Calculate the mass of a sphere of gold with a radius of 11.3 cm. (The volume of a sphere with a radius r is V = (4/3)πr3; the density of gold is 19.3 g/cm3.) Express the solution in grams and in scientific notation.

Answers

Answer 1

The mass of a sphere with a radius of 11.3 cm can be calculated using the equation M = V × ρ, where V is the volume of the sphere and ρ is the density of the material. The volume of a sphere with a radius r is V = (4/3)πr3 and the density of gold is 19.3 g/cm3, so we can calculate the mass of the gold sphere as:

M = (4/3)πr3 × 19.3 g/cm3 = (4/3) × 3.14 × 11.33 × 19.3 g/cm3

M = 8,683.29 g = 8.7 × 103 g (in scientific notation)

Read more about the topic of density:

https://brainly.com/question/1354972

#SPJ11


Related Questions

How do you write a chemical formula for the following scenario:
Nitric acid is a component of acid rain that forms when gaseous Nitrogen dioxide pollutant reacts with gaseous Oxygen and liquid water to form aqueous Nitric acid?

Answers

The balanced chemical formula for the given scenario is 2{\rm NO}_2(g)\ +\ O_2(g)\ +\ 2H_2O(l)\ \rightarrow\ 2H{\rm NO}_3(aq)


To write the chemical formula for the given scenario, it is necessary to balance the chemical reaction equation by following the law of conservation of mass.

Nitric acid is a component of acid rain. Acid rain is caused by air pollution, and it occurs when the nitrogen dioxide pollutant \left({\rm NO}_2\right) reacts with gaseous oxygen  \left(O_2\right) and liquid water  \left(H_2O\right) to form aqueous nitric acid (HNO3).The balanced chemical equation for this reaction is:

2{\rm NO}_2(g)\ +\ O_2(g)\ +\ 2H_2O(l)\ \rightarrow\ 2H{\rm NO}_3(aq)

The balanced equation states that two molecules of nitrogen dioxide gas react with one molecule of oxygen gas and two molecules of liquid water to produce two molecules of aqueous nitric acid. The coefficients ensure that the equation is balanced according to the law of conservation of mass.

Learn more about Chemical formula:

https://brainly.com/question/26694427

#SPJ11

Calculate the pH at 25°C of a 0.49M solution of ethylammonium bromide C2H5NH3Br . Note that ethylamine C2H5NH2 is a weak base with a pKb of 3.19 . Round your answer to 1 decimal place.

Answers

Answer:

pH = 12.7

Step-by-step Explanation:

The first step is to write the chemical equation for the dissociation of ethylammonium bromide:

C2H5NH3Br + H2O ⇌ C2H5NH2 + H3O+ + Br-

We can then write the equilibrium constant expression, Kc:

Kc = [C2H5NH2][H3O+][Br-] / [C2H5NH3Br][H2O]

At equilibrium, the concentration of water is essentially constant, so we can simplify the expression:

Kc = [C2H5NH2][H3O+][Br-] / [C2H5NH3Br]

We can also write the expression for the base dissociation constant, Kb:

Kb = [C2H5NH2][OH-] / [C2H5NH3+]

The relationship between Kb and Kc is:

Kb x Ka = Kw

where Ka is the acid dissociation constant for water (1.0 x 10^-14 at 25°C) and Kw is the ion product constant for water (also 1.0 x 10^-14 at 25°C).

We can rearrange this equation to solve for Kb:

Kb = Kw / Ka = 1.0 x 10^-14 / 1.0 x 10^-14 = 1.0

Since Kb is defined as [C2H5NH2][OH-] / [C2H5NH3+], we can solve for [OH-]:

Kb = [C2H5NH2][OH-] / [C2H5NH3+]

[OH-] = Kb x [C2H5NH3+] / [C2H5NH2]

We can use the relation between [H3O+] and [OH-]:

Kw = [H3O+][OH-] = 1.0 x 10^-14

[H3O+] = Kw / [OH-]

[H3O+] = Kw / (Kb x [C2H5NH3+] / [C2H5NH2])

[H3O+] = (1.0 x 10^-14) / (1.0 x [C2H5NH3+] / [C2H5NH2])

We can then substitute in the concentration of ethylammonium bromide:

[H3O+] = (1.0 x 10^-14) / (1.0 x 0.49 / 1.0)

[H3O+] = 2.04 x 10^-13 M

The pH is defined as the negative logarithm of the concentration of hydronium ions:

pH = -log[H3O+]

pH = -log(2.04 x 10^-13)

pH = 12.7

Therefore, the pH of a 0.49 M solution of ethylammonium bromide at 25°C is 12.7 (rounded to 1 decimal place).

During a course of reaction, can only one activated complex be formed for a particular type of reaction?​

Answers

No, during a course of reaction, multiple activated complexes can be formed for a particular type of reaction. An activated complex is a short-lived, high-energy intermediate state that occurs during a chemical reaction.

What is  energy ?

Energy is a fundamental concept in physics that describes the capacity of a physical system to do work or produce a change. It is a property of matter and radiation and can be converted from one form to another. There are various types of energy, including kinetic energy (energy of motion), potential energy (energy due to position or configuration), thermal energy (energy due to the temperature of a system), chemical energy (energy stored in the bonds between atoms and molecules), and nuclear energy (energy stored in the nucleus of an atom). The unit of energy is the joule (J) in the SI system.

