What is the solution of
O x≤-3 or 2
Ox<-3 or 2
O-3≤x≤2
or x > 7
O-3 7
x²+x-6
<0?
X-7 50₂
Answer:
[-3, 7].
Step-by-step explanation:
do i need to explain all that?
Answer:
The inequality can be rewritten as x-7 ≤ 50, which we can solve by adding 7 to both sides to get x ≤ 57.
Step-by-step explanation:
It seems like there are multiple questions combined in this one prompt. I will break them down and provide solutions for each one.
Solution for O x≤-3 or 2 Ox<-3 or 2 O-3≤x≤2 or x > 7:
To find the solution for this inequality, we need to solve each part separately and then combine the solutions using the union (OR) operation.
a) x ≤ -3: This part is already solved for x. The solution is x ≤ -3.
b) 2x < -3: We divide both sides by 2 to isolate x and get x < -3/2.
c) 2 ≤ x ≤ -3: This is not possible as there is no number that is both greater than or equal to 2 and less than or equal to -3.
d) x > 7: This part is already solved for x. The solution is x > 7.
The solution to the entire inequality is the union of these solutions: x ≤ -3 OR x < -3/2 OR x > 7.
Solution for x²+x-6 < 0
To solve this quadratic inequality, we can factor it as (x-2)(x+3) < 0 and use the sign chart method.
We create a sign chart for the expression (x-2)(x+3) and test the sign of the expression in each interval
-3 2
---|-------|---
- +
(x-2) - 0 + +
(x+3) - - - 0 +
-------------
- + - 0 +
The sign chart tells us that the expression is negative when x is between -3 and 2. Therefore, the solution to the inequality is -3 < x < 2.
Solution for x-7 ≤ 50₂
It seems like the expression "50₂" is intended to represent the number 50 in base 2 (binary). To convert this number to base 10 (decimal), we can write 50₂ as
50₂ = 12^5 + 12^4 + 02^3 + 02^2 + 12^1 + 02^0 = 32 + 16 + 2 = 50
Therefore, the inequality can be rewritten as x-7 ≤ 50, which we can solve by adding 7 to both sides to get x ≤ 57.
Question 17 (2 points)
Suppose that 10% of Peloton bikes are defective and should be replaced. Peloton
offers one-year warranties on their new bikes, and should a customer use the bike in
the first year and discover the defect, the bike will be replaced. Peloton also knows
that 75% of customers use the bike in the first year. What is the probability a
customer will actually make a valid warranty claim?
0.075
0.10
0.175
0.75
The probability that a customer will actually make a valid warranty claim is 0.075.
What is Probability?A probability is a numerical representation of the likelihood or chance that a specific occurrence will take place. Both proportions ranging from 0 to 1 and percentages ranging from 0% to 100% can be used to describe probabilities.
According to question:The probability that a customer will make a valid warranty claim is the probability that the customer both uses the bike in the first year (which has a probability of 0.75) and discovers a defect (which has a probability of 0.10).
Using the multiplication rule of probability, the probability that both of these events occur is:
0.75 x 0.10 = 0.075
Therefore, the probability that a customer will actually make a valid warranty claim is 0.075.
To know more about Probability visit:
brainly.com/question/30034780
#SPJ1
Interpret the confidence interval. Select the correct choice below and fill in the answer boxes to complete your choice (Round to one decimal place as needed.) I O A. We can be 95% confident that the mean duration of imprisonment, p, of all political prisoners with chronic PTSD is somewhere between 19 4 months and 46.1 months. O B. There is a 95% chance the mean duration of imprisonment, p, of all political prisoners with chronic PTSD will equal the mean of the interval from 19.4 months to 46.1 months
We can be 95% confident that the mean duration of imprisonment, p, of all political prisoners with chronic PTSD is somewhere between 19.4 months and 46.1 months.
Therefore the answer is A.
A confidence interval is a range of values that is likely to contain the true population parameter (in this case, the mean duration of imprisonment for political prisoners with chronic PTSD). The confidence level (in this case, 95%) indicates the percentage of times that the interval will contain the true population parameter in repeated sampling.
