Answer:
39.0229 amu
Explanation:
Hello there!
In this case, according to given information, the idea here is to multiply the percent abundance by the mass number of each isotope and then add them all together as shown below:
[tex]=0.0967*38+0.7868*39+0.1134*40+0.0031*41\\\\=3.6746+30.6852+4.536+0.1271\\\\=39.0229amu[/tex]
Regards!
In the titration of NaOH with vinegar, a student overshot the endpoint (i.e. added too much NaOH solution). How will this affect the calculate percent acetic acid in the vinegar
Answer:
Overshooting the endpoint leads to a percent acetic acid in vinegar higher than the correct value.
Explanation:
When too much NaOH solution is added, the resulting number of equivalent hydronium (OH⁻) will be higher than what it is in reality. This would directly lead to the number of acetic acid moles in the vinegar being found higher than normal.
In other words, overshooting the endpoint leads to a percent acetic acid in vinegar higher than the correct value.You want to quickly set up a temporary water bath in your lab with a volume of 10.0 L and a temperature of 37.0°C. You only have hot water from your hot water faucet (temperature = 61.0°C) and cold water from your cold water faucet (temperature = 22.0°C). What volume of hot water (in liters) must you mix with cold water to get 10.0 L of 37.0°C water? Assume the specific heat of the water is 4.184 J/g・K and that the water has a density of 1.00 g/mL.
Answer:
Volume of hot water required = 3.85L
Explanation:
Suppose volume of hot Then volume of water required cold water = = x L (10.0-x) L
Heat given by hot water (Q₁)
= mass of hot water x heat capacity of water X AT
= x L * 4.184 * J / g. к x(61.0-37.0) °℃.
And Heat absorbed by cold water (Q₂) = (10.0-x) L x 4.184 J/g*k x(37+0 -220) C
Since energy is consumed, Q₁ = Q2.
i.e. X*l *4.184*J/g*k*24C = (10.0-x)L x 184 5
24 x 15 (10.0-x) = 150. - 15x
x = 150. (24+15) = 3.846
So, volume of hot water required. = 3.85 L
When the temperature of the water increases the water becomes hot.
According to the question the volume of hot water required = 3.85L.
Suppose volume of hot Then the volume of water required cold water is [tex]x L (10.0-x) L[/tex]
All the data are given in the question, which is as follows:-
Heat has given by hot water (Q₁)The formula we are going to use is as follows:-
= mass of hot water x heat capacity of water X AT
= [tex]x L * 4.184 *(61.0-37.0) ^oC[/tex]
The heat absorbed by cold water (Q₂) = [tex](10.0-x) L *4.184 *(37+0 -220) ^oC[/tex]
Since energy is consumed, Q₁ = Q2.
[tex]X*l *4.18424C = (10.0-x)L * 184 524 * 15 (10.0-x) = 150. - 15xx = 150. (24+15) = 3.846[/tex]
Hence, the volume of hot water required is = 3.85 L
For more information, refer to the link:-
https://brainly.com/question/2817451
the pressure of a sample of gas at constant volume is 942 kPa at 338K. what will the pressure be 293k?
Explanation:
4 tctcgcgcgctctchvvyctctc
Which statement is about population density
Explanation:
Population density is defined as the number of people present per square kilometre. Population density of India according to 2011 census is 382 persons per square kilometres.
If 6.50 L of water vapor at 50.2 °C and 0.121 atm reacts with excess iron, how many grams of iron(III) oxide will be produced?
2Fe(s)+3H2O(g)⟶Fe2O3(s)+3H2(g)
Answer:
1.60 g of Fe₂O₃
Explanation:
We'll begin by calculating the number of mole water that reacted. This can be obtained as follow:
Volume (V) = 6.50 L
Temperature (T) = 50.2 °C = 50.2 + 273 = 323.2 K
Pressure (P) = 0.121 atm
Gas constant (R) = 0.0821 atm.L/Kmol
Number of mole (n) =?
PV = nRT
0.121 × 6.5 = n × 0.0821 × 323.2
0.7865 = n × 26.53472
Divide both side by 26.53472
n = 0.7865 / 26.53472
n = 0.03 mole
Thus, 0.03 mole of water reacted.