To know more about energy visit :

https://brainly.com/question/11399976

#SPJ1

The molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is C14H18N2O5. A. What is the molar mass of aspartame? b. How many moles of aspartame are present in 1. 00 mg of aspartame? c. How many molecules of aspartame are present in 1. 00 mg of aspartame? d. How many hydrogen atoms are present in 1. 00 mg of aspartame?

Answers

For the molecular formula of aspartame, the artificial sweetener marketed as NutraSweet, is [tex]C_{14}H_{18}N_2O_5[/tex],

a. the molar mass of aspartame is 294.30 g/mol.

b. there are 3.40 x [tex]10^{-6}[/tex] moles of aspartame in 1.00 mg of aspartame.

c. there are 2.05 x [tex]10^{18}[/tex] molecules of aspartame in 1.00 mg of aspartame.

d. the total number of hydrogen atoms in 1.00 mg of aspartame is 34 hydrogen atoms.

a. The molar mass of aspartame can be calculated by adding up the atomic masses of all its atoms:

Molar mass of aspartame = (14 x 12.01 g/mol) + (18 x 1.01 g/mol) + (2 x 14.01 g/mol) + (5 x 16.00 g/mol) = 294.30 g/mol

Therefore, the molar mass of aspartame is 294.30 g/mol.

b. The number of moles of aspartame present in 1.00 mg of aspartame can be calculated using the formula:

moles = mass/molar mass

moles = 1.00 mg / 294.30 g/mol = 3.40 x 10^-6 mol

Therefore, there are 3.40 x 10^-6 moles of aspartame in 1.00 mg of aspartame.

c. The number of molecules of aspartame present in 1.00 mg of aspartame can be calculated using Avogadro's number:

number of molecules = moles x Avogadro's number

number of molecules = 3.40 x [tex]10^{-6}[/tex] mol x 6.02 x [tex]10^{23}[/tex] molecules/mol = 2.05 x [tex]10^{18}[/tex] molecules

Therefore, there are 2.05 x 10^18 molecules of aspartame in 1.00 mg of aspartame.

d. The number of hydrogen atoms present in 1.00 mg of aspartame can be calculated as follows:

There are 14 carbon atoms in 1.00 mg of aspartame, and each carbon atom is bonded to two hydrogen atoms. Therefore, there are 28 hydrogen atoms bonded to carbon atoms.

There are 2 nitrogen atoms in 1.00 mg of aspartame, and each nitrogen atom is bonded to three hydrogen atoms. Therefore, there are 6 hydrogen atoms bonded to nitrogen atoms.

There are 5 oxygen atoms in 1.00 mg of aspartame, and each oxygen atom is not bonded to any hydrogen atoms.

Therefore, the total number of hydrogen atoms in 1.00 mg of aspartame is 28 + 6 + 0 = 34 hydrogen atoms.

Learn more about the molecular formula of aspartame at

https://brainly.com/question/26876807

#SPJ4

In an open manometer with an atmospheric pressure of 780 mm Hg, the mercury level in the arm connected to the gas is 45 mm Hg higher than in the arm connected to the atmosphere. What is the pressure of the gas sample? (answer in mm Hg)​

Answers

The pressure of the gas sample is 825 mm Hg.

How to find the pressure of the gas sample?

In an open manometer, the pressure of the gas sample can be determined by measuring the difference in height of the mercury levels in the two arms of the manometer. The pressure of the gas sample is equal to the difference in height between the two mercury levels, plus the atmospheric pressure.

In this case, the mercury level in the arm connected to the gas is 45 mm Hg higher than in the arm connected to the atmosphere. This means that the pressure of the gas sample is 45 mm Hg higher than the atmospheric pressure.

So, the pressure of the gas sample can be calculated as:

Pressure of gas sample = atmospheric pressure + height difference between the two mercury levels

Pressure of gas sample = 780 mm Hg + 45 mm Hg

Pressure of gas sample = 825 mm Hg

Therefore, the pressure of the gas sample is 825 mm Hg.

Learn more about manometer here : brainly.com/question/13949430

#SPJ1

what should you do with unused chemicals? group of answer choices dispose of them as instructed on the safety sheet return to their original containers throw away with regular trash dump them down the sink

Answers

The best thing to do with unused chemicals is to dispose of them as instructed on the safety sheet. This may involve returning the chemicals to their original containers or throwing them away with the regular trash. Never dump unused chemicals down the sink, as this could be hazardous to the environment and to your health.
Unused chemicals should be disposed of as instructed on the safety sheet. It is important to dispose of chemicals in a safe and responsible manner to avoid harm to the environment and human health.

What are chemicals?

Chemicals are substances that are made up of molecules, which are made up of atoms. Chemicals can be found in nature or synthesized by humans. Chemicals have a wide range of uses, from pharmaceuticals to household cleaning products.

Why should you dispose of unused chemicals as instructed on the safety sheet?

