Answer:
Sorry, I can't understand in which language you have written......
Step-by-step explanation:
So if you tell me the question in English then I can answer
The distribution of the number of apples trees a farmer can plant each day is bell-shaped and has a mean of 62 and a standard deviation of 8. Use the empirical rule to help you answer the following. What is the approximate percentage of trees planted between 38 and 68
Answer:
The empirical rule, the approximate percentage of trees planted between 38 and 68 is 99.7%.
Step-by-step explanation:
The Empirical Rule states that, for a normally distributed random variable:
Approximately 68% of the measures are within 1 standard deviation of the mean.
Approximately 95% of the measures are within 2 standard deviations of the mean.
Approximately 99.7% of the measures are within 3 standard deviations of the mean.
In this problem, we have that:
Mean of 62, standard deviation of 8.
What is the approximate percentage of trees planted between 38 and 86?
38 = 62 - 3*8
86 = 62 + 3*8
So within 3 standard deviations of the mean, which, by the empirical rule, the approximate percentage of trees planted between 38 and 68 is 99.7%.
the perimeter of a rectangle garden is 330 feet. If the length of the garden is 94 feet , what is its width ?
Answer:
71 feet
Step-by-step explanation:
94×2=188
330-188=142
142÷2=71
Find the value of x in each case
The answer is 36 degrees
Step 1
Angle GEH=180-2x (angles on a a straight line are supplementary)
Step 2
4x= G^+GE^H(sum of exterior angle)
4x=x+(180-2x)
4x=180-x
4x+x=180
5x=180
x=36 degrees
In a recent study of incomes in Wake county in North Carolina, it was found that the distribution of family incomes is skewed to the right (i.e., it has a long right tail). What can we say about the relationship between mean and median.
Answer:
The mean is to the right of the median
Step-by-step explanation:
Given
Skewed right distribution
Required
Relationship between the mean and the median
The question would be better answered if there are options available. Since there are none, I will provide a general answer/explanation.
For a distribution that is right skewed, the mean is always on the right side of the median.
A paddleboat can move at a speed of 4 km/h in still water. The boat is paddled 12 km downstream in a river in the same time it takes to go 6 km upstream. What is the speed of the river?
Answer:
Speed of the river = [tex]\frac{4}{3}[/tex] km per hour
Step-by-step explanation:
Speed of the boat in still water = 4 km per hour
Let the speed of the river = v km per hour
Speed of the boat upstream = (4 - v) km per hour
Time taken to cover 6 km = [tex]\frac{\text{Distance}}{\text{Speed}}[/tex]
= [tex]\frac{6}{4-v}[/tex] hours
Speed of the boat downstream = (4 + v) km per hour
Time taken to cover 12 km = [tex]\frac{12}{4+v}[/tex] hours
Since, time taken by the boat in both the cases is same,
[tex]\frac{6}{4-v}= \frac{12}{4+v}[/tex]
6(4 + v) = 12(4 - v)
24 + 6v = 48 - 12v
12v + 6v = 48 - 24
18v = 24
v = [tex]\frac{24}{18}[/tex]
v = [tex]\frac{4}{3}[/tex] km per hour
Solve the inequality and write the solution set using both set-builder notation and interval notation. -3a-15≤-2a+6
Answer:
[tex]\{a[/tex] ∈ [tex]R\ -21 \le a \le \infty \}[/tex] --- set builder
[tex][-21,\infty)[/tex] --- interval notation
Step-by-step explanation:
Given
[tex]-3a - 15 \le -2a + 6[/tex]
Required
Solve
Collect like terms
[tex]-3a + 2a \le 15 + 6[/tex]
[tex]-a \le 21[/tex]
Divide by -1
[tex]a \ge - 21[/tex]
Rewrite as:
[tex]-21 \le a[/tex]
Using set builder
[tex]\{a[/tex] ∈ [tex]R\ -21 \le a \le \infty \}[/tex]
Using interval notation, we have:
[tex][-21,\infty)[/tex]
Hello can anyone pls help with this multiple choice question
Answer:
The correct answer is the last one
Step-by-step explanation:
help i’ll give brainliest please hurry
) dy 2x
------ = ---------------
dx yx2 + y
Step-by-step explanation:
[tex]\dfrac{dy}{dx} = \dfrac{2x}{y(x^2 + 1)}[/tex]
Rearranging the terms, we get
[tex]ydy = \dfrac{2xdx}{x^2 + 1}[/tex]
We then integrate the expression above to get
[tex]\displaystyle \int ydy = \int \dfrac{2xdx}{x^2 + 1}[/tex]
[tex]\displaystyle \frac{1}{2}y^2 = \ln |x^2 +1| + k[/tex]
or
[tex]y = \sqrt{2\ln |x^2 + 1|} + k[/tex]
where I is the constant of integration.
