw-bar is 13.34 kN
Step-by-step explanation:
The mass of the truck = 10 Mg = 10 x 10^3 kg
The mass of the trailer = 20 Mg = 20 x 10^3 kg
Tractive force from the truck = 20 kN = 20 x 10^3 N
The total mass of the unit = 10 Mg + 20 Mg = 30 Mg = 30 x 10^3 kg
The tractive force on the unit will produce an acceleration that is given as
F = ma
where
F is the tractive = 20 x 10^3 N
m is the mass of the unit = 30 x 10^3 kg
a is the acceleration of the unit = ?
substituting into the equation
20 x 10^3 = 30 x 10^3 x a
a = (20 x 10^3)/(30 x 10^3) = 0.667 m/s^2
the tension on the draw-bar T is gotten from considering only the mass that is pulled by the draw-bar which is 20 Mg
The acceleration on the unit = 0.667 m/s^2
The drawn mass = 20 Mg = 20 x 10^3 kg
The tension on the draw bar = ma = 20 x 10^3 x 0.667 = 13340 N
= 13.34 kN
The acceleration is 0.00067m/s^2, while the tension on the horizontal bar is 13.4 N
The given parameters are:
[tex]\mathbf{m = 10Mg}[/tex] -- mass of the truck
[tex]\mathbf{M = 20Mg}[/tex] -- mass of the trailer
[tex]\mathbf{F_T = 20kN}[/tex] --- tractive force
Start by calculating the total mass
[tex]\mathbf{M_T = m + M}[/tex]
So, we have:
[tex]\mathbf{M_T = 10Mg + 20Mg}[/tex]
[tex]\mathbf{M_T = 30Mg}[/tex]
Convert to kilograms
[tex]\mathbf{M_T = 30 \times 10^3kg}[/tex]
[tex]\mathbf{M_T = 30000 kg}[/tex]
Force is calculated as:
[tex]\mathbf{F =ma}[/tex]
So, we have:
[tex]\mathbf{20kN =30000kg \times a}[/tex]
Divide both sides by 30000
[tex]\mathbf{a = 0.00067ms^{-2}}[/tex]
The tension on the horizontal bar (i.e. the 20 Mg trailer) is:
[tex]\mathbf{T=ma}[/tex]
So, we have:
[tex]\mathbf{T=20Mg \times 0.00067ms^{-2}}[/tex]
Rewrite as:
[tex]\mathbf{T=20 \times 10^3 kg \times 0.00067m/s}[/tex]
[tex]\mathbf{T=13.4N}[/tex]
Hence, the acceleration is 0.00067m/s^2, while the tension on the horizontal bar is 13.4 N
Read more about force and acceleration at:
https://brainly.com/question/20511022
If AD=2/3AB, the ratio of the length of BC to the length of DE is A. 1/6 B. 1/4 C. 3/2 D. 3/4
Answer:
The correct answer is c
Step-by-step explanation:
Answer:
C.) 3/2
Explanation:
PLATO
Could someone help me pls! And could you explain if possible? Thanks you
Answer:
3%
Step-by-step explanation:
1. Set up the equation
6(0.18) + 12x = 18(0.08)
2. Simplify
1.08 + 12x = 1.44
3. Solve
12x = 0.36
x = 0.03
0.03 = 3%
Suppose the following data show the prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3. Calculate the standard deviation of the sample of selling prices. (please express your answer using 2 decimal places)
Answer: 2.40
Step-by-step explanation:
Given: The prices of 4 cars with similar characteristics that sold at a recent auction (in thousands of dollars): 6.6, 5, 10.7, 7.3.
Let x: 6.6, 5, 10.7, 7.3.
n= 4
Mean : [tex]\overline{x}=\dfrac{\sum x}{n}[/tex]
[tex]\Rightarrow\ \overline{x}=\dfrac{6.6+5+10.7+7.3}{4}\\\\=\dfrac{29.6}{4}\\\\=7.4[/tex]
Now , standard deviation = [tex]\sqrt{\dfrac{\sum(x-\overline{x})^2}{n-1}}[/tex]
[tex]=\sqrt{\dfrac{(6.6-7.4)^2+( 5-7.4)^2+( 10.7-7.4)^2+( 7.3-7.4)^2}{4-1}}\\\\=\sqrt{\dfrac{0.64+5.76+10.89+0.01}{3}}\\\\=\sqrt{\dfrac{17.3}{3}}\approx2.40[/tex]
Hence, the standard deviation of the sample of selling prices = 2.40
Please answer this correctly without making mistakes
Step-by-step explanation:
Option A and B are the correct answer because it equal to 688.5 and 688.05
Answer:
it is 1377/2 and 688 1/17 thats the answer
Step-by-step explanation:
The amounts of nicotine in a certain brand of cigarette are normally distributed with a mean of 0.966 grams and a standard deviation of 0.315 grams. Find the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less.