Unused chemicals can pose a hazard if they are not disposed of correctly. Many chemicals are hazardous and can be dangerous to human health and the environment if they are not disposed of properly. Chemicals that are poured down the drain or thrown in the trash can contaminate the environment and cause harm to animals and humans. Examples of hazardous chemicals are corrosive, flammable, reactive, and toxic. It is essential to follow the safety sheet's instructions on how to dispose of unused chemicals to protect the environment and human health. In addition, it is important to ensure that unused chemicals are not mixed with other chemicals, as this can cause a dangerous reaction.

For more information follow this link: https://brainly.com/question/30970962

#SPJ11

A student is designing a new insulated drink cup using unconventional materials. They will have an inside and an outside cup with a material from the table in between the cups as insulation.Which material should they use to prevent heat loss?

Answers

The best material for insulation in this case would be Styrofoam. Styrofoam is lightweight, strong, and an excellent thermal insulator. It is composed of tiny bubbles of air that are suspended in a matrix of plastic. The air trapped inside the bubbles acts as a thermal barrier, keeping heat out or in, depending on the application.

Its lightweight nature makes it easier to manipulate, while its strength gives it the durability needed to keep a drink hot or cold. Its insulation properties also make it the perfect material for the student's insulated drink cup.

Styrofoam can be cut and shaped easily, making it a great material for use in drink cups. The material is also easy to clean and resistant to water and other liquids, which makes it ideal for frequent use. Additionally, Styrofoam is both affordable and widely available, making it an ideal choice for the student's project.

Know more about thermal insulator here:

https://brainly.com/question/23134662

#SPJ11

determine whether each observation generally corresponds to a physical change or a chemical change. a liquid freezes into a solid. choose... a solution heats up upon mixing with another. choose... a solid dissolves into water. choose... the color of a substance changes over time. choose... bubbles are produced upon mixing two solutions. choose... a precipitate is formed from two solutions. choose...

Answers

The observation which corresponds to physical change are a liquid freezes into a solid and a solid dissolves into water.

The observation which corresponds to chemical change are a solution heats up upon mixing with another, the color of a substance changes over time, bubbles are produced upon mixing two solutions, and a precipitate is formed from two solutions.

When it comes to determining whether each observation corresponds to a physical change or a chemical change:

1. A liquid freezes into a solid corresponds to a physical change.

The explanation for this is that physical changes occur when the form of the substance alters, but the chemical composition of the substance stays the same. Because the liquid's chemical composition does not alter during the process of freezing, it is classified as a physical alteration.

2. A solution heats up upon mixing with another corresponds to a chemical change.

A chemical change is one in which the composition of the substance changes. This is most commonly accomplished through a chemical reaction, which is when the original molecules are transformed into new molecules. In this instance, when two solutions are combined and heat is generated, a chemical reaction is occurring.

3. A solid dissolves into water corresponds to a physical change.

The explanation for this is that the process of dissolving a solid into water does not alter the chemical composition of the solid. Instead, the solid's particles are separated by the water particles, resulting in a homogenous solution. Because the chemical composition remains constant, it is classified as a physical change.

4. The color of a substance changes over time corresponds to a chemical change.

This alteration is often linked to a chemical reaction. When a substance's color changes over time, it is frequently due to the presence of a different substance. As a result, the chemical composition of the original substance is altered. As a result, it is classified as a chemical alteration.

5. Bubbles are produced upon mixing two solutions corresponds to a chemical change.

This alteration is often linked to a chemical reaction. When two substances combine and produce bubbles, it is usually the result of the generation of a new gas. As a result, the original molecules have transformed, resulting in a new substance. As a result, it is classified as a chemical alteration.

6. A precipitate is formed from two solutions corresponds to a chemical change.

When two solutions are combined, they frequently react to form a precipitate. This indicates that a new substance has been produced, and the original substance's composition has been altered. As a result, it is classified as a chemical alteration.

Learn more about Chemical change:

https://brainly.com/question/11370755

#SPJ11

How many moles of gas does it take to occupy 120 liters at a pressure of 2.3 atmospheres and a temperature of 350 K?
Remember:R=0.0821 L•atm/mol k
A. 9.6 mol
B. 3.4 mol
C. 4.7 mol
D.0.79 mol

Answers

Answer:

A - 9.6 mol.

Explanation:

Took the test.

Name the following compounds:

Answers

The names of the given compounds are:

a) Carbon tetrachloride

b) 1-chloro-2-chloromethane (also known as chloroethyl chloride)

c) 1,2-dichloroethane

d) 2-chloro-2-methylbutane

e) 1,4-dichlorobutane

What are compounds

A compound is a substance made up of two or more different elements chemically combined in fixed proportions. The elements in a compound are held together by chemical bonds, which are formed when atoms of different elements share or transfer electrons to achieve a stable electron configuration.

Compounds have unique properties that are different from their constituent elements, such as melting point, boiling point, density, and reactivity. They can be formed through various chemical reactions, such as synthesis, decomposition, combustion, and oxidation. Examples of common compounds include water (H2O), table salt (NaCl), carbon dioxide (CO2), and glucose (C6H12O6).

Learn more about chemical compounds here https://brainly.com/question/29594386

#SPJ1

What are the products and balanced equation for 2K(s) + ZnCl2(aq)

Answers

The products of the reaction between 2K(s) and ZnCl2(aq) are aqueous potassium chloride (KCl) and solid zinc (Zn), and the balanced chemical equation is 2K(s) + ZnCl2(aq) → 2KCl(aq) + Zn(s).