A trough is 10 ft long and its ends have the shape of isosceles triangles that are 4 ft across at the top and have a height of 1 ft. If the trough is being filled with water at a rate of 15 ft3/min, how fast is the water level rising when the water is 8 inches deep
Answer:
7.5 ft³/min
Step-by-step explanation:
Let x be the depth below the surface of the water. The height, h of the water is thus h = 10 - x.
Now, the volume of water V = Ah where A = area of isosceles base of trough = 1/2bh' where b = base of triangle = 4 ft and h' = height of triangle = 1 ft. So, A = 1/2 × 4 ft × 1 ft = 2 ft²
So, V = Ah = 2h = 2(10 - x)
The rate of change of volume is thus
dV/dt = d[2(10 - x)]/dt = -2dx/dt
Since dV/dt = 15 ft³/min,
dx/dt = -(dV/dt)/2 = -15 ft³/min ÷ 2 = -7.5 ft³/min
Since the height of the water is h = 10 - x, the rate at which the water level is rising is dh/dt = d[10 - x]/dt
= -dx/dt
= -(-7.5 ft³/min)
= 7.5 ft³/min
And the height at this point when x = 8 inches = 8 in × 1 ft/12 in = 0.67 ft is h = (10 - 0.67) ft = 9.33 ft
Use the coordinates of the labeled point to find a point-slope equation of the
line.
5
5
(-2,-5) 6.5
>
O A. y- 5 = -2(x - 2)
O B. y + 5 = 2(x + 2)
O C. y + 5 = -2(x + 2)
OD. y- 5 = 2(x - 2)
Answer:
B. [tex] y + 5 = 2(x + 2) [/tex]
Step-by-step explanation:
Point-slope equation is given as [tex] y - b = m(x - a) [/tex], where,
(a, b) = (-2, -5)
[tex] m = slope = \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line (-2, -5) and (0, -1),
Slope (m) = (-1 -(-5))/(0 -(-2)) = 4/2
m = 2
✔️To write the equation in point-slope form, substitute a = -2, b = -5, and m = 2 into [tex] y - b = m(x - a) [/tex]
Thus:
[tex] y - (-5) = 2(x - (-2)) [/tex]
[tex] y + 5 = 2(x + 2) [/tex]
g At a certain gas station, 30% of all customers use the restroom. What is the probability that, out of the next 10 customers, (a) exactly 4 will use the restroom
Answer:
[tex]P(x=4) = 0.200[/tex]
Step-by-step explanation:
Given
[tex]n=10[/tex] --- selected customers
[tex]x = 4[/tex] --- those that are expected to use the restroom
[tex]p =30\% = 0.30[/tex] --- proportion that uses the restroom
Required
[tex]P(x = 4)[/tex]
The question illustrates binomial probability and the formula is:
[tex]P(x) = ^nC_x * p^x * (1 - p)^{n - x}[/tex]
So, we have:
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (1 - 0.30)^{10 - 4}[/tex]
[tex]P(x=4) = ^{10}C_4 * (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 210* (0.30)^4 * (0.70)^6[/tex]
[tex]P(x=4) = 0.200[/tex]
One number is 1/4 of another number. The sum of the two numbers is 5. Find the two numbers. Use a comma to separate your answer
Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]kxndjdkdkdkkdkskskdkdjdjdjskskskdjdjddjd
Answer:
Not a functionFunctionFunctionNot a functionNot a functionHope this helps!
Suppose a research company takes a random sample of 45 business travelers in the financial industry and determines that the sample average cost of a domestic trip is $1,192, with a sample standard deviation of $279. Construct a 98% confidence interval for the population mean (for domestic trip) from these sample data. Round your answers to 3 decimal places.
Answer:
98% confidence interval for the population mean =(1095.260,1288.740)
Step-by-step explanation:
We are given that
n=45
[tex]\mu=1192[/tex]
Standard deviation,[tex]\sigma=279[/tex]
We have to construct a 98% confidence interval for the population mean.
