Answer:
TRUE
Explanation:
All carboxylic acid derivatives have in common the fact that they undergo hydrolysis (a cleav- age reaction with water) to yield carboxylic acids. with hydroxide ion to yield a carboxylate salt and an alcohol. The carboxylic acid itself is formed when a strong acid is subsequently added to the reaction mixture.
PLS MARK BRAINLIEST
molecular weight of K2SO3
Explanation:
the molecular weight of K2SO3 is 158. 2598 m/s.
The standard entropy change of a reaction has a positive value. This reaction results in: Select the correct answer below: a decrease in entropy. an increase in entropy. no entropy change. neither an entropy increase nor decrease.
Explanation:
The standard entropy change of a reaction has a positive value. This reaction results in an increase in entropy.
Positive entropy means the system has increased its degree of disorderness.
A student was given a solid containing a mixture of nitrate salts. The sample completely dissolved in water, and upon addition of dilute HCl , no precipitate formed. The pH was lowered to about 1 and H2S was bubbled through the solution. No precipitate formed. The pH was adjusted to 8 and H2S was again bubbled in. This time, a precipitate formed. Which compounds might have been present in the unknown?
a. Ca(NO3)2
b. AgNO3
c. Fe(NO3)3
d. Cr(NO3)3
e. Cu(NO3)2
f. KNO3
g. Bi(NO3)2
Answer:
Fe(NO3)3, Cr(NO3)3, Co(NO3)3
Explanation:
According to the question, no precipitate is observed when HCl was added. This means that we must rule out AgNO3.
Again, the sulphides of Cu^2+, Bi^3+ are soluble in acidic medium but according to the question, the sulphides do not precipitate at low pH hence Cu(NO3)2 and Bi(NO3)3 are both ruled out.
The sulphides of Fe^3+, Cr^3+ and Co^3+ all form precipitate in basic solution hence Fe(NO3)3, Cr(NO3)3, Co(NO3)3 may be present.
The presence of Ca(NO3)2 and KNO3 may be confirmed by flame tests.
A tree is an example
of a vascular plant that
is
because it
has deep roots.
A. tall
B. tiny
C. small
Dyshort
A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. The metal and water come to the same temperature at 24.6 °C. How much heat did the metal give up to the water?
Answer:
1087.84 J
Explanation:
From the question given above, the following data were obtained:
Mass of metal (Mₘ) = 70 g
Temperature of metal (Tₘ) = 80 °C
Mass of water (Mᵥᵥ) = 100 g
Temperature of water (Tᵥᵥ) = 22 °C
Equilibrium temperature (Tₑ) = 24.6 °C
Heat lost by metal (Qₘ) =?
NOTE: Specific heat capacity of water (Cᵥᵥ) = 4.184 J/gºC
Heat lost by metal (Qₘ) = Heat gained by water (Qᵥᵥ)
Qₘ = Qᵥᵥ
Thus, we shall determine the heat gained by water. This can be obtained as follow:
Qᵥᵥ = MᵥᵥCᵥᵥ(Tₑ – Tᵥᵥ)
Qᵥᵥ = 100 × 4.184 (24.6 – 22)
Qᵥᵥ = 418.4 × 2.6
Qᵥᵥ = 1087.84 J
Thus, the heat gained by water is 1087.84 J.
Heat lost by metal (Qₘ) = Heat gained by water (Qᵥᵥ)
Qₘ = Qᵥᵥ
Qᵥᵥ = 1087.84 J
Qₘ = 1087.84 J
Therefore, the heat lost by the metal is 1087.84 J
A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. After reaching a temperature of 24.6 °C, the heat given up by the metal to the water is -1.08 kJ.
What is a calorimeter?A calorimeter is an object used for calorimetry, or the process of measuring the heat of chemical reactions or physical changes as well as heat capacity.
A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. The final temperature of the system is 24.6 °C.
Let's use the following expression to calculate the heat absorbed by the water.
Qw = c × m × ΔT
Qw = (4.184 J/g.°C) × 100 g × (24.6 °C - 22.0 °C) = 1.08 kJ
where,
Qw is the heat absorbed by the water.c is the specific heat capacity of water.m is the mass of water.ΔT is the change in the temperature for water.According to the law of conservation of energy, the sum of the heat absorbed by the water and the heat released by the metal (Qm) is zero.