Answer:
The probability is [tex]P(X \le 0.305 ) = 0.01795[/tex]
Step-by-step explanation:
From the question we are told that
The population mean is [tex]\mu = 0.966 \ grams[/tex]
The standard deviation is [tex]\sigma = 0.315 \ grams[/tex]
Given that the amounts of nicotine in a certain brand of cigarette are normally distributed
Then the probability of randomly selecting a cigarette with 0.305 grams of nicotine or less is mathematically represented as
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(\frac{X - \mu }{\sigma } > \frac{0.305 - \mu }{\sigma } )[/tex]
Generally
[tex]\frac{X - \mu }{\sigma } = Z (The \ standardized \ value \ of X )[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z > \frac{0.305 - 0.966 }{0.315} )[/tex]
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - P(Z >-2.0984 )[/tex]
From the z-table(reference calculator dot net ) value of [tex]P(Z >-2.0984 ) =0.98205[/tex]
So
[tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 1 - 0.98205[/tex]
=> [tex]P(X \le 0.305 ) = 1 - P(X > 0.305) = 0.01795[/tex]
=> [tex]P(X \le 0.305 ) = 0.01795[/tex]
Kelvin wants to know whether he skied without falling more than twice as long as anyone else in his family. His dad tells him that he can check by using the inequality 2f < 223, where f is the time skied in seconds for each person. Plug the values for the time skied by each person into the inequality to find the answer.
Lori 55
Vanessa 265
Devon 172
Celia 112
Arnold 356
Answer:
Kelvin did not skied without falling more than twice as long as anyone else in his family.
Step-by-step explanation:
The inequality representing the event where Kelvin skied without falling more than twice as long as anyone else in his family is:
[tex]2f<223[/tex]
Here 223 is the time for Kelvin.
Check for Lori as follows:[tex]2f<223[/tex]
[tex]2\times 55=110<223[/tex]
Kelvin skied without falling more than twice as long as Lori.
Check for Vanessa as follows:[tex]2f<223[/tex]
[tex]2\times 265=530>223[/tex]
Kelvin skied without falling less than twice as long as Vanessa.
Check for Devon as follows:[tex]2f<223[/tex]
[tex]2\times 172=344>223[/tex]
Kelvin skied without falling less than twice as long as Devon.
Check for Celia as follows:[tex]2f<223[/tex]
[tex]2\times 112=224>223[/tex]
Kelvin skied without falling less than twice as long as Celia.
Check for Arnold as follows:[tex]2f<223[/tex]
[tex]2\times 356=712>223[/tex]
Kelvin skied without falling less than twice as long as Arnold.
Thus, Kelvin did not skied without falling more than twice as long as anyone else in his family.
Answer:
Yes, Kevin skied 2x as long as Lori.
Step-by-step explanation:
Kevin's time was 223 seconds; Lori's time was 110 seconds.
110^2 = 220 or 110 multiplied by 2 equals 220 or 110 x 2 = 220 or
110 * 2 = 220
Thus, Kevin indeed, skied twice as long as Lori.
What is the value of this expression when x = -6 and y = — 1/2? 4(x^2+3) -2y A. -131 B. -35 C. 57 1/2 D. 157
Answer:
D
Step-by-step explanation:
[tex]4(x^2+3)-2y\\\\=4((-6)^2+3)-2(\frac{-1}{2} )\\\\=4(36+3)+1\\\\=4(39)+1\\\\=156+1\\\\=157[/tex]
The value of the expression 4(x² + 3) - 2y is 157, when x = -6 and y = -1/2.
What is an algebraic expression?An algebraic expression is consists of variables, numbers with various mathematical operations,
The given expression is,
4(x² + 3) - 2y
Substitute x = -6 and y = -1/2 to find the value of expression,
= 4 ((-6)² + 3) - 2(-1/2)
= 4 (36 + 3) + 1
= 4 x 39 + 1
= 156 + 1
= 157
The required value of the expression is 157.
To know more about Algebraic expression on:
https://brainly.com/question/19245500
#SPJ2
How many odd numbers with 4 different digits, can be formed using the digits 1, 2, 3, 4, 5, 6, 7, 8? (No repetition is allowed)
A. 71
B. 200
C. 210
D. 840
E.1680
Answer:
840 ( D )
Step-by-step explanation:
GIVEN DIGITS : 1,2,3,4,5,6,7,8
Number of odd numbers = 4
Number of even numbers = 4
therefore the number of odd numbers with 4 different digits can be formed by the same way the number of even numbers ( without repetition )
Hence the number of ways odd numbers with 4 different digits = Total number of ways of forming 4 digit numbers / 2
8*7*6*5 = 1680 / 2 = 840 ways
Lynn estimates roof jon 1500,bo estimates 2400. What's the ratio to lynn to bo
Answer:
5:8
Step-by-step explanation:
If I understand your question correctly, we have 1500/2400=15/24=5/8, so we have Lynn:Bo is 5:8, however, in the future please be more clear.
What is "estimates roof jon"? And, instead of saying "ratio to lynn to bo" say "What is the ratio of the estimates?" or whatever you're asking. If this answer is wrong, you only have yourself to blame.
HELP PLEASE PLEASE :(
Answer:
16
Step-by-step explanation:
It’s a ratio.
x/12=21/28
21x=12*28
21x=336
x=336/21
x=16