Next, we shall determine the number of mole of Fe₂O₃ produced from the reaction. This can be obtained as follow:
2Fe + 3H₂O —> Fe₂O₃ + 3H₂
From the balanced equation above,
3 moles of H₂O reacted to produce 1 mole Fe₂O₃.
Therefore, 0.03 mole of H₂O will react to produce = (0.03 × 1)/3 = 0.01 mole of Fe₂O₃.
Thus, 0.01 mole of Fe₂O₃ was produced from the reaction.
Finally, we shall determine the mass of 0.01 mole of Fe₂O₃. This can be obtained as follow:
Mole of Fe₂O₃ = 0.01 mole
Molar mass of Fe₂O₃ = (56×2) + (16×3)
= 112 + 48
= 160 g/mol
Mass of Fe₂O₃ =?
Mass = mole × molar mass
Mass of Fe₂O₃ = 0.01 × 160
Mass of Fe₂O₃ = 1.60 g
Therefore, 1.60 g of Fe₂O₃ were produced.
determine the number of atoms of H in 35.0 grams of C2H4O2
Answer:
1.40x10^24 atoms of H
Explanation:
How many ml of 0.24 M HBr solution are needed to react completely with 10.00 ml of 0.24 M Sr(OH)2 solution
Answer:
10mL
Explanation:
Using the formula as follows:
CaVa = CbVb
Where;
Ca = concentration of acid, HBr (M)
Cb = concentration of base, Sr(OH)2 (M)
Va = volume of acid, HBr (Litres)
Vb = volume of base, Sr(OH)2 (Litres)
According to the information given in this question;
Ca = 0.24M
Cb = 0.24M
Va = ?
Vb = 10.0ml
Using CaVa = CbVb
0.24 × Va = 0.24 × 10
0.24Va = 2.4
Va = 2.4 ÷ 0.24
Va = 10mL
10mL of HBr is needed.
State two conditions necessary for an esterification reaction to take place
Explanation:
Esterification occurs when a carboxylic acid reacts with an alcohol. This reaction can only occur in the presence of an acid catalyst and heat. It takes a lot of energy to remove the -OH from the carboxylic acid, so a catalyst and heat are needed to produce the necessary energy.
Answer:
The Esterification ProcessThe Esterification ProcessEsterification occurs when a carboxylic acid reacts with an alcohol. This reaction can only occur in the presence of an acid catalyst and heat. It takes a lot of energy to remove the -OH from the carboxylic acid, so a catalyst and heat are needed to produce the necessary energy.
The Esterification ProcessEsterification occurs when a carboxylic acid reacts with an alcohol. This reaction can only occur in the presence of an acid catalyst and heat. It takes a lot of energy to remove the -OH from the carboxylic acid, so a catalyst and heat are needed to produce the necessary energy.Once the -OH has been removed, the hydrogen on the alcohol can be removed and that oxygen can be connected to the carbon. Because the oxygen was already connected to a carbon, it is now connected to a carbon on both sides, and an ester is formed.
The Esterification ProcessEsterification occurs when a carboxylic acid reacts with an alcohol. This reaction can only occur in the presence of an acid catalyst and heat. It takes a lot of energy to remove the -OH from the carboxylic acid, so a catalyst and heat are needed to produce the necessary energy.Once the -OH has been removed, the hydrogen on the alcohol can be removed and that oxygen can be connected to the carbon. Because the oxygen was already connected to a carbon, it is now connected to a carbon on both sides, and an ester is formed.The methyl acetate that was formed is an ester. In this image, the green circle represents what was the carboxylic acid (in this case acetic acid), and the red circle represents what was the alcohol (in this case methanol):
This reaction lost an -OH from the carboxylic acid and a hydrogen from the alcohol. These two also combine to form water. So any esterification reaction will also form water as a side product.
Organic foods do not contain chemicals.
True
False
What kind of light would an electron experiencing n=4 to n=2 drop emit?
Hi there!
[tex]\large\boxed{\text{Visible Light.}}[/tex]
According to the diagram and the arrows, a drop from level 4 (n = 4) to level 2 (n = 2) produces orange visible light.