The balanced chemical equation for the reaction between 2K(s) and ZnCl2(aq) is:

2K(s) + ZnCl2(aq) → 2KCl(aq) + Zn(s)

In this reaction, potassium (K) reacts with zinc chloride (ZnCl2) to form potassium chloride (KCl) and solid zinc (Zn).

A balanced equation is a representation of a chemical reaction that shows the same number of atoms of each element on both the reactant and product sides of the equation. In other words, the total mass and charge of the reactants must be equal to the total mass and charge of the products. To balance an equation, one must adjust the coefficients in front of the chemical formulas of the reactants and products.

This is done by using the laws of conservation of mass and charge. For example, if there are two atoms of oxygen on one side of the equation, there must be two atoms of oxygen on the other side as well. A balanced equation is important because it provides a clear understanding of the stoichiometry of a chemical reaction. This information is crucial for determining the amounts of reactants needed to produce a certain amount of product, as well as for predicting the products of a given reaction.

To learn more about Balanced equation visit here:

brainly.com/question/12405075

#SPJ4

If breaking bonds requires energy IN, or takes energy, what mathematical function (+, −, ×, ÷) should we use to represent this process in a computational model?

Answers

Answer:

The mathematical function that represents breaking bonds requiring energy in a computational model is the addition symbol (+).

Breaking a bond requires the input of energy, which means that energy is being added to the system. Therefore, the energy required to break a bond can be represented as a positive value, which is added to the total energy of the system. For example, if the energy required to break a bond is 10 joules, and the initial energy of the system is 100 joules, the total energy after the bond is broken would be 110 joules.

On the other hand, when forming bonds, energy is typically released or given off by the system. This means that the energy required for bond formation can be represented by a negative value, which would be subtracted from the total energy of the system.

Explanation:

Which of the compounds listed below, when added to water, is/are likely to increase the solubility of AgCl? A. Ammonia, B. NH3 Sodium cyanide, C. NaCN Potassium chloride,
D. KCl

Answers

AgCl is more likely to dissolve in water when ammonia (NH3) is present. This is due to the fact that ammonia and AgCl may combine to create the water-soluble complex ion, Ag(NH3)2+.

How well does AgCl dissolve in NH3 H2O?

At 25°C, the solubility of AgCl in water is 0.0020 g of AgCl per litre of H2OS.

AgCl dissolves in NH3 at a rate of 14.00 g per kilogramme of NH3 when the temperature is 25°C. Due to the production of the soluble stable complex [AgNH32]+, AgCl is more soluble in NH3. Since oxygen is more electronegative than nitrogen, ammonia is less polar than water.

In water or acid, is AgCl soluble?

AgCl is well known to be insoluble in water whereas NaCl and KCl are soluble in the pedagogical literature: implementations of Elementary studies of both qualitative and quantitative analysis make this distinction.

To know more about ammonia visit:-

https://brainly.com/question/20524322

#SPJ1

Which of the following are the best examples of foods within the protein group that can also increase intake of unsaturated fats? a. Organic 0% fat Greek Yogurt, All Natural raisins, Apples b. Lean chicken, skim milk, sugar-free sodac. Salmon, nuts, seeds, legumes d. Steak, bacon, pepperoni pizza

Answers

The best examples of foods within the protein group that can also increase intake of unsaturated fats are salmon, nuts, seeds, legumes. The correct option is (c).

Protein is a vital macro nutrient that is required to build and repair tissues, produce enzymes and hormones, and maintain healthy muscles and bones. Unhealthy fats can increase the risk of heart disease, stroke, and other chronic health problems. A diet that contains a good balance of carbohydrates, protein, and healthy fats is recommended for overall health and well-being. Unsaturated fats are a type of healthy fat that can improve heart health by reducing bad cholesterol levels and increasing good cholesterol levels.

Foods that are high in protein and unsaturated fats are ideal for promoting overall health and wellness. Salmon is a good source of protein and contains omega-3 fatty acids, which are a type of unsaturated fat that can reduce inflammation and improve brain function. Nuts and seeds are high in protein and also contain healthy fats that can help reduce the risk of heart disease and other chronic health problems. Legumes, such as lentils, beans, and chickpeas, are high in protein and fiber and also contain healthy fats that can help improve heart health.In conclusion, salmon, nuts, seeds, and legumes are the best examples of foods within the protein group that can also increase intake of unsaturated fats.

Therefore, Salmon, nuts, seeds, and legumes are the best examples of protein-rich meals that can also enhance unsaturated fat intake. The right option is (c).

Learn more about unsaturated fats on:

https://brainly.com/question/24186437

#SPJ11

which example is an exothermic reaction? responses dissolving sugar in water dissolving sugar in water melting ice melting ice dissolving ammonium nitrate in water to cool the water dissolving ammonium nitrate in water to cool the water condensation

Answers

The correct option is dissolving ammonium nitrate in water to cool the water.

Among the given options, the example of an exothermic reaction is dissolving ammonium nitrate in water to cool the water.

Exothermic reactions are chemical reactions that release heat energy into the surroundings. As a result, the products have less energy than the reactants. Dissolving ammonium nitrate in water to cool the water is a good example of an exothermic reaction because it releases heat energy and cools down the surrounding water.

