Answer:
39.02 amu
Explanation:
The average atomic mass of an element can be calculated as follows :
[tex]X=\dfrac{9.67\times 38+78.68\times 39+11.34\times 40+0.31\times 41}{100}\\\\X=\dfrac{3902.29}{100}\\\\X=39.02\ amu[/tex]
So, the atomic mass of the element X is 39.02 amu.
Name the following structure:
HOCH2CH2CH2OH
Answer:
I'm pretty sure this is propanediol
Explanation:
I'm not sure how to explain it, but I believe this is the structure for propanediol. Please let me know if I misunderstood and don't hesitate to reach out with questions!
1,3-propan-diol is the chemical name the given structure: [tex]HOCH_2CH_2CH_2OH[/tex].
Chemical names are orderly systems for classifying and identifying various chemical compounds. They act as a benchmark for international scientific and research communication. For the development of many scientific domains, a standardised nomenclature system for chemicals must be created and adopted. Chemical names, which are made up of a combination of words and symbols, include detailed information on the make-up and structure of a certain substance. They frequently contain constituents, functional groups, and distinct modifiers that aid in describing the compound's varied attributes. 1,3-propan-diol is the chemical name the given structure: [tex]HOCH_2CH_2CH_2OH[/tex].
To know more about chemical name, here:
https://brainly.com/question/30633673
#SPJ6
Consider the balanced reaction below:
2HBr + Ba(OH)2 → BaBr2 + 2H2O
How many moles of barium
hydroxide, Ba(OH)2, would be
required to react with 117 g hydrogen bromide, HBr?
Answer:
0.723 moles (5 s.f.)
Explanation:
Whenever there is a chemical equation, ensure that it is balanced. This is because a balanced chemical equation tells us the mole ratio (not the ratio of their masses), which means the relationship of the number of moles of reactants or products with one another.
The chemical equation given has already been balanced. Looking at the coefficients of HBr and Ba(OH)₂, the mole ratio of HBr to Ba(OH)₂ is 2: 1.
• 1 mole of Ba(OH)₂ is needed to react with 2 mole of HBr
Find the number of moles of HBr present:
Number of moles= mass ÷mr
Amount of HBr
= 117 ÷(1 +79.9)
= 1.4462 moles (5 s.f.)
Since the amount of Ba(OH)₂ required is half the amount of HBr present,
amount of Ba(OH)₂ required
= 1.4462 ÷2
= 0.723 moles (3 s.f.)
Notes:
• mr
= relative molecular mass
= sum of relative atomic masses (which can be found in the periodic table) in a molecule
2. As NH4OH is added to an HCl solution, the pH of the solution
A) increases as the OH- concentration decreases
B ) increases as the OH- concentration increases
C ) decreases as the OH- concentration decreases
D ) decreases as the OH- ion concentration increases
Answer:
c
Explanation:
Nh4OH + HCL ---> NH4Cl + H3O
so ph decreases as H3O increases
and OH also decreases
When NH4OH is added to a solution with HCI, the pH of the solution B ) increases as the OH- concentration increases.
Why would the solution increase?NH₄OH is a strong base as a result of the presence of the OH compound which is a base as well. Bases have high pH and acids have low pH.
This means that as the OH- concentration increases, the solution is being made to be more basic which would lead to the pH rising.
In conclusion, option B is correct.
Find out more on Bases at https://brainly.com/question/15565260.
7. Explain the difference between an ionic compound and a molecule, on an atomic
level (that is, describe what is happening with the atoms that makes these compounds
different)
Answer:
bakit Kay's lahat Ng module mahirap
Help ASAP only right answers only no spam don’t answer if you don’t know
Answer:
theory
Explanation:
if you assume something that you didn't see occuring it is called a theory
Why Should a magnesium ribbon be cleaned before burning ?
A magnesium ribbon is cleaned to remove the protective layer of basic magnesium carbonate from its surface, so that it may readily combine with the oxygen in air (on heating).
Answer:
Magnesium gets covered with a layer of magnesium oxide when kept in air for a long time. This layer hinders the burning of magnesium. Hence, it is to be cleaned before burning.