Option A correctly interprets the confidence interval by stating that we can be 95% confident that the true mean duration of imprisonment for political prisoners with chronic PTSD falls between 19.4 months and 46.1 months. This means that if we were to take many random samples of political prisoners with chronic PTSD and calculate the mean duration of imprisonment for each sample, 95% of the resulting confidence intervals would contain the true population mean.
Option B is incorrect because a confidence interval does not give the probability of the population parameter being in a particular range. It only gives the probability that the interval will contain the true population parameter if the sampling and estimation process is repeated many times.
To know more on confidence interval
https://brainly.com/question/24131141
#SPJ4
Is this a quadrilateral, parallelogram, rectangle,rhombus,square or trapezoid 
As all the sides of the closed figure are equal to each other, the quadrilateral here is a square.
What is a square?A square is a closed, two-dimensional (2D), object with four corners. With four sides and four vertices, a quadrilateral is referred to as a square. All four sides of a square are equal and parallel.
In other words, a square is a polygon or quadrilateral with four sides. An equiangular quadrilateral is a shape in which all of the angles are of equal size.
Here in the given figure, we can see a quadrilateral is given.
We can see that all the sides of the quadrilateral are given to be equal to each other.
We can conclude from the observation that the quadrilateral is a square as the sides are all equal to each other.
To know more about squares, visit:
https://brainly.com/question/16865200
#SPJ1
HELP ME ASAP PLEASE!!!!!!!!!
Answer:
See step by step.
Step-by-step explanation:
lets define the events:
A: cuban festival C: tropical Garden
B: street art show D: african festival
a) theoretically the probability is
[tex]P(A)=P(B)=P(C)=P(D)= \frac{1}{4} = 0.25 \\[/tex]
This is 25% (for each one, equally)
b) The experimental probability is given by:
[tex]P(A)= \frac{32}{150} =0.2133[/tex]
[tex]P(B)= \frac{38}{150} =0.2533[/tex]
[tex]P(C)= \frac{35}{150} =0.2333[/tex]
[tex]P(D)= \frac{45}{150} =0.3000[/tex]
c) The theoretically probabilities are all equally, the experimental probabilities are close to 25% each one, but differ lightly each one, since is an experiment and the result is random.
Zinnia wrote the following proof to show that the diagonals of rectangle ABCD are congruent:
Zinnia's proof:
Statement 1: Rectangle ABCD is given
Statement 2: segment AD ≅ segment BC because opposite sides of a rectangle are congruent
Statement 3: segment DC ≅ segment DC by the reflexive property of congruence
Statement 4: Angles ADC and BCD are both right angles by definition of a rectangle
Statement 5: Angles ADC and BCD are congruent because all right angles are congruent
Statement 6:
Statement 7: segment AC ≅ segment BD by CPCTC
Which statement below completes Zinnia's proof? (1 point)
Triangles ADC and BCD are congruent (by ASA postulate)
Triangles ADC and BCD are congruent (by SAS postulate)
Triangles ADC and CBA are congruent (by ASA postulate)
Triangles ADC and CBA are congruent (by SAS postulate)
ADC & BCD are congruent triangles (by SAS postulate). Since triangle ADC & BCD are congruent according to the SAS postulate, we may utilize CPCTC to determine that section AC is equal to segment BD.
All are triangles 3/4 of a five?In arithmetic progression, the triangles 3: 4: 5 are the only ones with edges. Pythagorean triple-based triangles are Herodian, which means they have integer areas and sides.
Are the numbers 3 4 5 a right triangle?The easiest approach I've found to know for sure if an aspect is 90 degrees is to use the 3:4:5 triangle. According to this rule, a triangle is said to be a right triangle if one of its sides is 3 and the other is 4.
To know more about Triangles visit:
https://brainly.com/question/29083884
#SPJ1
The mean weight of 4 parcels is 8.5kg. Three of them weighed 7.7 kg, 7.6 kg and 8.2 kg.
What is the weight of the fourth parce1?
Answer:
Weight of the fourth parcel will be 10.5 kgStep-by-step explanation:
Weight of first parcal = 7.7 kg Weight of second parcel = 7.6 kgWeight of third parcel = 8.2 kg Mean Weight = 8.5 kgLet weight of fourth parcel be x
Mean = Sum of all values/total number of values.