When ammonium nitrate dissolves in water, it releases heat, causing the temperature of the water to decrease. The reaction is exothermic because it releases heat to the surroundings. Dissolving sugar in water and melting ice are examples of endothermic reactions because they absorb heat energy from the surroundings.

Therefore, the correct answer is the option of dissolving ammonium nitrate in water to cool the water.

To learn more about exothermic reactions refer - https://brainly.com/question/10373907

#SPJ11

when ammonia reacts with oxygen, nitrogen monoxide and water are produced. the balanced equation for this reaction is:

Answers

The balanced equation for the reaction between ammonia and oxygen, which produces nitrogen monoxide and water is as 4 NH3 + 5 O2 → 4 NO + 6 H2O

The reaction is exothermic, and it occurs through a series of steps.

Firstly, ammonia oxidizes into nitrogen monoxide, which is a brown gas, and water vapor.

4 NH3 + 5 O2 → 4 NO + 6 H2O

The nitrogen monoxide is further oxidized by reacting with more oxygen molecules.

2 NO + O2 → 2 NO2

Finally, the nitrogen dioxide can react with water vapor to produce nitric acid and nitrogen oxide.

3 NO2 + H2O → 2 HNO3 + NO

When oxygen reacts with ammonia, nitrogen monoxide and water are produced.

To know more about balanced equation, refer here:

https://brainly.com/question/12192253#

#SPJ11

Calcula el volumen en litros que tendran 2 kg de poliestireno expandidos (densidad = 0,92g/cm3)

Answers

2 kg of expanded polyethylene has a volume of 2.17 liters.

Given that,

Density = 0.9g/cm³

Mass = 2kg = 2000g

Density is the substance's mass per unit of volume. Although the Roman letter D may also be used, the sign most frequently used for density is ρ (the lowercase Greek letter rho). A substance's density changes as a function of pressure and temperature. With solids and liquids, this variance is often slight, but for gases, it is much more pronounced.

Density = Mass ÷ Volume

0.92 = 2000 ÷ Volume

Volume = 2000 ÷ 0.92

Volume = 2.17 liters.

Hence, 2 kg of expanded polyethylene has a volume of 2.17 liters.

To learn more about density, refer to:

https://brainly.com/question/26364788

#SPJ4

Your question is in Spanish. The English translation of the question is:

Calculate the volume of 2 kg of expanded polyethylene in liters. ( Density = 0.92g/cm³ )

buffers are made from weak conjugate acid-base pairs. in part 1 of this experiment, a solution of weak acid is mixed with another solution of weak acid to which the strong base naoh has been added.

Answers

Buffers are made from weak conjugate acid-base pairs. In part 1 of this experiment, a solution of weak acid is mixed with another solution of weak acid to which the strong base NaOH has been added.

What is a buffer?

A buffer is a solution that can resist changes in pH when acid or base is added. They are used to keep the pH of solutions stable in various chemical and biological systems, including industrial processes, drugs, and the human body. A buffer is a mixture of a weak acid and its conjugate base or a weak base and its conjugate acid.The following are the features of a buffer:It is a solution that resists changes in pH.It consists of a weak acid and its corresponding base.The buffering effect is maximized when the ratio of weak acid to its corresponding base is 1:1.A buffer resists pH changes in either direction, and it has a maximum buffering capacity when pH is within one unit of its pKa. The buffering capacity of the solution is increased by increasing the buffer concentration.

A weak acid is one that only partially dissociates in water to produce hydrogen ions (H+) and anions. Its conjugate base is the species that results from the removal of a proton from the acid. As an example, ammonia (NH3) is a weak base, and its conjugate acid is ammonium (NH4+). The reverse reaction produces the acid and base when the acid is added to water.

Learn more about buffer solution on:

https://brainly.com/question/8676275

#SPJ11

when working with acids, which of the following is the proper way to dilute these chemicals? group of answer choices place acid in a graduated cylinder then add water to the correct volume none of the above add water to the acid in a beaker add the acid to water

Answers

Adding the acid to water is the proper way to dilute chemicals. Begin by measuring the correct volume of acid in a graduated cylinder. Next, pour the acid into a beaker containing the correct volume of water. Finally, stir the solution until it is fully mixed.

What are acids?

Acids are strong chemical compounds. When working with acids, it is important to dilute them in the correct manner to prevent harm to oneself or the surrounding environment.

The correct method of dilution for acids is to add the acid to water, not the other way around. This is because adding water to acid can cause an exothermic reaction that releases heat and may cause the acid to splash and burn you.

When diluting acids, be sure to add the acid to water slowly and stir continuously to prevent splashing and heat generation. Therefore, the correct answer is to add the acid to water.

Learn more about Acids here:

https://brainly.com/question/29796621


#SPJ11

The chemical formula Al2SiO5 can form any of these three minerals, given different combinations of temperature and pressure conditions: a. marble, quartzite, and hornfels b. quartz, feldspar, and mica c. hematite, magnetite, and goethite d. andalusite, kyanite, and sillimanite e. granite, sandstone, and marble

Answers

The chemical formula [tex]Al_2SiO_5[/tex] can form the three minerals, andalusite, kyanite, and sillimanite under different combinations of temperature and pressure conditions. Option D is correct.