Si se analizan muestras de Al2O3 en diversos laboratorios se encuentra que todas tienen 52,94% de aluminio (Al) y 47,06% de oxígeno (O). Este dato experimental corresponde a lo expresado por la ley de:
A) La ley de las proporciones definidas
B) La ley de las proporciones múltiples
C) La ley de la conservación de la masa
D) La ley de la conservación de la energía
The mass of a neutron is
Calculate the average atomic mass for element X
Answer:
39.02
Explanation:
From the question given above, the following data were obtained:
Isotope A:
Mass of A = 38
Abundance of A (A%) = 9.67%
Isotope B:
Mass of B = 39
Abundance of B (B%) = 78.68%
Isotope C:
Mass of C = 40
Abundance of C (C%) = 11.34%
Isotope D:
Mass of D = 41
Abundance of D (D%) = 0.31%
Average atomic mass of X =?
The average atomic mass of X can be obtained as follow:
Average = [(Mass of A × A%)/100] + [(Mass of B × B%)/100] + [(Mass of C × C%)/100] + [(Mass of D × D%)/100]
= [(38 × 9.67)/100] + [(39 × 78.68)/100] + [(40 × 11.34)/100] + [(41 × 0.31)/100]
= 3.6746 + 30.6852 + 4.536 + 0.1271
= 30.02
Thus, the average atomic mass of X is 39.02
The ground state of an electron is the least stable energy state of an atom
Answer:
electron configuration
Explanation:
The arrangement of electrons in the atomic orbitals of an atom is called the electron configuration. Electron configurations can be determined using a periodic table.
Where would (aq) (s) go in Cr(NO3)3+K3PO4
Answer:
Cr(NO3)3 (aq) +K3PO4 (s)
Explanation:
If hydrofluoric acid is a stronger acid than acetic acid, which statement is most likely true?
The conjugate acid of hydrofluoric acid is weaker than that of acetic acid.
The conjugate acid of hydrofluoric acid is stronger than that of acetic acid.
The conjugate base of hydrofluoric acid is weaker than that of acetic acid.
The conjugate base of hydrofluoric acid is stronger than that of acetic acid.
Answer: The statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
Explanation:
A strong acid upon dissociation gives a weak conjugate base. This can also be said as stronger is the acid, weaker will be its conjugate base or vice-versa.
Hydrofluoric acid is a strong base as it dissociates completely when dissolved in water.
For example, [tex]HF \rightleftharpoons H^{+} + F^{-}[/tex]
The conjugate base is [tex]F^{-}[/tex] which is a weak base.
Acetic acid is a weak acid as it dissociates partially when dissolved in water. So, the conjugate base of acetic acid is a strong base.
[tex]CH_{3}COOH \rightarrow CH_{3}COO^{-} + H^{+}[/tex]
Thus, we can conclude that the statement conjugate base of hydrofluoric acid is weaker than that of acetic acid is most likely true.
An atom has9 electrons and 9 protons at the start. If it loses 2 electrons, what would the net charge on the atom be
Answer:
i hope it will help you
Explanation:
there will be 7 electrons and 9 protons will have 2+ charge.
Kelvin And Mimi studied the fruits. Kelvin concluded that there are more ovules in a mango flower than a papaya flower while Mimi
argued that there are more ovules in a papaya flower than a mango flower.
(a) who is correct?
(b)Explain your answer in (a).
Answer:
kevin is right according to what i see
can someone help me?
Answer:
1: because phosphate contain oxide ions so that is base character
A mixture of gases contains 0.320 mol CH4, 0.240 mol C2H6, and 0.300 mol C3H8. The total pressure is 1.45 atm. Calculate the partial pressures of the gases.
Answer:
pCH₄ = 0.540 atm
pC₂H₆ = 0.405 atm
pC₃H₈ = 0.505 atm
Explanation:
Step 1: Calculate the total number of gaseous moles
n = n(CH₄) + n(C₂H₆) + n(C₃H₈)
n = 0.320 mol + 0.240 mol + 0.300 mol = 0.860 mol
Step 2: Calculate the partial pressure of each gas
We will use the following expression.
pi = P × Χi
where,
pi: partial pressure of the gas "i"P: total pressureΧi: mole fraction of the gas "i"pCH₄ = 1.45 atm × 0.320 mol/0.860 mol = 0.540 atm
pC₂H₆ = 1.45 atm × 0.240 mol/0.860 mol = 0.405 atm
pC₃H₈ = 1.45 atm × 0.300 mol/0.860 mol = 0.505 atm
which states of matter can flow from one place to another
Answer:
Liquid
Explanation:
Quite an easy question!