[tex]\red\large{{}}[/tex]
Draw a sketch showing what osmotic pressure is. Label on the sketch solute, solvent, hypertonic, hypotonic and semi permeable membrane.
Based on the equations below, which metal is the least active? Pb(NO3)2(aq) + Ni (s) --> Ni(NO3)2 (aq)+ Pb(s) Pb(NO3)2(aq) + Ag(s) --> No reaction Cu(
Answer:
Ni
Explanation:
An active metal is a highly reactive metal. Active metals are found high up in the activity series.
Active metals react with other metals that are lower than them in the activity thereby displacing the lower metals from a solution of their salts. This is what may have happened in the other two reactions.
Ni is the most active metal listed in the question since it can react a compounds with Pb(NO3)2(aq) to liberate Pb metal.
. Gastric juice, the digestive fluid produced in the stomach, contains hydrochloric acid, HCl. Milk of Magnesia, a suspension of solid Mg(OH)2 in an aqueous medium, is sometimes used to neutralize excess stomach acid. Write a complete balanced equation for the neutralization reaction, and identify the conjugate acid-base pairs.
Answer:
Mg(OH)2 + 2HCI = MgCI2 + 2H2O
Explanation:
Please correct me if I am wrong
The phrases or terms describe different fundamental processes of nucleic acids. Classify each phrase or term as relating to replication, transcription, or translation.
a. Single DNA strand used to produce mRNA
b. Requires tRNA
c. Ribosome
d. DNA polymerase
e. Both DNA strands are duplicate
f. Described as semi-conservative
g. Amino acids added to peptide chain
Answer:
I don't know what to do
Explanation:
bye
Answer:
a. Single DNA strand used to produce mRNA ⇒ Transcription
b. Requires tRNA ⇒ Translation
c. Ribosome ⇒ Translation
d. DNA polymerase ⇒ Replication
e. Both DNA strands are duplicate ⇒ Replication
f. Described as semi-conservative ⇒ Replication
g. Amino acids added to peptide chain ⇒ Translation
Explanation:
Replication: the double-strand DNA is separated into two strands. Each strand is used as a template by DNA polymerase to produce the other strand. The leading strand is read by DNA polymerase in a continuous form (3' - 5') and the lagging strand is read in a discontinuous form (5'-3'). In this way, both strands are duplicated. The process is semi-conservative because the DNA molecule produced conserves 1 original strand and the other strand is the new synthesized one. The corresponding options are: d, e, f.
Transcription: is a process in which the genetic code of DNA is copied into a molecule called messenger RNA (mRNA). The double-strand DNA is opened and one strand is read. The enzyme involved is RNA polymerase, which binds the DNA (in a sequence called promoter) and uses the nucleotide code of DNA as a template to produce a molecule of RNA (the mRNA). Therefore, the correct option for this process is a.
Translation: is the process in which the mRNA sequence (copied from a DNA molecule) is translated into an amino acid sequence to produce a protein. This process is carried out within the cell ribosome. The mRNA is read in groups of three nucleotides (a codon) that codifies amino acids. The translation between codon and amino acid is assisted by molecules called transference RNA (tRNA). As each codon is decoded, an amino acid is added and the new polypeptide sequence is synthesized. Therefore, the correct options are: b, c, g.
Write the complete electron configuration for the common monatomic ion formed by the element bromine, Br.
Answer:
iron
Explanation:
Acetic acid and water react to from hydronium cation and acetate anion, like this: HCH3CO2 (aq) + H2O (I) → H3O+(aq) + Ch3CO2-(aq)Imagine 226. mmol of CH3CO2- are added to a flask containing a mixture of HCH3CO2, H2O, H3O + and CH3CO2- at equilibrium, and then answer the following questions. 1. What is the rate of the forward reaction before any HCH3CO2 has been removed from the flask? a. Zero.b. Greater than zero, but less than the rate of the reverse reaction. c. Greater than zero, and equal to the rate of the reverse reaction. d. Greater than zero, and greater than the rate of the reverse reaction. 2. What is the rate of the forward reaction just after the HCH3CO2 has been removed from the flask?a. Zero.b. Greater than zero, but less than the rate of the reverse reaction. c. Greater than zero, and equal to the rate of the reverse reaction. d. Greater than zero, and greater than the rate of the reverse reaction.3. What is the rate of the forward reaction when the system has again reached equilibrium?a. Zero.b. Greater than zero, but less than the rate of the reverse reaction. c. Greater than zero, and equal to the rate of the reverse reaction. d. Greater than zero, and greater than the rate of the reverse reaction.