Qw + Qm = 0
Qm = -Qw = -10.8 kJ
A 70.0‑g piece of metal at 80.0 °C is placed in 100 g of water at 22.0 °C contained in a calorimeter. After reaching a temperature of 24.6 °C, the heat given up by the metal to the water is -1.08 kJ.
Learn more about calorimeters here: https://brainly.com/question/12431493
LION
If 3.0L of helium at 20°C is allowed to expand to 4.4L, with pressure remain the same
Answer:
This question is asking to find the new temperature
The answer for the final temperature is 429.73K
Explanation:
Using Charles law equation as follows:
V1/T1 = V2/T2
Where;
V1 = initial volume (L)
V2 = final volume (L)
T1 = initial temperature (K)
T2 = final temperature (K)
According to this question;
V1 = 3.0L
V2 = 4.4L
T1 = 20°C = 20 +273 = 293K
T2 = ?
Using V1/T1 = V2/T2
3/293 = 4.4/T2
Cross multiply
293 × 4.4 = 3 × T2
1289.2 = 3T2
T2 = 1289.2 ÷ 3
T2 = 429.73K
Consider the reaction: NaNO3(s) + H2SO4(l) NaHSO4(s) + HNO3(g) ΔH° = 21.2 kJ
How much heat must absorbed by the reaction system to convert 100g of NaNO3 into NaHSO4(s)?
Answer:
endet nach selam nw
4gh7
Use the reaction: 2AgNO3(aq) + H2SO4(aq) → Ag2SO4(s) + 2HNO3(aq) What volume (mL) of 0.568 M AgNO3(aq) is needed to form 0.21 g of Ag2SO4(s)
Answer:
The mole ratio of AgNO3 to Ag2SO4 IS 2:1 .0.657 g Ag2SO4 x 1 mol / 312 g = 0.00211 mol Ag2SO4.
0.00211 mol Ag2SO4 x 2 mol AgNO3 / 1 mol Ag2SO4 = 0.00421 mol AgNO3
0.00421 mol AgNO3 x 1 L / 0.123 mol AgNO3 = 0.0342 L = 34.2 mL of AgNO3 solution.Therefore,34.2ml of 0.123M AgNO3 will be required.
When determining the amount of oxidant present by titration, you can use iodine/starch as an indicator. First, the oxidant, like hypochlorite, oxidizes Choose... When starch and iodine are both present, the solution is Choose... During the titration, a titrant like thiosulfate reduces the
The question is incomplete, the complete question is;
When determining the amount of an oxidant present by titration, you can use iodine and starch as an indicator.
First, the oxidant, like hypochlorite, oxidizes
Choose...
neutral iodine into iodide ion
iodide ion into neutral iodine
iodate polyatomic ion into iodide ion
When starch and iodine are both present, the solution is
Choose...
blue-black
brownish yellow
clear
During the titration, the titrant, like thiosulfate, reduces the
Choose...
iodide ion into iodate polyatomic ion
neutral iodine into iodide ion
iodide ion into neutral iodine
When the iodine has completely reacted at the endpoint of the titration, the solution should become
Choose...
clear
blue-black
brownish yellow
Answer:
1. iodide ion into neutral iodine
2. blue-black
3. neutral iodine into iodide ion
4. clear
Explanation:
Hypochlorite oxidizes the iodide ion to iodine molecule according to the reaction equation;
ClO-(aq) + 2H+(aq) + 2I-(aq) ---------> 6 I2(l) + Cl- (aq)+ H2O(l)
When iodine is added, the colour of the starch solution immediately changes to blue-black.
A reduction reaction occurs when the titrant, thiosulfate is added as follows;
I2 + 2S2O32- → 2I- + S4O62-
The solution at end point is found to become clear again.
Consider the molecule PF5.
Indicate how many lone pairs you would find on the central atom:
Indicate how many total bonds are connected to the central atom (count single bonds as 1 bond, double bonds as 2 bonds, and triple bonds as 3 bonds):
Explanation:
here's the answer to your question
Consider the Fischer ester synthesis of methyl benzoate from benzoic acid and methanol in the presence of sulfuric acid as a catalyst. A reaction was performed in which 3.3 g of benzoic acid was reacted with excess methanol to make 1.7 g of methyl benzoate. Calculate the theoretical yield and percent yield for this reaction.