What are minerals? Minerals are solid inorganic materials with a specific chemical formula and crystalline structure. Most minerals are naturally occurring substances. Some minerals are silicates, while others are carbonates, oxides, sulfides, or halides, among other groups.What is the chemical formula? The chemical formula refers to the formula that represents the atoms in a compound's molecule. The chemical formula of a mineral is a shorthand description of the relative proportions of a mineral's primary chemical constituents. [tex]Al_2SiO_5[/tex] is a chemical formula. It means that for every two aluminum atoms, there is one silicon atom, and five oxygen atoms in a mineral.What is the significance of temperature and pressure in mineral formation? Temperature and pressure are essential factors in mineral formation. A mineral can only form under certain temperature and pressure conditions. Because the temperature and pressure conditions vary depending on the type of mineral, each mineral has unique characteristics. The pressure and temperature requirements for the formation of some minerals are so unique that they can only form under extreme conditions.The chemical formula [tex]Al_2SiO_5[/tex] can form andalusite, kyanite, and sillimanite under different combinations of temperature and pressure conditions. Hence, option D is correct.

Learn more about the chemical formula: https://brainly.com/question/11574373

#SPJ11

in lactic acid fermentation what happens to the pyruvate coming from glycolysis?

Answers

In the process of lactic acid fermentation, the enzyme lactate dehydrogenase catalyses the conversion of pyruvate to lactate or lactic acid by the addition of hydrogen ions.

The pyruvate that results from glycolysis is transformed into lactic acid during lactic acid fermentation. The synthesis of lactate and NAD+ as a result of the transfer of two highly energetic electrons from NADH to pyruvate is what allows for this conversion. This procedure aids in the renewal of NAD+, which is necessary for glycolysis to carry on making ATP without oxygen. In many organisms, including bacteria, fungi, and animals, lactic acid fermentation is an important process. It is crucial in muscles during vigorous exercise when oxygen supply is constrained.

learn more about lactic acid here:

https://brainly.com/question/10948414

#SPJ4

what distinguishes a saturated solution from a supersaturated solution?

Answers

The main difference between a saturated solution and a supersaturated solution is concentration of the solute.

A saturated solution contains the maximum amount of solute that can be dissolved under the given conditions, while a supersaturated solution contains more solute than is normally possible. A saturated solution contains the maximum amount of solute that can be dissolved in a given solvent at a specific temperature and pressure. In a saturated solution, the concentration of solute is in equilibrium with the concentration of undissolved solute, which is in dynamic equilibrium with the dissolved solute. A supersaturated solution, on the other hand, is a solution that contains more solute than is normally possible to dissolve in the solvent under the given conditions.

To know more about  supersaturated solution, here

brainly.com/question/16817894

#SPJ4

water, h2o, and hexane, c6h14, are commonly used as laboratory solvents because they have different physical properties and are able to dissolve different types of solutes. 32. explain, in terms of the molecular polarity, why hexane is nearly insoluble in water

Answers

Hexane, C6H14, is a non-polar molecule, meaning that its electric charge is evenly distributed. On the other hand, water (H2O) is a polar molecule, with an uneven distribution of electric charge. Since the two molecules have opposite polarities, they do not interact with one another, leading to the nearly insoluble nature of hexane in water.

When explaining, in terms of the molecular polarity, why hexane is nearly insoluble in water, it's crucial to consider the nature of the molecules, their polarity, and their ability to interact with one another.

What is hexane?

Hexane, with the chemical formula C6H14, is a saturated hydrocarbon with a boiling point of 69°C. It's an odorless liquid that's colorless, and it's frequently utilized as a solvent in the laboratory. When hexane molecules are considered, they are all nonpolar molecules, meaning that the electrons are distributed uniformly among the atoms, and there is no permanent charge on any part of the molecule.

What is water?

Water (H2O) is a polar molecule with a partial positive charge on its hydrogen atoms and a partial negative charge on its oxygen atoms. It's a very common solvent in laboratories because it's extremely polar and can dissolve a wide range of substances. It's because of the difference in the polarity of water and hexane molecules that hexane is nearly insoluble in water.

The reason hexane is insoluble in water is that water is an incredibly polar substance, while hexane is a nonpolar substance. The polar water molecules are attracted to other polar substances and repelled by nonpolar substances like hexane, which has no charge to attract polar water molecules.

Therefore, as a result, hexane does not dissolve in water and is nearly insoluble.

To know more about hexane click here:

https://brainly.com/question/30908383

#SPJ11

1. PART A: Which TWO of the following best identify the main ideas of this article?
Fingerprints are still the most accurate way to identify a person.
Blood vessels have the same structure as fingerprints.
Biometric features are slightly different in everyone.
Biometrics is the measurement of life.
A
B.
C.
D.
E.
F.
Biometric technology can help in areas of security, privacy, and health.
Children in West Africa desperately need vaccines.

Answers

The statement that best identify the main idea of the article are, A and C

A) Fingerprints are still the most accurate way to identify a person.

C) Biometric features are slightly different in everyone.

What is the article about?

The article seems to focus on biometric technology and the different ways it can be used for identification, security, and health purposes.