Answer:
1) Greater than zero, and equal to the rate of the reverse reaction
2) Greater than zero, but less than the rate of the reverse reaction
3) Greater than zero, and equal to the rate of the reverse reaction
Explanation:
A reaction system is said to be in equilibrium when the rate of forward reaction is equal to the rate of reverse reaction.
Before we remove HCH3CO2 from the system, the system was in equilibrium. Recall that when a system is in equilibrium, the rate of forward reaction is equal to the rate of reverse reaction. The rate of reaction is greater than zero because products are being formed as the reactants interact with each other.
When HCH3CO2 is removed from the system, the equilibrium position shifts towards the left hand side hence the rate of reverse reaction is greater than the rate of forward reaction.
When the system attains equilibrium again, the rates of forward and reverse reaction become equal.
Which atomic model states that it is impossible to know the exact location of electrons around the nucleus?
Answer:
Bohr Model is the correct answer
Answer:
Electron -Cloud Model
Explanation:
Just took the quiz got 100%
When you hold an object with a positive electric charge near an object with a
negative electric charge, it causes the negatively charged object to move. How
could you model this interaction with magnets? Describe the types of forces
involved and the energy transformations that take place.
Answer:
A positively charged object will exert a repulsive force upon a second positively charged. This repulsive force will push the two objects apart while a negatively charged object will exert a repulsive force upon a second negatively charged object. Objects with like charge repel each other
The interaction between objects with positive and negative electric charges can be analogously modeled using magnets. The Types of Forces Involved are; Attractive Magnetic Force, Repulsive Magnetic Force and the Energy Transformations are; Potential Energy Transformation, and Kinetic Energy Transformation.
In this analogy, magnets can represent the charges, and magnetic forces can represent the electric forces.
Interaction Between Magnets
Imagine we have two magnets: one with a north pole (N) and the other with a south pole (S). When you bring the north pole of one magnet close to the south pole of the other magnet, they are attracted to each other. Conversely, if you bring the north pole of one magnet near the north pole of the other magnet, they repel each other.
Types of Forces Involved:
Attractive Magnetic Force (Analogous to Electric Attraction):
When the north pole of one magnet is brought close to the south pole of another magnet, they experience an attractive magnetic force. Similarly, when objects with opposite electric charges were brought close together, then they will experience an attractive electric force.
Repulsive Magnetic Force (Analogous to Electric Repulsion):
When two magnets with the same pole (both north or both south) are brought close to each other, they experience a repulsive magnetic force. This is analogous to the repulsion between objects with like electric charges (both positive or both negative).
Energy Transformations;
When you bring the magnets closer together or move them apart, energy transformations occur:
Potential Energy Transformation;
As the magnets are moved closer together, the potential energy of the magnetic interaction decreases. This is because the magnets' magnetic fields interact more strongly, and they tend to move toward each other due to the attractive or repulsive forces.
Kinetic Energy Transformation;
If you let the magnets go after bringing them close together, they will move towards each other (in the case of attraction) or move apart (in the case of repulsion). This movement involves a transformation of potential energy into kinetic energy. The kinetic energy increases as the magnets move, and it's at its maximum when the magnets are farthest apart (in the case of repulsion) or when they collide (in the case of attraction).
To know more about Magnetic Force here
https://brainly.com/question/10353944
#SPJ3
define saturated and unsaturated fats
Saturated fatty acids lack double bonds between the individual carbon atoms, while in unsaturated fatty acids there is at least one double bond in the fatty acid chain. Saturated fats tend to be solid at room temperature and from animal sources, while unsaturated fats are usually liquid and from plant sources.
