The number of moles of NaOH added is 0.00225 mol.
To calculate the number of moles of NaOH added, we can use the stoichiometry of the reaction between benzoic acid (C6H5COOH) and NaOH. According to the balanced equation, 1 mole of benzoic acid reacts with 1 mole of NaOH. Given that the concentration of NaOH is 0.150 M and 15.0 mL of NaOH solution is added, we can first convert the volume to liters by dividing it by 1000:
Volume of NaOH = 15.0 mL / 1000 mL/L = 0.015 L
Next, we can calculate the number of moles of NaOH using the formula:
moles of NaOH = concentration × volume
moles of NaOH = 0.150 M × 0.015 L = 0.00225 mol
Therefore, the number of moles of NaOH added is 0.00225 mol.
To know more about C6H5COOH, click here https://brainly.com/question/29206874
#SPJ11
which of the following statements about miscible liquids is correct? i. the components form a homogeneous solution. ii. the partial pressure of each component is the vapor pressure of the mixture times the components mole fraction. iii. each component has its own vapor pressure.
Option i. the components form a homogeneous solution is correct statements about miscible liquids.
When we talk about miscible liquids, these are liquids that can mix in any proportion without separating, given that the components form a homogeneous solution.
The following statement about miscible liquids is correct: i. the components form a homogeneous solution.
Let's look at each option one by one:i. The components form a homogeneous solution.
Mixtures of liquids that are completely soluble in each other in all proportions are called miscible liquids.
For example, ethanol and water are miscible in each other.
The mixture of the two will be a homogeneous solution where the two components are completely blended
.ii. The partial pressure of each component is the vapor pressure of the mixture times the components mole fraction.
This statement applies to the Raoult's law for ideal solutions, which holds only for solutions of non-electrolytes.
According to Raoult's law, for an ideal solution, the partial pressure of each component in the vapor phase is equal to the product of the vapor pressure of the pure component and its mole fraction in the solution.
iii. Each component has its own vapor pressure.
This is a statement about immiscible liquids rather than miscible liquids.
In immiscible liquids, the components are not soluble in each other, so each component has its own vapor pressure and forms separate layers when mixed.
In conclusion, the correct statement about miscible liquids is that the components form a homogeneous solution.
For more questions on miscible liquids.
https://brainly.com/question/31393145
#SPJ8
according to the ideal gas law, what happens to the volume of a gas when the pressure doubles (all else held constant)? apex
Pressure and volume are proportional in direct variation, with the temperature and the number of gas molecules constant.
According to the Ideal Gas Law, what happens to the volume of a gas when the pressure doubles (all else held constant)
If the pressure of a gas is doubled (all other variables being constant), the volume of the gas will be halved. The formula for the Ideal Gas Law is PV = nRT,
where P = pressure, V = volume,
n = number of moles of gas,
R = the universal gas constant, and T = temperature.
The law states that the product of pressure and volume is proportional to the absolute temperature of the gas when all other variables are constant.
In a fixed container with a fixed number of molecules, doubling the pressure reduces the volume by half. The relationship between pressure and volume is a positive linear one. Pressure and volume are proportional in direct variation, with the temperature and the number of gas molecules constant.
To know more about ideal gas law, visit:
https://brainly.com/question/12624936
#SPJ11
A Grignard reaction will fail in the presence of which species? A diethyl ether B alkenes C aromatic groups D water
A Grignard reaction will fail in the presence of D) water. Grignard reactions involve the reaction of a Grignard reagent, typically an alkyl or aryl magnesium halide, with a variety of electrophiles to form new carbon-carbon bonds.
These reactions are highly sensitive to the presence of water (H2O). Water can react with the Grignard reagent, hydrolyzing it and preventing it from participating in the desired reaction.When water is present, it can protonate the alkyl or aryl magnesium halide species to form an alkane or an alcohol, respectively. This side reaction reduces the concentration of the Grignard reagent and prevents it from reacting with the desired electrophile. Therefore, the presence of water inhibits the success of a Grignard reaction.The other options listed (diethyl ether, alkenes, aromatic groups) do not interfere significantly with Grignard reactions and are often used as solvents or reactants in these reactions.
To learn more about Grignard reaction:
https://brainly.com/question/32615442
#SPJ11
Solutions of the [V(OH₂)₆]²⁺ ion are lilac and absorb light of wavelength 806 nm. Calculate the ligand field splitting energy in the complex in units of kilojoules per mole. 1. Δₒ = ____ kJ. mol⁻¹
The ligand field splitting energy (Δₒ) in the [V(OH₂)₆]²⁺ complex is approximately 1.47 x 10⁴ kJ·mol⁻¹, calculated from the absorbed light wavelength of 806 nm.
To calculate the ligand field splitting energy (Δₒ) in the complex [V(OH₂)₆]²⁺, we need to convert the given wavelength of absorbed light (806 nm) into energy.
The energy of a photon can be calculated using the equation:
[tex]\[E = \frac{hc}{\lambda}\][/tex]
Where:
E is the energy of the photon,
h is Planck's constant (6.626 x 10⁻³⁴ J·s),
c is the speed of light (2.998 x 10⁸ m/s),
and λ is the wavelength of light.
Converting the given wavelength to meters:
806 nm = 806 x 10⁻⁹ m
Calculating the energy:
[tex][E = \frac{6.626 \times 10^{-34} \text{ J s} \times 2.998 \times 10^8 \text{ m/s}}{806 \times 10^{-9} \text{ m}}][/tex]
E ≈ 2.445 x 10⁻¹⁹ J
Now, we can convert the energy from joules to kilojoules and use the Avogadro's constant (6.022 x 10²³ mol⁻¹) to express the ligand field splitting energy in units of kilojoules per mole.
[tex][\Delta_0 = \frac{2.445 \times 10^{-19} \text{ J}}{1000 \text{ J/kJ}} \times 6.022 \times 10^{23} \text{ mol}^{-1}][/tex]
Δₒ ≈ 1.47 x 10⁴ kJ·mol⁻¹
Therefore, the ligand field splitting energy (Δₒ) in the [V(OH₂)₆]²⁺ complex is approximately 1.47 x 10⁴ kJ·mol⁻¹.
To know more about the ligand field splitting energy refer here :
https://brainly.com/question/32296525#
#SPJ11