It explains that fingerprints remain the most accurate way to identify a person, but also discusses the unique features of other biometric identifiers such as facial recognition and blood vessels.

Lastly, the article emphasizes the importance of recognizing that biometric features are unique to each individual.

Learn more about  biometric technology from

https://brainly.com/question/20643575

#SPJ1

What are situations that reduce the dissolved oxygen content of water

Answers

Answer:

There are several situations that can reduce the dissolved oxygen (DO) content of water, including:

High temperatures: As the temperature of water increases, its ability to hold dissolved gases like oxygen decreases. This means that warmer water has a lower DO content compared to cooler water.
Eutrophication: Eutrophication occurs when excess nutrients, such as nitrogen and phosphorus, are added to water. This can lead to the growth of algae, which consumes oxygen during the process of respiration, resulting in lower DO levels.
Organic matter decay: Organic matter, such as leaves, plant material, and sewage, can enter bodies of water and begin to decay. During the process of decomposition, bacteria and other microorganisms consume oxygen, which can lead to lower DO levels.
Pollution: Pollutants such as oil, chemicals, and other substances can enter water bodies and reduce the DO content through a variety of mechanisms, including inhibiting the respiration of aquatic organisms or directly consuming oxygen during chemical reactions.
Physical factors: Certain physical factors, such as low flow rates, stagnant water, and high pressure, can all contribute to lower DO levels by limiting the amount of oxygen that can dissolve in the water.
Overall, there are many factors that can reduce the DO content of water, and understanding these factors is important for maintaining the health of aquatic ecosystems and protecting the water quality.

suppose you needed to calculate the mass, in grams, of sodium in 1.5 grams of sodium chloride? which of the following equations allows you to correctly calculate the mass of sodium in 1.5 grams of sodium chloride.A. Mol NaCI / 58.44 g NaCI X mol Na / NaCI X 22.99 g Na / mol Na = B. 1.5 NaCI X mol NaCI / 58.44 g NaCI X 22.99 g Na / mol Na = C. 1.5 g NaCI X mol NaCI / 58.44 g NaCI X mol Na / mol NaCI X 22.99 g Na / mol Na = D. 1.5 g NaCI X mol NaCI / g NaCI X mol Na / mol NaCI X g Na / mol Na =

Answers

The correct equation to calculate the mass, in grams, of sodium in 1.5 grams of sodium chloride is: C. 1.5 g NaCI X mol NaCI / 58.44 g NaCI X mol Na / mol NaCI X 22.99 g Na / mol Na.

To break it down, this equation is:

1.5 g (grams) of Sodium Chloride (NaCI) multiplied by the molar mass of Sodium Chloride (mol NaCI) divided by 58.44 g (grams) of Sodium Chloride multiplied by the moles of Sodium (mol Na) divided by the moles of Sodium Chloride (mol NaCI) multiplied by the molar mass of Sodium (22.99 g Na) divided by the moles of Sodium (mol Na).

In other words, the equation is:

Mass in gm (Na) = 1.5 g (NaCI) × (mol NaCI/58.44 g (NaCI)) × (mol Na/mol NaCI) × (22.99 g (Na)/mol Na).

For more information equation for mass calculation refer here

https://brainly.com/question/28225218?

#SPJ11

What are the free moving charged particles in a Carbon electrode made of electrode

Answers

The free moving charged particles in a Carbon electrode made of electrode are electrons.

An electrode is a substance that conducts electricity, which means it allows electric charges to travel through it. During electrolysis, an electrode is used to provide an electric current for the reduction and oxidation reactions that take place.

A carbon electrode is a type of electrode that is made of carbon. Carbon electrodes are commonly used in batteries and fuel cells because they are lightweight and can easily conduct electricity.

Electrons are free moving charged particles in a carbon electrode made of electrode. Electrons are negatively charged subatomic particles that orbit the nucleus of an atom. They are found in the outer shells of atoms and can move freely from one atom to another when they are excited by an electric current.

When an electric current is passed through a carbon electrode, the electrons in the outer shells of the carbon atoms are excited and become free moving charged particles. This allows the carbon electrode to conduct electricity and to participate in reduction and oxidation reactions during electrolysis.

For more such questions on electrode, click on:

https://brainly.com/question/28302450

#SPJ11

a calorie is the commonly used unit of chemical energy. it is also the unit of

Answers

A calorie is the commonly used unit of chemical energy. it is also the unit of energy used to measure the energy content of food.

More on Calorie and Energy

Calorie (or kilocalorie) is a unit of measurement used to measure the energy content of food. It is the amount of energy required to raise the temperature of one kilogram of water by one degree Celsius.

One calorie is equal to the amount of energy required to raise the temperature of one gram of water by one degree Celsius.

Energy is a fundamental property of matter that can take many forms, such as electrical, thermal, chemical, nuclear, and mechanical energy.

Learn more about Calorie here:

https://brainly.com/question/1178789

#SPJ1

valency of aluminum is 3 give reason​

Answers

Answer:

The valency of an element refers to the number of electrons an atom can gain, lose or share to attain a stable configuration.

Aluminum (Al) is a metal with an atomic number of 13, which means it has 13 electrons in its neutral state. In its outermost shell, aluminum has three valence electrons.