Answer:
hope it is helpful to you
☆☆☆☆☆☆☆☆☆
Name the compound CuI2
Answer:
Copper iodide. I think
Answer:
copper iodide(Cul2)hope it helps
stay safe healthy and happy..How many grams of h2o are needed to produce 45g of NO
howtocalculatethevolumeofcarbondioxideproducedwhen400gofmarblewereats.t.p
Answer:
so 0.15 moles X 22.4 dm3/mole=3.36 dm3. Next we find the moles of hexane combusted, and then the moles of CO2. Finally, we find the volume of CO2 using the fact that at STP, 1 mole of gas = 22.4 dm3.
A 46.6-mgmg sample of boron reacts with oxygen to form 150 mgmg of the compound boron oxide. Part A What is the empirical formula of boron oxide
Answer:
B₂O₃
Explanation:
Step 1: Calculate the mass of oxygen in 150 mg of boron oxide
Of 150 mg of boron oxide, 46.6 mg belong to boron. The mass of oxygen is:
150 mg - 46.6 mg = 103.4 mg
Step 2: Calculate the percent by mass of each element
We will use the following expression.
%Element = mElement/mCompound × 100%
%B = 46.6 mg/150 mg × 100% = 31.1%
%O = 103.4 mg/150 mg × 100% = 68.9%
Step 3: Divide each percentage by the atomic mass of the element
B: 31.1/10.81 = 2.88
O: 68.9/16.00 = 4.31
Step 4: Divide both numbers by the smallest one (2.88)
B: 2.88/2.88 = 1
O: 4.31/2.88 ≈ 1.5
Step 5: Multiply both numbers by 2 so that they are integers
B: 1 × 2 = 2
O: 1.5 × 2 = 3
The empirical formula is B₂O₃.
What is the percent nitrogen in each of the following compounds?
(a) NaNO 3
(b) NH 4 C1
(c) N 2 H4
(d) N20
Answer:
N 2 H4
Explanation:
How many grams of boiling water must be added to an insulated cup containing 19 grams of ice, at 0oC, to completely melt the ice
Answer:
1900grams of boiling water
Explanation:
0,c=19
100,c=19×100
1900grams
what is sterilization
Answer:
Sterilization refers to any process that removes, kills, or deactivates all forms of life and other biological agents like prions present in a specific surface, object or fluid, for example food or biological culture media.
classify each of the following as a pure substance or a mixture.
a) baking soda
b) ice
c)blueberry muffin
d) zink
Answer:
c
Explanation:
its c because it has multiple mixture blueberries flower water and others thats why i says c
a 150 j of energy is added to a system that does 50 j of work is done.by how m uch will tyhe internal energy of system be raised?
The internal energy of system is raised by 3 times
Suppose you ran this reaction without triethylamine and simply used an excess of reactant 1. At the end of the reaction, your methylene chloride solution would contain mostly reactant 1 and the product. What would you do to remove reactant 1 from the solution
ummm is that chemistry?
Answer:
is this chem
Explanation:
c) Solar energy is the source of all forms of energy.give reasons
Answer:
All energy is made by the sun because without the sun there would be no humans to produce other energy
Explanation:
We use many different forms of energy here on earth, but here’s the thing: almost all of them originate with the sun, not just light and heat (thermal) energy! The law of conservation of energy says that energy can’t be created or destroyed, but can change its form. And that’s what happens with energy from the sun—it changes into lots of different forms:
Plants convert light energy from the sun into chemical energy (food) by the process of photosynthesis. Animals eat plants and use that same chemical energy for all their activities.
Heat energy from the sun causes changing weather patterns that produce wind. Wind turbines then convert wind power into electrical energy.
Hydroelectricity is electrical energy produced from moving water, and water flows because heat energy from the sun causes evaporation that keeps water moving through the water cycle.
Right now, much human activity uses energy from fossil fuels such as coal, oil, and natural gas. These energy sources are created over very long periods of time from decayed and fossilized living matter (animals and plants), and the energy in that living matter originally came from the sun through photosynthesis.
solar panel shows what is the ultimate source of energy