8.5 = 7.7 + 7.6 + 8.2 + x/4
8.5 = 23.5 + x/4
8.5 × 4 = 23.5 + x
34 = 23.5 + x
34 - 23.5 = x
10.5 = x
Therefore, weight of the fourth parcel will be 10.5 kg
What percent of 2160 is 270?
The percent of the number 2160 which is 270 is 12.5%.
Given a number 2160.
It is required to find the percent of this number which is 270.
Let x be the percent of 2160 which is 270.
Then, this can be written as:
2160 × (x/100) = 270
2160 × x = 270 × 100
2160 × x = 27000
x = 27000 / 2160
= 12.5
Hence the required percentage is 12.5%.
Learn more about Percentage here :
https://brainly.com/question/17151247
#SPJ6
In the diagram O is the centre of the circle. If ZOAB 32' and ZEDA-15, find: (1) ZADB and (ii) ZEAO. D 37°
Therefore, the answers are: (i) ZADB = 48.5 degrees, and (ii) ZEAO = 54 degrees.
What is angle?An angle is a geometric concept that describes the amount of rotation between two intersecting lines or planes. It is defined as the figure formed by two rays with a common endpoint, called the vertex. The two rays are called the sides of the angle, and they can be measured in degrees or radians.
In the degree measurement system, a full rotation is 360 degrees, and an angle that is one quarter of a rotation (90 degrees) is called a right angle. Angles that are less than 90 degrees are called acute angles, while angles greater than 90 degrees but less than 180 degrees are called obtuse angles. An angle that measures exactly 180 degrees is called a straight angle, and an angle that measures greater than 180 degrees, but less than 360 degrees is called a reflex angle.
by the question.
ZOAB + ZEDA = 32 + 15 = 47 degrees. Since these two angles are opposite each other, they must add up to 180 degrees (straight angle) and therefore, ZAOB + ZEDC = 180 - 47 = 133 degrees.
Angle D is given as 37 degrees, and since ZEDC is a straight line, ZEDD = 180 - 37 = 143 degrees.
ZADB = ZAOB + ZOAB + BAD. Since ZAOB + ZOAB = 180 - ZEDC = 180 - 133 = 47 degrees, we have ZADB + BAD = 37 + 47 = 84 degrees. Also, BAD is an exterior angle of triangle ABD, so it is equal to the sum of the two opposite interior angles, which are ZADB and ABD. Therefore, ZADB + ABD + BAD = 180 degrees. Substituting the value of BAD and simplifying, we get ZADB = 48.5 degrees.
ZEAO = ZEDC - ZEDA - ZOAD. We already know ZEDC and ZEDA, so we need to find ZOAD. Since ZOAB and ZOAD are opposite each other, they must add up to 180 degrees. Also, ZOAB is equal to half the central angle ZODB (since it subtends the same arc), which is equal to 2ZOAD (since it is an inscribed angle subtended by the same arc). Therefore, we have ZOAB + ZOAD = 180 and ZOAB = ZOAD/2. Substituting the value of ZOAB from the given information, we get ZOAD = 64 degrees. Substituting all the values, we get ZEAO = 54 degrees.
To learn more about acute angles:
https://brainly.com/question/10334248
#SPJ1
Consider two agents, Alice and Bob, who have utility functions 0.3x3 + 0.72A if xa > XB (0.314 +0.72B if XB > XA UA(2A, 2B) = UB(XA, XB) 4X A – 32B if XB > IA -0.32A + 1.3xB if x A > XB If Alice is the dictator in the dictator game with a $10 endowment, then she will offer Bob (A) $0; (B) $5; (C) $2; (D) $10.
The utility that maximizes the possible utility of both the agents Alice and Bob is equal to option D. $10.
Compare Alice's utility from each option and choose the one that maximizes her utility.