Answer:
Liquid
Explanation:
I was passing by lol
Which is TRUE about the structure of the atom? Select all that apply.
a
the densest part of the atom is the nucleus of the atom
b
the outermost part of the atom is where electrons are found
c
the nucleus of the atom is where protons and neutrons are found.
d
the outer part of the atom is called the antinucleus.
e
the nucleus of the atom has a diameter of about 10-10 m.
hat is the molarity of a solution prepared by dissolving 12.0 g of ethylene glycol, C2H6O4, in water to make 250.0 mL of solution
Answer:
0.512 M
Explanation:
We'll begin by calculating the number of mole in 12 g of C₂H₆O₄. This can be obtained as shown below:
Mass of C₂H₆O₄ = 12 g
Molar mass of C₂H₆O₄ = (2×12) + (6×1) + (4×16)
= 24 + 6 + 64
= 94 g/mol
Mole of C₂H₆O₄ =?
Mole = mass /molar mass
Mole of C₂H₆O₄ = 12 / 94
Mole of C₂H₆O₄ = 0.128 mole
Next, we shall convert 250 mL to L. This can be obtained as follow:
1000 mL = 1 L
Therefore,
250 mL = 250 mL × 1 L / 1000 mL
250 mL = 0.25 L
Thus, 250 mL is equivalent to 0.25 L.
Finally, we shall determine the molarity of the solution. This can be obtained as follow:
Mole of C₂H₆O₄ = 0.128 mole
Volume = 0.25 L
Molarity =?
Molarity = mole /Volume
Molarity = 0.128 / 0.25
Molarity = 0.512 M
Thus, the molarity of the solution is 0.512 M
During an experiment, solid iodine was placed in a sealed container. The container was gradually heated and purple-colored vapors of iodine formed were observed. Describe this system when it reaches phase equilibrium.
Answer:
See explanation
Explanation:
A system is said to have attained dynamic equilibrium when the rate of forward reaction and the rate of reverse reaction are equal.
Considering the system under consideration;
I2(s)⇄I2(g)
Heating the container converts solid iodine to purple coloured iodine vapour.
At equilibrium, there will be no net change in the amount of solid iodine and iodine vapour present in the system because the two processes (forward and reverse reactions) occur at the same rate at equilibrium.
cuantas moléculas de oxigeno se producen por la descomposición de 28.5 g de H2O2 (masa molecular = 34.0g/mol) de acuerdo a la ecuación
2H2O2(l) → 2H2O(l)+O2(g)
The question is as follows: How many oxygen molecules are produced by the decomposition of 28.5 g of H2O2 (molecular mass = 34.0g / mol) according to the equation
2H2O2 (l) → 2H2O (l) + O2 (g)
Answer: There are [tex]2.52 \times 10^{23}[/tex] molecules are produced by the decomposition of 28.5 g of [tex]H_{2}O_{2}[/tex] according to the equation [tex]2H_{2}O(l) \rightarrow 2H_{2}O(l) + O_{2}(g)[/tex].
Explanation:
Given: Mass of [tex]H_{2}O_{2}[/tex] = 28.5 g
As moles is the mass of a substance divided by its molar mass. Hence, moles of [tex]H_{2}O_{2}[/tex] is calculated as follow.
[tex]Moles = \frac{mass}{molarmass}\\= \frac{28.5 g}{34.0 g/mol}\\= 0.838 mol[/tex]
According to the given equation, 2 moles of [tex]H_{2}O_{2}[/tex] gives 1 mole of [tex]O_{2}[/tex]. So, moles of [tex]O_{2}[/tex] produced by 0.838 moles of [tex]H_{2}O_{2}[/tex] will be calculated as follows.
[tex]Moles of O_{2} = \frac{0.838 mol}{2}\\= 0.419 mol[/tex]
This means that moles of [tex]O_{2}[/tex] produced is 0.419 mol.
As per the mole concept, 1 mole of every substance has [tex]6.022 \times 10^{23}[/tex] molecules.
So, molecules of [tex]O_{2}[/tex] present in 0.419 mole are as follows.
[tex]0.419 \times 6.022 \times 10^{23}\\= 2.52 \times 10^{23}[/tex]
Thus, we can conclude that there are [tex]2.52 \times 10^{23}[/tex] molecules are produced by the decomposition of 28.5 g of [tex]H_{2}O_{2}[/tex] according to the equation [tex]2H_{2}O(l) \rightarrow 2H_{2}O(l) + O_{2}(g)[/tex].
