This question is incomplete, the complete question is;
Car B is rounding the curve with a constant speed of 54 km/h, and car A is approaching car B in the intersection with a constant speed of 72 km/h. The x-y axes are attached to car B. The distance separating the two cars at the instant depicted is 40 m. Determine: the angular velocity of Bxy rotating frame (ω).
Answer:
the angular velocity of Bxy rotating frame (ω) is 0.15 rad/s
Explanation:
Given the data in the question and image below and as illustrated in the second image;
distance S = 40 m
V[tex]_B[/tex] = 54 km/hr
V[tex]_A[/tex] = 72 km/hr
α = 100 m
now, angular velocity of Bxy will be;
ω[tex]_B[/tex] = V[tex]_B[/tex] / α
so, we substitute
ω[tex]_B[/tex] = ( 54 × 1000/3600) / 100
ω[tex]_B[/tex] = 15 / 100
ω[tex]_B[/tex] = 0.15 rad/s
Therefore, the angular velocity of Bxy rotating frame (ω) is 0.15 rad/s
A girl weighing 45kg is standing on the floor, exerting a downward force of 200N on the floor. The force exerted on her by the floor is ..............
Select one:
a.
No force exerted
b.
Less than 2000N
c.
Equal to 200 N
d.
Greater than 200 N
Answer:
c.
Equal to 200 N..........
a cohesive force between the liquids molecules is responsible for the fluids is called
Answer:
static force
Explanation:
mark me brainliest
A cylindrical body has 6 m height and its radius is 2 metre calculate its volume. Ans :75.428m3
Answer:
75.4
Explanation:
r= 2
h= 6
v= 22/7 *r*r*h
v= 75.42
a pendulum clock having Copper keeps time at 20 degree Celsius it gains 15 second per day if cooled to 0°C celsius calculate the coefficient of linear expansion of copper.
?.............................
An object is accelerated by a net force in which direction?
A. at an angle to the force
B. in the direction of the force
C. in the direction opposite to the force
D. Any of these is possible.
Answer:
B. in the direction of the force
Explanation:
Sana nakatulong
How fast were both runners traveling after 4 seconds?
40
Distance (in yards)
30
20
10
1
2.
3
0
Time in seconds
Answer:
they were fast ⛷⛷
According to Newton's first law, an object at rest will _____.
never move
stay at rest forever
start moving
stay at rest unless moved by force
If you blow across the open end of a soda bottle and produce a tone of 250 Hz, what will be the frequency of the next harmonic heard if you blow much harder?
___Hz
Answer:
Generally, the lowest overtone for a pipe open at one end and closed would be at y / 4 where y represents lambda, the wavelength.
Since F (frequency) = c / y Speed/wavelength
F2 / F1 = y1 / y2 because c is the same in both cases
F2 = y1/y2 * F1
F2 = 3 F1 = 750 /sec
Note that L = y1 / 4 = 3 y2 / 4 for these wavelengths to fit in the pipe
and y1 = 3 y2
The second harmonic will be three times the first harmonic. The answer is 750 Hz
VIBRATION OF WAVES IN PIPESClosed pipes have odd multiples of frequencies or harmonics. That is,
If [tex]F_{0}[/tex] = fundamental frequency = first harmonic
[tex]F_{1}[/tex] = 3[tex]F_{0}[/tex] = second harmonic
[tex]F_{2}[/tex] = 5[tex]F_{0}[/tex] = third harmonic
[tex]F_{3}[/tex] = 7[tex]F_{0}[/tex] = fourth harmonic
Let assume that the first harmonic is 250 Hz, If you blow it much harder, second, third or fourth harmonic can be produced.
By using the formula above,
second harmonic will be 3 x 250 = 750Hz
Therefore, the frequency of the next harmonic heard if you blow much harder will be 750 Hz
Learn more about Sound waves here: https://brainly.com/question/1199084
Define Mechanical advantage
fe effort of 2125N is used to lift a Lead of 500N
through a Verticle high of 2.N using a buly System
if the distance Moved by the effort is 45m
Calculate 1. Work done on the load
2. work done by the effort
3. Efficiency of the System
Answer:
1) 1000Nm
2) 95,625Nm
3) 1.05%
Explanation:
Mechanical Advantage is the ratio of the load to the effort applied to an object.