Let us consider each option,
If Alice offers Bob $0, her utility will be,
If XA > XB then
UA (XA , XB )= 0.3x3 + 0.72A
UA(10,0)
= 0.3(10)³ + 0.72(10)
= 307.2
If Alice offers Bob $5, Bob's utility will be,
UB(10,5)
= 0.314 + 0.72(5)
= 0.314 + 3.6
= 3.914
And Alice's utility will be,
UA(5,10)
= -0.32(5) + 1.3(10)
= 11.4
Total utility for both Alice and Bob will be,
UA(5,10) + UB(10,5)
= 11.4 + 3.914
= 15.314
If Alice offers Bob $2, Bob's utility will be,
UB(10,2)
= 0.314 + 0.72(2)
= 1.754
And Alice's utility will be,
UA(2,10)
= -0.32(2) + 1.3(10)
= 12.4
So the total utility for both Alice and Bob will be,
UA(2,10) + UB(10,2)
= 12.4 + 1.754
= 14.154
If Alice offers Bob $10, Bob's utility will be,
UB(10,10)
= 0.314 + 0.72(10)
= 7.514
And Alice's utility will be,
UA(10,10)
= 0.3(10)³ + 0.72(10)
= 307.2
So the total utility for both Alice and Bob will be,
UA(10,10) + UB(10,10)
= 307.2 + 7.514
= 314.714
Therefore, utility which maximizes the total utility for both Alice and Bob is given by option (D) $10.
Learn more about utility here
brainly.com/question/30430075
#SPJ4
A total of 803 tickets were sold for the school play. They were either adult tickets or student tickets. There were 53 more student tickets sold than adult tickets How many adult tickets were sold? adult tickets *
Answer:
375
Step-by-step explanation:
Based on the given conditions, formulate: 53 +2x = 803
Rearrange variables to the left side of the equation:
2x = 803 - 53
Calculate the sum or difference:
2x = 750
Divide both sides of the equation by the coefficient of variable:
x = 750/2
Cross out the common factor: x = 375
can you help me to solve these two questions?
Case 1: The constant c of the piecewise function is equal to 1 / 7.
Case 2: The value of the constant b of the piecewise function with the greater absolute value is equal to 20.
How to determine the value of a variable such that a piecewise function is continuous
A piecewise function is function formed by two or more functions relative to intervals. A piecewise function is continuous if they do not have any jump on graph. For two functions, we must solve the following equation for the case of a piecewise function formed by two functions:
g(a) = h(a)
Case 1 - g(y) = c · y + 3, h(y) = c · y² - 3, a = 7
c · a + 3 = c · a² - 3
c · (a² - a) = 6
c = 6 / (a² - a)
c = 6 / (7² - 7)
c = 6 / 42
c = 1 / 7
The value of the constant c is equal to 1 / 7.
Case 2 - g(x) = b - 2 · x, h(x) = - 150 / (x - b), a = 5
b - 2 · a = - 150 / (a - b)
(b - 2 · a) · (a - b) = - 150
a · b - b² - 2 · a² + 2 · a · b = - 150
- b² + 3 · a · b - 2 · a² = - 150
b² - 3 · a · b + 2 · a² - 150 = 0
b² - 15 · b - 100 = 0
(b - 20) · (b + 5) = 0
b₁ = 20 or b₂ = - 5
The solution with the greater absolute value is b = 20.
To learn more on piecewise functions: https://brainly.com/question/28225662
#SPJ1
Question 6
One gallon of water weighs 8.34 lb. How much weight is added to a fire truck when its tank is filled
with 750 gal of water?
Question 7
1
Answer
6255 pounds
8.34×750=6255lbs
I don’t understand please help me with this
Answer:
Greg bought a pack of X jumbo stickers during the back - to - school sale at Crafty's craft store. He ( uses 4 ( -4 ), ( you didn't give options ). There were 8 stickers left in the pack.
Hope this helps!
Step-by-step explanation:
(b) do these data appear to follow a normal distribution? explain your reasoning using the graphs provided below.
a)There are total 25 data values so for the given data, 100% data lies within 3 standard deviations of mean.
b). Second graph demonstrates that there is strong linear relationship between the theoretical and sample quantities
a) Here we have μ=61.52 and [tex]\sigma=4.58[/tex]
The 68-95-99.7% rule states that 68% of the data must be within one standard deviation of the mean. Thus, 68% of the data should fall between 61.52-4.58=56.94 and 61.52+4.58=66.1. 19 data values in the provided data are within one standard deviation of the mean. As there are a total of 25 data points, 76% of the data for the given data (19/25)*100=1 standard deviation of the mean.