Answer:
46.2%
Explanation:
Number of moles benzoic acid reacts = 3.3g/122.12 g/mol = 0.027 moles
Since the reaction is 1:1, 0.027 moles of methyl benzoate is formed.
Hence;
Theoretical yield of methyl benzoate = 0.027 moles × 136.15 g/mol = 3.68 g
% yield = actual yield/theoretical yield × 100
% yield = 1.7 g/3.68 g × 100
% yield = 46.2%
How long do spent fuel rods remain dangerously radioactive?
Answers
A.
The rods are no longer radioactive because the radioisotopes are used up.
B.
Spent fuel rods remain radioactive for several years after the fuel is exhausted.
C.
It takes tens of thousands of years for the radioisotopes in the rods to decay to safe levels.
D.
It is impossible to determine how long it will take for the radioisotopes to decay because they last too long.
Answer:
c
Explanation:
it takes 10,000 years to just reduce down the decay
There are _______ alkanes with molecular formula C10H22
a. 74
b. 75
c. 76
d. 77
consider the following thermochemical reaction for kerosene
2C12H26+37O2=24CO2+15026kj.
a. when 21.3g of CO2 are made, how much heat is released?
b. if 500.00kj of heat are released by thye reaction, how many grams of C12H26 have been consumed.?
c. if this reactionwere being used to generate heat, how many grams of C12H26 would have to be reacted to generate enough heat to raise the temperature of 750g of liquid water from 10 degrees celcius to 90 degrees celcius
Thermochemistry has to do with heat evolved or absorbed in a chemical reactions. Thermochemical equations are equations in which the heat of reaction is included in the reaction equation. The reaction of moles and heat of reaction is important here.
This question has to do with thermochemistry and thermochemical equations.
The answers to each of the questions are shown below;
a) 300.52 KJ
b) 11.39 g
c) 5.78 g
The equation of the thermochemical reaction is;
2C12H26 + 37O2-------> 24CO2 + 15026KJ
Number of moles of CO2 released = 21.3g/44g/mol = 0.48 moles
From the reaction equation;
15026KJ is released when 24 moles of CO2 is released
x KJ is released when 0.48 moles of CO2 is released
x = 15026KJ * 0.48 moles/24 moles
x = 300.52 KJ
b) If 2 moles of C12H26 released 15026KJ of heat
x moles of C12H26 released 500.00KJ
x = 2 * 500.00KJ/15026KJ
x = 0.067 moles
Mass of C12H26 consumed = 0.067 moles * 170 g/mol = 11.39 g
c) Heat gained by water = heat released by combustion of kerosene
Heat gained by water = 0.75 Kg * 4200 * (90 -10)
Heat gained by water = 252 KJ
If 2 moles of C12H26 produced 15026KJ
x moles of C12H26 produces 252 KJ
x = 2 * 252/15026
x = 0.034 moles
Mass of C12H26 = 0.034 moles * 170 g/mol = 5.78 g
For more information on thermochemical equations see
https://brainly.com/question/21492209
15. In the image given below, magnesium metal is coiled as a thin ribbon. What property of metal is exhibited by it? A Ductility B Lustrous C Sonorous D Malleability
Answer: The property of magnesium that is exhibited by it is DUCTILITY. The correct option is A.
Explanation:
Magnesium is a member of the alkaline earth metals. It occurs in nature, only in the combined state, as Epsom salt, dolomite and in many trioxosilicates( IV) including talc and asbestos. They have the following physical properties:
--> Appearance: they are silvery-white solids
--> Relative density: It has a relative density of 1.74
--> DUCTILITY: it's very ductile in nature
--> melting point: it has a melting point of 660°C.
--> Conductivity: They are good conductor of heat and electricity.
Furthermore, DUCTILITY is the physical property of a metal associated with the ability to be hammered thin or stretched into wire without breaking. A metal such as magnesium can therefore be coiled as a thin ribbon without fracturing due to its ductile physical properties.
explain hydrogen dioxide
Answer:
Two molecules of hydrogen combine with two molecules of oxygen to form hydrogen peroxide. Hence, its chemical formula is H2O2. It is the simplest peroxide (since it is a compound with an oxygen-oxygen single bond). Hydrogen peroxide has basic uses as an oxidizer, bleaching agent and antiseptic
What is the molecule shown below?