MA = Load/Effort
1) Workdone on the load = Force(Load) * distance covered by the load
Workdone on the load = 500N * 2m
Workdone on the load = 1000Nm
2) work done by the effort = Effort * distance moves d by effort
work done by the effort = 2125 * 45
work done by the effort = 95,625Nm
3) Efficiency = Workdone on the load/ work done by the effort * 100
Efficiency = 1000/95625 * 100
Efficiency = 1.05%
Hence the efficiency of the system is 1.05%
a sharp image is formed when light reflects from a
Answer:
Regular reflection
Explanation:
Regular reflection occurs when light reflects off a very smooth surface and forms a clear image.
i hope this helps a bit.
According to the context, a sharp image is formed when light reflects from a regular reflection.
What is regular reflection?It is reflection without diffusion that obeys the laws of geometrical optics, as in mirrors.
This reflection of light happens when the angles that the two rays determine with the surface are equal.
Therefore, we can conclude that according to the context, a sharp image is formed when light reflects from a regular reflection.
Learn more about regular reflection here: https://brainly.com/question/3778324
#SPJ2
which one is odd copper,plastic,rubber
Answer:
It's plastic.
trust me it's plastic, i've rad it somewhere.
All of them have something that's not like the others.
-- Rubber is the only one on the list that has two repeated letters.
-- Plastic is the only one on the list thagt has no repeated letters.
-- Plastic is the only one on the list that has no 'r' in its name.
-- Copper is the only one on the list that is an element, not a compound.
-- Copper is the only good electrical conductor on the list.
-- Plastic is the only one on the list with more than six letters in its name.
-- Rubber is the only one on the list with no 'p' in its name.
-- Plastic is the only one on the list that doesn't end in "-er".
At the base of a hill, a 90 kg cart drives at 13 m/s toward it then lifts off the accelerator pedal). If the cart just barely makes it to the top of this hill and stops, how high must the hill be?
Answer:
8.45 m
Explanation:
From the question given above, the following data were obtained:
Mass (m) = 90 Kg
Initial velocity (u) = 13 m/s
Final velocity (v) = 0 m/s
Height (h) =?
NOTE: Acceleration due to gravity (g) = 10 m/s²
The height of the hill can be obtained as follow:
v² = u² – 2gh (since the cart is going against gravity)
0² = 13² – (2 × 10 × h)
0 = 169 – 20h
Rearrange
20h = 169
Divide both side by 20
h = 169/20
h = 8.45 m
Therefore, the height of the hill is 8.45 m
The gravitational potential energy of an object is defined as the energy it has due to its position in a gravitational field. A ball with a weight of 50 N is lifted to a height of 1 meter. Which graph correctly represents the change in gravitational potential energy (shaded in blue) as it is lifted to this height?
Answer:
athletic
Explanation:
because internet system has been down since we were in few days
३.रात में घूमने वाला write one word substitute
Explanation:
रात में घूमने वाला arthaarat निशाचर
How much work is done when 100 N of force is applied to a rock to move it 20 m
Answer: 2000 J
Explanation: work W = F s
Is there a way to see moon and the sun at once?
A hair dryer draws a current of 12.8 A.
(a)How many minutes does it take for
6.8 x 10° C of charge to pass through the
hair dryer? The fundamental charge is
1.602 x 10-19 C.
Answer in units of min.
(b)How many electrons does this amount of
charge represent?
Answer in units of electrons.
Answer:
(a) 8.85×10⁻³ minutes
(b) 4.24×10¹⁹ electrons
Explanation:
(a) Using,
Q = it............................. Equation 1
Where Q = quantity of charge, i = current, t = time.
Make t the subject of the equation
t = Q/i............................. Equation 2
Given: Q = 6.8×10⁰ C, i = 12.8 A
Substitute these values into equation 2
t = 6.8×10⁰/12.8
t = 8.85×10⁻³ minutes
(b) n = Q/(1.602×10⁻¹⁹)................. Equation 3
Where n = number of electrons.
Given: Q = 6.8×10⁰ C
Substitute into equation 2
n = 6.8×10⁰/1.602×10⁻¹⁹
n = 4.24×10¹⁹ electrons
(a) The time taken by the charge to flow from the drier will be [tex]\d8.85[/tex]×[tex]\d10^{-3}[/tex]minutes
(b) Amount of the electrons in the charge will be [tex]\d4.24[/tex]×[tex]\d10^{19}[/tex] electrons
What will be the time of the charge and number of the electrons in the charge ?As we know Q = IT
Where Q = quantity of charge, i = current, T = time.