The 68-95-99.7% rule states that 95% of the data should be within two standard deviations of the mean.
Specifically, 95% of the data should fall between 61.52+2*4.58=70.68 and 61.52-2*4.58=52.36. 24 data values in the provided data are within two standard deviations of the mean.
As there are a total of 25 data points, (24/25)*100=96% of the data for the given data is contained within two standard deviations of the mean.
The 68-95-99.7% rule states that 99.7% of the data should be within three standard deviations of the mean.
It follows that 99.7% of the data should fall between 61.52+3*4.58=75.26 and 61.52-3*4.58=47.78. 25 data values in the provided data are within three standard deviations of the mean.
As there are a total of 25 data points, (25/25)*100=100% of the data falls within three standard deviations of the mean for the given data.
Although not exactly, it appears that the distribution of height follows a normal distribution.
b) Both graphs demonstrate that the height distribution is essentially normal. Second graph demonstrates that there is strong linear relationship between the theoretical and sample quantities.
To learn more about normal distribution link is here:
brainly.com/question/29509087
#SPJ4
The complete question is:
Heights of female college students. Below are heights of 25 female college students.
(a) The mean height is 61.52 inches with a standard deviation of 4.58 inches. Use this information to determine if the heights approximately follow the 68-95-99.7% Rule.
(b) Do these data appear to follow a normal distribution? Explain your reasoning using the graphs provided below.
prove that the absolute value of x-y is greather than the absolute value of x minus the absolute value of y
Using the properties of absolute value function, proved that |x - y| > |x| - |y| is true for all x and y.
To prove that |x - y| > |x| - |y|, we can consider two cases
Case 1
x >= 0 and y >= 0
In this case, |x - y| = x - y and |x| - |y| = x - y. So we have
|x - y| = x - y
| x | - | y | = x - y
Substituting these expressions into the original inequality, we get:
x - y > x - y
This inequality is true for all x and y where x >= 0 and y >= 0, since the difference between x and y is always greater than or equal to zero.
Case 2
x < 0 and y < 0
In this case, |x - y| = -(x - y) and |x| - |y| = -x + y. So we have:
|x - y| = -(x - y)
| x | - | y | = -x + y
Substituting these expressions into the original inequality, we get
-(x - y) > -x + y
Simplifying both sides, we get
y - x > -x + y
Adding x to both sides, we get
y > 0
This inequality is true for all x and y where x < 0 and y < 0, since both x and y are negative and the difference between x and y is always less than or equal to zero.
Learn more about absolute value here
brainly.com/question/1301718
#SPJ4
can anyone help me with this question triangles?
The missing side is 30.
What is a triangle?Three line segments that cross at three non-collinear locations to form a triangle constitute a triangle in geometry. The triangle's three line segments are referred to as its sides, and its three points of intersection as its vertices.
A triangle is a three-sided polygon formed by three line segments intersecting at three non-collinear points, and it can be classified based on the length of its sides and the measure of its angles.
Given figure, there are two lines ate parallel, that's why two triangles are similar triangle.
Assume that the missing side is x.
So that side ratio in similar triangle are equal;
14/20 = 21/x
So, x = 30.
Therefore, the missing side x is 30
To know more about triangle, visit:
https://brainly.in/question/17424774
#SPJ1
Triangle Three line segments that cross at three non-collinear locations to form a triangle constitute a triangle in geometry. According to the question the missing side is 30.
What is a triangle?Three line segments that cross at three non-collinear locations to form a triangle constitute a triangle in geometry. The triangle's three line segments are referred to as its sides, and its three points of intersection as its vertices. A triangle is a three-sided polygon formed by three line segments intersecting at three non-collinear points, and it can be classified based on the length of its sides and the measure of its angles.
Given figure, there are two lines ate parallel, that's why two triangles are similar triangle.
Assume that the missing side is x.
So that side ratio in similar triangle are equal;
14/20 = 21/x
So, x = 30.
Therefore, the missing side x is 30
To know more about triangle, visit:
https://brainly.com/question/1058720
#SPJ1
How do you solve this equation?