To attain a stable electronic configuration, aluminum can lose these three valence electrons to become a cation with a 3+ charge (Al3+). By losing these electrons, the outermost shell of the aluminum atom becomes completely filled with eight electrons, which is a stable configuration.

Therefore, the valency of aluminum is 3 because it can lose three electrons to form a stable cation with a 3+ charge.

Explanation:

Answer:

The valency of an element refers to the number of electrons an atom can gain, lose or share to attain a stable configuration.

Aluminum (Al) is a metal with an atomic number of 13, which means it has 13 electrons in its neutral state. In its outermost shell, aluminum has three valence electrons.

To attain a stable electronic configuration, aluminum can lose these three valence electrons to become a cation with a 3+ charge (Al3+). By losing these electrons, the outermost shell of the aluminum atom becomes completely filled with eight electrons, which is a stable configuration.

Therefore, the valency of aluminum is 3 because it can lose three electrons to form a stable cation with a 3+ charge.

Explanation:

What is unique about carbons valence shell?

Answers

The carbon atom has four valence (outermost) electrons. Because of this unique configuration, it is easier for the carbon atom to share its four electrons with another atom or atoms than to lose or gain four electrons.

Answer: Carbon's valence shell is unique because it has 4 valence shell electrons, which means it is less likely to gain or lose electrons to other elements. Rather, it shares its electrons. In other words, it tends to form covalent bonds (4) rather than ionizing. This results in carbon being able to form long chains or rings.

Other Questions
When you've got a solid partnership between the service desk and the membership department, the service-desk staff will not.... What do you think is the main economic reason why businesses grow and fail and why?MUST BE WRITTEN IN COMPLETE HIGH SCHOOL LEVEL SENTENCES (at least 5 sentences) mathematicians divide the world of numbers into at least seven subsets. list seven subsets and define each the heights of adult men can be approximated as normal with a mean of 70 and standard eviation of 3 what is the probality man is shorter than why many people in the united states wanted america to become a colonial power at the end of the 19th century. the city of lawrence recently was hit by a tornado, leaving many families in need of food, clothing, shelter, and other necessities. betty contributed $500 to a family whose home was completely destroyed by the tornado. jack contributed $700 to the family's church, which gave the money to the family. assume both taxpayers itemize their deductions. Complete the following radioactive decay problem.234 U 4^He + 92. 2 what is the theme of this passage? responses a. people most often prefer play to work. b. people form many different relationships during their lives. c. people change a great deal as they go through the stages of life.d. people gain self-knowledge as they age. true oa false Journal entries used to prepare temporary accounts for a new fiscal period are closing entries In preparation for her speech about cord blood, Chantal wrote her speech word-for-word and practiced it until she could recite the script verbatim. This is an example of an manuscript delivery style.True or False? Which of the following best approximates the percentages of sand, clay, and silt in a silty loam? Use the soil texture table below to answer.(picture is at the bottom)Public DomainSand 10Clay 25Silt 65Sand 70Clay 10Silt 20Sand 20Clay 60Silt 20Sand 30Clay 10Silt 60' how far, in centimeters, would you have to compress this spring to store this energy? Read and choose the correct option to complete the sentence.Mi prima era callada en la escuela. Mi prima era _________, no atrevida. (1 point) abarata bdbil cfuerte dtmida HELP I HAVE 1 MINUTE How do air pressure and precipitation determine the weather in a certain area? When the air pressure is higher, the air is cooler, and it is less likely for precipitation to fall. When the air pressure is lower, it is harder for evaporation to occur and for the rain to form. When the air pressure is higher, the humidity is higher, and the chance of precipitation is lower. When the air pressure is higher, the air is warmer, and the chance of precipitation is higher. Directions: Please use the context for which the vocabulary word has been used to explain what it means. The page numbers and sentences are included on the table below. You may have to use the page numbers to find the original passages in order to better understand how the word is being used in context. DO NOT give me dictionary definitions.(picture included below) Which of the following examples does NOT demonstrate the principles of homeostasis? A: An increase in plasma volume increases urination B: An increase in body temp induces sweating, which reduces body temp C: A rise in plasma sodium stimulates the production of a hormone that increases sodium loss in the urine. D: The activation of a clotting factor stimulates the production of the enzyme that activates the clotting factor. which of the following statements supports the claim that artificial selection is driving evolutionary change among Africas female forest elephants? Choose two that apply. A. The number of male elephants losing their tusks to poachers is at an all-time high. B. The number of female elephants born with tusks decreases overtime as poaching for Tusk ivory continues. C. The variation of traits, such as having or not having tusks, is a result of genetic variations occurring in the population. D. The trait of being tuskless confers an advantage making it more probable that an elephant will survive and reproduce. Q4. Convert these into proper vector notation:Westward velocity of 42 km/h. Position 6. 5 measured in m that is North of the reference point. Downward acceleration measured in m/s2 that has a magnitude of 1. 9. Distributed computing systems provide several advantages over a centralized computer. Which of the following is not an advantage of distributed systems?A. Communications costs are usually lower.B. Alternate processing locations are available in case one site's computer is not functioning.C. Investment in hardware is smaller for each site than for a central site.D. Security measures are easier to provide. Marisa bought a car for $9,632. She paid $2,000 down. She will pay the remainderin 24 monthly payments. How much will she pay each month?Explain your answer.