From the above equation
T= Q/I.
Given: Q = [tex]6.8\times\d10^{0}[/tex] C, i = 12.8 A
Substitute these values
T= [tex]6.8[/tex]×[tex]\d10^{0}[/tex] /12.8
T = [tex]8.85[/tex]×[tex]\d10^{-3}[/tex] minutes
Now the number of the electrons present in the charge will be
n = Q/( [tex]1.602[/tex]×[tex]\d10^{-19}[/tex])
Where n = number of electrons.
Given: Q = [tex]6.8\times\d10^{0}[/tex] C
Substitute Value of Q
n = [tex]6.8\times\d10^{0}[/tex]/ [tex]1.602\times\d10^{-19}[/tex]
n = [tex]4.24\times\d10^{19}[/tex] electrons
Thus
(a)The time taken by the charge to flow from the drier will be [tex]\d8.85[/tex]×[tex]\d10^{-3}[/tex]minutes
(b)Amount of the electrons in the charge will be [tex]\d4.24[/tex]×[tex]\d10^{19}[/tex] electrons
To know more about electric charge follow
https://brainly.com/question/14372859
What is happening in the graph shown below?
A.
The object moves away from the origin at a speed of 3 m/s, stands still 6 m away from the origin for 3 seconds, then moves toward the origin at a speed of 2 m/s.
B.
The object moves toward the origin at a speed of 3 m/s, stands still 6 m away from the origin for 3 seconds, then moves away from the origin at a speed of 2 m/s.
C.
The object moves toward the origin at a speed of 6 m/s, stands still 6 m away from the origin for 3 seconds, then moves away from the origin at a speed of 8 m/s.
D.
The object moves away from the origin at a speed of 6 m/s, stands still 6 m away from the origin for 3 seconds, then moves toward the origin at a speed of 8 m/s.
Answer:
D. The object moves away from the origin at a speed of 3 m/s, stands still 6 m away from the origin for 3 seconds, then moves toward the origin at a speed of 2 m/s.
Explanation:
I just got it right lol
Soap bubbles can display impressive colors, which are the result of the enhanced reflection of light of particular wavelengths from the bubbles' walls. For a soap solution with an index of refraction of 1.21, find the minimum wall thickness that will enhance the reflection of light of wavelength 711 nm in air.
Answer:
the minimum wall thickness that will enhance the reflection of light is 146.9 nm
Explanation:
Given the data in the question;
At the first interface, a phase shift occurs as the incident light is in air that has less refractive index compare to the thin film of soap bubble.
At the second interface, no shift occurs,
condition for constructive interference;
t = ( m + 1/2) × λ/2n
where m = 0, 1, 2, 3 . . . . . .
now, the condition for the constructive interference;
t = mλ/2n
where t is the thickness of the soap bubble, λ is the wavelength of light and n is the refractive index of soap bubble.
so the minimum thickness of the film which will enhance reflection of light will be;
t[tex]_{min[/tex] = ( m + 1/2) × λ/2n
we substitute
t[tex]_{min[/tex] = ( 0 + 1/2) × 711 /2(1.21)
t[tex]_{min[/tex] = 0.5 × 711/2.42
t[tex]_{min[/tex] = 0.5 × 293.80165
t[tex]_{min[/tex] = 146.9 nm
Therefore, the minimum wall thickness that will enhance the reflection of light is 146.9 nm
why doesn't a radio operating with two batteries function when one of the batteries is reversed?
Answer:
If you have two batteries and they have precisely the same voltage then placing one backwards will effectively cancel out the voltages and no current will flow. However, batteries aren't like that. The slightest difference in voltages mean that current will flow.
Explanation:
Mechanical energy is the most concentrated form of energy.
a. true
b. false
In a double-slit experiment, light from two monochromatic light sources passes through the same double slit. The light from the first light source has a wavelength of 640 nm. Two different interference patterns are observed. If the 10th order bright fringe from the first light source coincides with the 12th order bright fringe from the second light source, what is the wavelength of the light coming from the second monochromatic light source
Answer:
533.33 nm
Explanation:
Since dsinθ = mλ for each slit, where m = order of slit and λ = wavelength of light. Let m' = 10 th order fringe of the first slit of wavelength of light, λ = 640 nm and m"= 12 th order fringe of the second slight of wavelength of light, λ'.