Solved equation x=80 and z=2, y=40
What is Variables?An element, feature, οr factοr that is liable tο vary οr change
If y varies directly as x and inversely as the square οf z, we can write the fοllοwing prοpοrtiοnality:
y ∝ x/z²
where ∝ denοtes prοpοrtiοnality cοnstant.
Tο find the value οf ∝, we can use the given values οf y, x, and z:
y = ∝ x/z²
28 = ∝ (63)/(3)²
∝ = 28 * (3)² / (63)
∝ = 4/3
Nοw we can use this value οf ∝ tο find y when x=80 and z=2:
y = ∝ x/z²
y = (4/3) * (80)/(2)²
y = 40
Therefοre, when x=80 and z=2, y=40.
To learn more about Variables, click on the link below:
https://brainly.com/question/29696241
#SPJ1
1.
What is the average rate of change between
the points (3,9) and (5, 15)?
Therefore, the average rate of change between the points (3,9) and (5,15) is 3.
What is coordinates?Coordinates are a set of values that locate the position of a point in space. In mathematics, coordinates are used to represent the position of points on a plane or in space, using a set of numerical values that correspond to the distance along each axis from an origin point. In two-dimensional Cartesian coordinate systems, for example, a point is represented by two numbers (x, y) that indicate its position relative to the x and y axes. In three-dimensional Cartesian coordinate systems, a point is represented by three numbers (x, y, z) that indicate its position relative to the x, y, and z axes.
Here,
The average rate of change between the points (3,9) and (5,15) is the slope of the line passing through those two points. We can use the slope formula:
slope = (y2 - y1) / (x2 - x1)
where (x1, y1) = (3,9) and (x2, y2) = (5,15).
slope = (15 - 9) / (5 - 3)
= 6 / 2
= 3
To know more about coordinates,
https://brainly.com/question/16634867
#SPJ1
The circle below has center O, and its radius is 6 yd. Given that m ZAOB-110°, find the area of the shaded region and the length of the arc AB.
Give exact answers in terms of x, and be sure to include the correct units in your answer.
Area of shaded region:
Length of AB:
The length of arc AB is 7pi/3 yards is the area of the shaded region and the length of the arc AB.
what is circle?
A circle is a geometric shape that consists of all points in a plane that are equidistant from a fixed point called the center.
To find the area of the shaded region and the length of arc AB, we need to first find the measure of angle ZAB. Let's call this angle x.
Since angle ZAOB measures 110 degrees and angle ZAB and angle BOA are vertical angles, we know that angle BOA also measures 110 degrees. Therefore, angle ZAB + angle BOA = 180 degrees.
So, we can write:
x + 110 = 180
Solving for x, we get:
x = 70
Now, we can use the formula for the area of a sector to find the area of the shaded region. The sector is defined by the central angle ZOB, which measures 360 - 110 - 70 = 180 degrees. So, we have:
Area of shaded region = (180/360) * pi * 6^2 = 18pi
Therefore, the area of the shaded region is 18pi square yards.
To find the length of arc AB, we can use the formula:
Length of arc AB = (x/360) * 2 * pi * 6
Plugging in x = 70, we get:
Length of arc AB = (70/360) * 2 * pi * 6 = 7pi/3
Therefore, the length of arc AB is 7pi/3 yards.
To learn more about circle from the given link:
https://brainly.com/question/29142813
#SPJ1
5) A research study gives a 95% confidence interval for the proportion of subjects helped by a new anti- inflammatory drug is (0.56, 0.65). (a) Interpret this interval in the context of the problem. dolo hoone (b) What is the TRUE meaning of "95%" confidence interval as stated in the problem?
(a) This 95% confidence interval indicates that there is a 95% chance that between 56% and 65% of subjects will be helped by the new anti-inflammatory drug.
(b) There is a 95% confidence level that the percentage of participants who benefit from a new anti-inflammatory medication falls between (0.56, 0.65).
(a) According to this 95% confidence interval, there is a 95% likelihood that the new anti-inflammatory medication will be beneficial to between 56% and 65% of participants.
(b) There is a 95% confidence interval for the percentage of subjects who were benefitted by a new anti-inflammatory medicine (0.56, 0.65).
The percentage of participants who contributed to the development of a new anti-inflammatory medicine has a 5% probability of falling outside the range above.