A 150 j of energy is added to a system that does 50 j of work is done. By how much wiull the internal energy of the system be raised?
Answer:
thnx for the points too muchee
Explanation:
Answer:
3 internal energyExplanation:
[tex]{hope it helps}}[/tex]
A balloon, inflated in an air-conditioned room at 27.0°C, has a volume
of 4.50.L. It is heated to a temperature of 57.0°C. What is the new
volume of the balloon if the pressure remains constant?
Answer:
4.95L
Explanation:
Using Charle's law equation;
V1/T1 = V2/T2
Where;
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to the question, the following information was given:
V1 = 4.50L
V2 = ?
T1 = 27°C = 27 + 273 = 300K
T2 = 57°C = 57 + 273 = 330K
Using V1/T1 = V2/T2
4.50/300 = V2/330
Cross multiply
300 × V2 = 4.5 × 330
300V2 = 1485
V2 = 1485 ÷ 300
V2 = 4.95L
How are carbon-based molecules suited for sustaining life?
[tex]\huge\fcolorbox{red}{pink}{Answer ♥}[/tex]
Life on Earth is based on carbon, likely because each carbon atom can form bonds with up to four other atoms simultaneously. This quality makes carbon well-suited to form the long chains of molecules that serve as the basis for life as we know it, such as proteins and DNA.
Hope it helps uh ✌️✌️✌️
Can someone do a True or false for these
Answer:
all i can accurately say is that 2 and 4 are both true
A gas has density 2.41 g/liter at 25°C and 770 mm Hg. Calculate it's molecular mass (R = 0.0821 L atm.mol-1K-1.
ASAP!!!!!!!!!
Answer:
Molecular mass, M = 58.20 g/mol.
Explanation:
Given the following data;
Density = 2.41 g/literTemperature = 25°CPressure = 770 mmHgGas constant, R = 0.0821 L atm.mol-1K-1Conversion:
760 mmHg = 1 atm
770 mmHg = 770/760 = 1.0131 atm
Temperature = 25°C = 273 + 25 = 298 K
To find the molecular mass, we would use the ideal gas law equation (density version);
PM = dRT
Where;
P is the pressure.M is the molecular mass.d is the density of a substance.R is the ideal gas constant.T is the temperature.Making M the subject of formula, we have;
[tex] M = \frac {dRT}{P} [/tex]
Substituting into the formula, we have;
[tex] M = \frac {2.41 * 0.0821 * 298}{1.0131} [/tex]
[tex] M = \frac {58.9626}{1.0131} [/tex]
Molecular mass, M = 58.20 g/mol.
AYUDA DOY CORONA
Numero masico del oro
Answer:
huh what?
Explanation:
Is 196,96657 u
I hope I've helped :)
define all the physical features of earth
MOUNTAINS
Mountains are large, tall, and elevated land areas on the earth's surface. They have steep, sloping sides and sharp or rounded ridges, and a high point, called a peak.
PLAINS
Plains are one of the major landforms on earth. They are areas of flat lands.
PLATEAUS
A plateau is a flat, elevated landform that rises above the surrounding area.
DESERTS
Regions of dry, arid lands.
DELTAS
A river delta is a landform created by deposition of sediment that is carried by a river as the flow leaves its mouth and enters slower-moving or stagnant water.
(Please help)
1.what is the most common isotope for element x
2.calculate the average atomic mass for element x
Answer:
1. Isotope with mass number 39.
2. 39.02g/mol
Explanation:
1. The most common isotope is the isotope in the higher proportion, that is:
Isotope with mass number 39.
2. The average atomic mass is the sum of the masses times their abundance. For the element X:
Average atomic mass:
38*0.0967 + 39*0.7868 + 40*0.1134 + 41*0.0031
= 39.02g/mol
What is the difference between an orbit in the Bohr model of the hydrogen atom and an orbital in the quantum mechanical model
Answer:
See explanation
Explanation:
In Bohr's theory, electrons are found in specific regions in space called orbits. These orbits are also called energy levels. An electron may move from one energy level to another by absorbing or emitting energy.
In the wave mechanical model, electrons are not found in a particular region in space according to Heisenberg's uncertainty principle.
We rather define a certain region in space where there is a high probability of locating the electron. This region in space where there is a high probability of locating the electron is called an orbital.
Hence, in the Bohr's model of the atom,electrons can surely be found in orbits while in the wave mechanical model, the orbital is a probability function that describes a region in space where an electron may be found.