A. Pentane
B. Trimethylethane
C. 2,2-dimethylpropane
D. 3-dipropane
Q2
Answer:
C
Explanation:
if we were to followw the IUPAC
A mixture of argon and neon gases at a total pressure of 874 mm Hg contains argon at a partial pressure of 662 mm Hg. If the gas
mixture contains 12.0 grams of argon, how many grams of neon are present?
Answer:
6.684g
Explanation:
Here, we can use the mole ratio of the gases to calculate.
We know that the mole ratio of the gases equate to their number of moles.
Firstly, we calculate the number of moles of the oxygen gas. The number of moles of the oxygen gas is equal to the mass of the oxygen gas divided by the molar mass of the oxygen gas. The molar mass of the oxygen gas is 32g/mol
Thus, the number of moles produced is 5.98/32 = 0.186875
Where do we move from here?
We know that if we place the partial pressure of oxygen over the total pressure, this would be equal to the number of moles of oxygen divided by the total number of moles. Now let’s do this.
449/851 = 0.186875/n
n =(0.186875 * 851)/449
n = 0.3542
Now we do the same for argon to get the number of moles of argon.
Firstly, we use dalton’s partial pressure law to get the partial pressure of argon. In the simplest form, the partial pressure of argon is the total pressure minus the partial pressure of oxygen.
P = 851 - 449 = 402 mmHg
We now use the mole ratio relation.
402/851 = n/0.3542
n = (402 * 0.3542) / 851
n = 0.1673
Since we now know the number of moles of argon, we can use this multiplied by the atomic mass of argon to get the mass.
The atomic mass of argon is 39.948 amu
The mass is thus 39.948 * 0.1673 = 6.684g
Why does the temperature stop rising while ice melts into water?
A. The temperature does not stop rising.
B. The electrons are increasing in energy levels.
C. Because no more heat is being added to the system.
D. The energy is being absorbed to separate the particles.
Answer:
When you heat ice, its temperature rises, but as soon as the ice starts to melt, the temperature stays constant until all the ice has melted. This happens because all the heat energy goes into breaking the bonds of the ice's crystal lattice structure.
Explanation:
The temperature stop rising while ice melts into water because, the energy is being absorbed to separate the particles. This is because of latent heat of fusion.
What is latent heat of fusion?The amount of energy needed to convert the solid substance into a liquid substance by modifying its physical effects. It exists also named enthalpy of fusion. When heat exists supplied to ice, it begins melting and heat is used to increase temperature initially. But after the occasional temperature of ice does not vary and the extra heat exists utilized to melt the ice by cracking bonds between crystal lattice of ice.
The temperature stops increasing while the ice melts into the water because the energy exists being absorbed to divide the particles. This exists because of the latent heat of fusion.
Therefore, (D) option is the correct answer.
To learn more about latent heat of fusion,refer here :
https://brainly.com/question/87248
#SPJ2
Briefly workout the relationship between these constants:
[tex]{ \bf{K _{sp} \: and \: K _{c} }}[/tex]
In consideration of the decopmposition of hydrogen iodide.
[tex]{ \sf{2HI _{(g)} →H _{2(g)} +I _{2(g)} }}[/tex]
[tex]{ \tt{any \: help \: is \: appreciated}}[/tex]
Kc require (aqueous/gaseous) products to be on the numerator and (aqueous/gaseous) reactants to be in the denominator, whereas Ksp will require (aqueous) products to be on the numerator and (aqueous) reactants to be in the denominator. Both require products on top and reactants in the bottom.
K = [products] / [reactants]
Kc is used when a reaction reaches dynamic equilibrium, whereas Ksp is used when an insoluble ionic solid dissolved by a tiny amount in a solution, as well as in determining whether or not a precipitate will form.
Kc can be used to measure equilibrium concentration for all reactions, whereas Ksp is limited to only ionic compounds' solubility.
The decomposition of HI (g) will required the use of Kc since the species are all gaseous, and gases cannot be ionic.
write the chemistry of Epsom salt
Titanium is a metal often used as an alloying agent to provide materials that are strong, lightweight, and temperature-resistant Which of the following represents the correct ground-state configuration for a neutral atom of titanium?