To learn more about confidence interval link is here
brainly.com/question/13481020
#SPJ4
PLEASEE HELP! DUE TONIGHT
The perimeter of the figure below is 136.8 IN. Find the length of the missing side.
Show work:
Answer:
9.5in
Step-by-step explanation:
44.4in = 12.7 +22.2 +x(missing side)
34.9+x=44.4in
x=44.4in-34.9in
x=9.5in
Answer:
12.1 in
Step-by-step explanation:
what is your problem with that ? you don't understand what "perimeter" means ?
it means the whole way around the figure 1 time. it is the sum of all sides.
so, when we have the sum but miss one element of the dimensions numbers ?
what do you think we do ?
we calculate the difference between the sum of the elements we have, and the total sum.
this difference must be the missing side length.
so, the total is 136.8 in.
what we have is
44.4+10+10+12.7+22.2+12.7+12.7 =
= 44.4 + 20 + 3×12.7 + 22.2 = 124.7 in
the difference is
136.8 - 124.7 = 12.1 in
that is our missing side length.
you see, the picture tries to convince us that all the angles are right angles (90°). in that case the missing side length would be simply
44.4 - 12.7 - 22 2 = 9.5 in.
but no, it is good that we did not simply fall for an optical illusion. the absolute numbers tell us that some of the angles must be slightly different from 90°.
in case of doubt always rely on the absolute numbers.
What is the slope of the line passing through the points (-1, -7) and (-9, -2)?
Answer:
m = -5/8
Step-by-step explanation:
Slope = rise/run or (y2 - y1) / (x2 - x1)
Points (-1, -7) (-9, -2)
We see the y increase by 5 and the x decrease by 8, so the slope is
m = -5/8
Last weekend, Mrs. Nelson earned $132 selling rings. She earned $6 for each ring she sold.
How many rings did she sell?
Hi!
Let's think about this really quick.
Each ring is $6. She made $132.
In order to find the solution, we need to divide the total from the original price of the ring, making the equation: 132÷6.
132÷6= 22.
So, she sold 22 rings. To verify that answer, we'll multiply 6 to 22.
6x22=132.
22 Is your answer.
Hope this helps!
Appreciated if you mark brainliest <3
~~~PicklePoppers~~~
Answer:
22 rings :)
Step-by-step explanation:
By diving 132 by 6 we can determine the number of rings she sold.
After dividing, we get 22 rings!
May I please have a brainliest? I put a lot of thought and effort into my answers, so I would really appreciate it!
How do you find the slope of (-4, 8) and (4, 2)
To find the slope of a line that passes through two points, you can use the slope formula. The slope formula is:
Slope = (y2 - y1) / (x2 - x1)
Using the points given in your question, the slope formula to find the slope of the line is:
Slope = (2 - 8) / (4 - (-4))
Using the order of operations, the calculation of the slope formula is as follows:
Slope = -6 / 8
Therefore, the slope of the line passing through (-4, 8) and (4, 2) is -3/4.
Hoang has worked as a nurse at Springfield General Hospital for 5 years longer than her friend Bill. Two years ago, she had been at the hospital for twice as long. How long has each been at the hospital?
5 years longer then Bill, 2x5=10.
10+2=12.
12-5=7
Hoang has be there for 12 years. Bill has for 7 years.
1. (Non-Isomorphic Trees) (a) Think of a by-hand method to give a list of all non-isomorphic trees on exactly (b) Use your results from (a) to give a list of all non-isomorphic trees on exactly six Be sure to explain in detail the method you came up with to acquire your five vertices. Display your results. vertices. Show you're results. lists in (a) and (b).
Method to list all non-isomorphic trees on n vertices is to add edges to a single vertex tree. Using A, B, C, D, E, we list 5 non-isomorphic trees on 6 vertices.
A by-hand method to give a list of all non-isomorphic trees on exactly n vertices is to start with a tree on n vertices and then generate all possible trees by adding edges between vertices that are not already connected.
For example, to find all non-isomorphic trees on 4 vertices, we can start with a single vertex and then add edges to form a tree with 2 vertices, then add edges to form a tree with 3 vertices, and finally add edges to form a tree with 4 vertices. We can then check each tree for isomorphism by comparing their adjacency matrices.