Since the fringes coincide,
m'λ = m"λ'
λ' = m'λ/m"
= 10 × 640 nm/12
= 6400 nm/12
= 533.33 nm
1. A perspex box has a 10 cm square base and contains water to a height of 10 cm. A piece of rock of mass 600g is lowered into the water and the level rises to 12 cm.
(a) What is the volume of water displaced by the rock?
(b) What is the volume of the rock?
(c) Calculate the density of the rock
Answer:
(a) The volume of water is 100 cm³
(b) The volume of the rock is 20 cm³
(c) The density of the rock is 30 g/cm³
Explanation:
The given parameters of the perspex box are;
The area of the base of the box, A = 10 cm²
The initial level of water in the box, h₁ = 10 cm
The mass of the rock placed in the box, m = 600 g
The final level of water in the box, h₂ = 12 cm
(a) The volume of water in the box, 'V', is given as follows;
V = A × h₁
∴ The volume of water in the box, V = 10 cm² × 10 cm = 100 cm³
The volume of water in the box, V = 100 cm³
(b) When the rock is placed in the box the total volume, [tex]V_T[/tex], is given by the sum of the rock, [tex]V_r[/tex], and the water, V, is given as follows;
[tex]V_T[/tex] = [tex]V_r[/tex] + V
[tex]V_T[/tex] = A × h₂
∴ [tex]V_T[/tex] = 10 cm² × 12 cm = 120 cm³
The total volume, [tex]V_T[/tex] = 120 cm³
The volume of the rock, [tex]V_r[/tex] = [tex]V_T[/tex] - V
∴ [tex]V_r[/tex] = 120 cm³ - 100 cm³ = 20 cm³
The volume of the rock, [tex]V_r[/tex] = 20 cm³
(c) The density of the rock, ρ = (Mass of the rock, m)/(The volume of the rock)
∴ The density of the rock, ρ = 600 g/(20 cm³) = 30 g/cm³
. Assume that the batter does hit the ball. If the bat's instantaneous angular velocity is 30 rad/s at the instant of contact, and the distance from the sweet spot on the bat to the axis of rotation is 1.25 m, what is the instantaneous linear velocity of the sweet spot at the instant of ball contact
Answer:
37.5 m/s
Explanation:
Using,
Formula
v = ωr....................... Equation 1
Where ω = instantaneous angular velocity, v = instantaneous linear velocity, r = radius or distance from the sweet spot of the bat to the axis of rotation.
From the question,
Given: ω = 30 rad/s, r = 1.25 m
Substitute these values into equation 1
v = 30(1.25)
v = 37.5 m/s.
Hence the instantaneous linear velocity of the sweet spot at the instant of ball contact is 37.5 m/s
Carl works hard to get a grades on his report card because his mother pays him 25 dollars for each semester he earns straight as Carl’s behavior is being influenced by
Which of the following changes when an unbalanced force acts on an object?
A. mass
B. motion
C. inertia
D. weight
The answer is Motion
Highest density of electrostatic charges in a metal is found where
I don't know the answer but I just want points sorry
On a 10 kg cart (shown below), the cart is brought up to speed with 50N of force for 7m, horizontally. At this point (A), the cart begins to experience an average frictional force of 15N throughout the ride.
Find:
a) The total energy at (A)
b) The velocity at (B)
c) The velocity at (C)
d) Can the cart make it to Point (D)? Why or why not?
In this experiment, you will use a track and a toy car to explore the concept of movement. You will measure the time it takes the car to travel certain distances, and then complete some calculations. In the space below, write a scientific question that you will answer by doing this experiment.
Answer: if weight affects how fast they go?
Explanation:
Answer:
How can we change the speed of a toy car on a racetrack to describe the car’s motion?
Explanation:
thats the sample respond
Sam moves an 800 N wheelbarrow 5 meters in 15 seconds. How much work did he do?
Answer:
work done= force × displacement
=800×5
=4000J
Explanation:
The amount of work done is the result of the magnitude of force applied and the displacement of the body due to the force applied. Therefore, work done is defined as the product of the applied force and the displacement of the body.