A) 1s 2s 2p 3s 3p 48°30°
B) 1s 2s 2p 3s 3p 4s3d
C) 15*2s2p 3s 3p 4s
D) 15°2s 2p 3s 3p 3d
Answer:B) 1s 2s 2p 3s 3p 4s 3d
Explanation:
The ground state electron configuration shows how the electrons in the atomic orbitals of an atom are in their lowest , most stable energy arrangements and since Electrons must be filled following the Aufbau's principle(electrons fill lowest energy shells first)
Now, Titanium lies in period IV and group 4 of the periodic table with 22 as its atomic number
Thus, the ground-state electron configuration of a neutral atom of titanium is 1s²2s²2p⁶3s²3p⁶4s²3d².
Which of the following metals will liberate hydrogen from dilute HCL? A. Ag B.Au C.Hg D.Sn
Answer:
ag and au are sure not to react. but hg and sn might or might not
When should a line graph be used
Answer:
Line graphs are used to track changes over short and long periods of time. When smaller changes exist, line graphs are better to use than bar graphs. Line graphs can also be used to compare changes over the same period of time for more than one group.
What separates the inner planets from the outer planets?
a. Main asteroid belt
b. Main comet belt
c. Kuiper belt
d. Outer planet belt
please help this is for SCIENCE test I need help
Answer:
main asteroid belt separates the inner planets from the outer planets
19. Which type of chemical process is used to remove salt from ocean water?
O A. Alkylation
O B. Doping
O C. Dehydrogenation
D. Desalination
Answer:
D
Explanation:
Desalination
Removing salt from sea water is known as desalination
how many moles of KF are present in 46.5 grams of KF
Explanation:
here's the answer to your question
Answer:
0.8017
Explanation:
Find the molar Mass of KF
K = 39
F = 19
Total = 58
Note: these numbers are approximate. Use your periodic table to get the exact numbers.
mols = given mass / molar mass
given mass = 46.5
molar mass = 58
mols = 46.5 / 58
mols = 0.8017
2. Write the chemical equation for the reaction NaOH Sodium Hydroxide AgNO3 Silver Nitrate
Answer:
AgNO3 + NaOH = AgOH + NaNO3.
Explanation:
Balancing Strategies: In this reaction, the products are initially NaNO3 + AgOH. However the AgOH would break down into Ag2O and H2O. This would give us NaNO3 + Ag2O + H2O as our products for the overall reaction.
Balancing Strategies: In this reaction, the products are initially NaNO3 + AgOH. However the AgOH would break down into Ag2O and H2O. This would give us NaNO3 + Ag2O + H2O as our products for the overall reaction.However, the equation balanced here is the initial reaction which produces AgOH and NaNO3.
Which redox reaction would most likely occur if zinc and copper metal were
added to a solution that contained zinc and copper ions?
Click for a reduction potential chart
A. Cu + Zn → Cu2+ + Zn2+
B. Cu + Zn2+
Cu2+ + Zn
C. Cu2+ + Zn → Cu + Zn2+
D. Cu2+ + Zn2+ → Cu + Zn
Answer:
C
Explanation:
b/c when copper and zinc metal are addedto solution,then the solution will be consider under redox reaction
[tex]Cu^{2+} + Zn[/tex] → [tex]Cu + Zn^{2+}[/tex] is the redox reaction. Hence, option C is correct.
What is Redox Reaction?A chemical reaction taking place between an oxidizing substance and a reducing substance.
The oxidizing substance is used to lose electrons in the reaction, and the reducing substance is used to gain electrons.
On the reduction potential chart, zinc is a stronger oxidizing agent than, Copper (Cu), which is a reducing agent as compared to silver
The redox reaction most likely occurs if silver and copper metal were added to a solution that contained silver and copper ions is ;
[tex]Cu^{2+} + Zn[/tex] → [tex]Cu + Zn^{2+}[/tex]
Learn more about Redox Reaction here ;
brainly.com/question/13293425
#SPJ5
Determine the number of water molecules in 0.2830g Na.
Answer:
7.38*10^21
Explanation:
2Na+2H20=2NaOH+H2
nNa=0.0123
number of water moles: 0.012*6*10^23=7.38*10^21