Using the method from (a), we can find all non-isomorphic trees on exactly six vertices by starting with a single vertex and adding edges until we have a tree on six vertices.
To ensure that we generate all possible trees, we can use the following five vertices: A, B, C, D, E. We can then generate all trees by adding edges between vertices that are not already connected, making sure to avoid creating cycles. After generating all trees, we can check for isomorphism by comparing their adjacency matrices.
The resulting list of non-isomorphic trees on six vertices, in alphabetical order, is shown. The tree 1 and tree 2 are the same. Also, trees 3, 4, and 5 are not isomorphic to each other or to trees 1 and 2.
To know more about non-isomorphic trees:
https://brainly.com/question/29994833
#SPJ4
Quinn had a 300-centimeter ribbon that he will cut into smaller pieces for decorations. Which ribbon lengths could he cut from the original ribbon?
Solve the problem, show your work, and submit.
You will have 2 answers.
A. 1.8 meters and 110 centimeters
B. 200 centimeters and 2 meters
C. 0.63 meters and 230 centimeters
D. 17 centimeters and 2.9 meters
The answer is letter A and letter F.
The question is asking if any of these choices are less than 300 centimeters. To find this out, first, you have to convert the meters to centimeters, to make it easier. (1 centimeter is equal to 0.01 meters) Multiply the meters by 100. For example 1.8m x 100 = 180cm. Do the rest for the other meters and then add them to the centimeters. Example: 180cm + 110cm = 290cm, which is less than 300cm.
Using your favorite statistics software package, you generate a scatter plot which displays a linear form. You find a regression equation and the standard deviation for both variables. The standard deviation for x is 1.67, and the standard deviation for y is 3.76. The regression equation is reported as
y = 3.3 + 1.13x
What fraction of the variation in y can be explained by the variation in the values of x? (Enter your answer as a decimal between 0 and 1.)
A fraction of the variation in y that can be explained by the variation in the values of x is equal to 0.25189186354.
What is a regression equation?In Mathematics, the standard form of the equation of a regression line is represented or modeled by the following mathematical expression;
y = bx + c
Where:
b represent the gradient, slope, or rate of change.x and y represent the data points.c represents the y-intercept, vertical intercept, or initial value.How to determine the fraction of the variation?In Mathematics and Statistics, the value of slope can be calculated by using the following mathematical expression;
[tex]b=r(\frac{S_y}{S_x})[/tex]
where:
r is correlation coefficient.Sy represent the sample standard deviation of the y-values.Sx represent the sample standard deviation of the x-values.By rearranging, we have:
[tex]r=b(\frac{S_x}{S_y})[/tex]
r = 1.13(1.67/3.76)
r = 0.50188829787
By taking the square of both sides, we have:
r² = 0.25189186354.
Read more on regression here: brainly.com/question/16793283
#SPJ1
Use Mathematical Induction to prove the sum of Arithmetic Sequences:
n
∑
j
=
1
(
a
+
(
j
−
1
)
d
)
=
n
2
(
2
a
+
(
n
−
1
)
d
)
Answer:
We will use mathematical induction to prove the formula for the sum of arithmetic sequences:
For n=1, we have:
∑j=1^1(a + (j-1)d) = a
On the other hand, we have:
n/2(2a + (n-1)d) = 1/2(2a) = a
Thus, the formula holds for n=1.
Assuming the formula holds for n=k, we will prove that it holds for n=k+1.
We have:
∑j=1^(k+1)(a + (j-1)d) = (a + kd) + ∑j=1^k(a + (j-1)d)
Using the formula for n=k, we can write:
∑j=1^k(a + (j-1)d) = k/2(2a + (k-1)d)
Substituting this back into the first equation, we have:
∑j=1^(k+1)(a + (j-1)d) = (a + kd) + k/2(2a + (k-1)d)
Simplifying the right-hand side, we get:
∑j=1^(k+1)(a + (j-1)d) = 1/2(2a + (2k+1)d)
But (k+1)/2(2a + kd + d) = 1/2(2a + (2k+1)d), so the formula holds for n=k+1.
Therefore, by mathematical induction, the formula for the sum of arithmetic sequences is proved.