Critical value of z at 98% confidence, Z =2.326
Confidence interval is given by
[tex](\mu\pm Z\frac{\sigma}{\sqrt{n}})[/tex]
Using the formula
98% confidence interval is given by
[tex]=(1192\pm 2.326\times \frac{279}{\sqrt{45}})[/tex]
[tex]=(1192\pm 96.740)[/tex]
=[tex](1192-96.740,1192+96.740)[/tex]
=[tex](1095.260,1288.740)[/tex]
Hence, 98% confidence interval for the population mean (1095.260,1288.740)
what is answer if 2xyx5
Answer:
Answer is 3bu2(DeEZ)=1
Step-by-step explanation:
The force F (in pounds) needed on a wrench handle to loosen a certain bolt varies inversely with the length L (in inches) of the handle. A force of 40 pounds is needed when the handle is 7 inches long. If a person needs 20 pounds of force to loosen the bolt, estimate the length of the wrench handle. Round answer to two decimal places if necessary.
in inches
Answer:
14 inches
Step-by-step explanation:
Since F is inversely proportional to L,
[tex]f = \frac{k}{l} \\ when \: f = 40 \: l \: = 7 \\ \frac{k}{7} = 40 \\ k = 280 \\ when \: f = 20 \\ 20 = \frac{280}{l} \\ l = 14[/tex]
solve the following system of equations with the help of matrix ::. x-2y-4=0 & -3x+5y+7=0
Answer:
(x, y) = (-34,-19)
Step-by-step explanation:
...................................................
please help i am stuck on this assignment
Answer:
answer
x = -13/ 15, 0
Step-by-step explanation:
15x^2 + 13 x = 0
or, x(15x + 13) = 0
either, x = 0
or, 15x + 13 = 0
x = -13/15
Answer:
The answer should be C...............
imma sorry if I'm wrong
Rajah / Diagram 5 (b) Dalam Rajah 6, PQ ialah tangen sepunya dua bulatan. AQ dan BQ ialah tangen bagi bulatan yang masing-masing berpusat E dan F. Cari nilai x dan y. In Diagram 6, PQ is the common tangent of two circles. AQ and BQ is the tangent to the circles with centre E and F respectively. Find the value of x and y. [3 markah.
Answer:
36281629273781646181993836619946527189119292937467482919198$7473828191927364732818919283838292927383883829118661552621718919191019284746617171819001187373765252728
Step-by-step explanation:
173899918377+28910873638282
An economic instructor at UCF is interested in the relationship between hours spent studying and total points earned in a course. Data collected on 11 students who took the course last semester follow:
# of observation(s) n = 30
# of independent variable(s) = 1
SSR = 1,297 SSE= 920
Required:
Find the F test statistic.
Answer:
[tex]F = 39.47[/tex]
Step-by-step explanation:
Given
[tex]n = 30[/tex] --- observations
[tex]p = 1[/tex] -- variables
[tex]SSR = 1,297[/tex]
[tex]SSE= 920[/tex]
Required
The F statistic
This is calculated using:
[tex]F = \frac{SSR}{p} \div \frac{SSE}{n - p -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{30 - 1 -1}[/tex]
[tex]F = \frac{1297}{1} \div \frac{920}{28}[/tex]
[tex]F = 1297 \div \frac{920}{28}[/tex]
Rewrite as:
[tex]F = 1297 * \frac{28}{920}[/tex]
[tex]F = \frac{1297 *28}{920}[/tex]
[tex]F = \frac{36316}{920}[/tex]
[tex]F = 39.47[/tex]
find the place value of 1 in 382619.
Answer:
Place value of 1 = 1 × 10 = 10
Step-by-step explanation:
In 382619,
Place of 1 = Tens
Place value of 1 = 1 × 10 = 10
Multiplying 10x² and (2x²)² we get …..
Hi there!
[tex]\large\boxed{40x^{6}}[/tex]
Begin by simplifying (2x²)²
2² · (x²)² <-- Power rule for exponents, multiply them together:
4 · x⁴ = 4x⁴
Multiply by 10x². ADD exponents when multiplying.
10x² · 4x⁴ = 40 · x²⁺⁴
40x⁶
for the function f(x)=5 evaluate and simplify the expression: f (a+h)-f(a)/h
Answer:
0 is the answer assuming the whole thing is a fraction where the numerator is f(a+h)-f(a) and the denominator is h.
Step-by-step explanation:
If the expression for f is really a constant, then the difference quotient will lead to an answer of 0.
If the extra for f is linear (including constant expressions), the difference quotient will be the slope of the expression.
However, let's go about it long way for fun.
If f(x)=5, then f(a)=5.
If f(x)=5, then f(a+h)=5.
If f(a)=5 and f(a+h)=5, then f(a+h)-f(a)=0.
If f(a+h)-f(a)=0, then [f(a+h)-f(a)]/h=0/h=0.
Allie rode her bike up a hill at an average speed of 12 feet/second. She then rode back down the hill at an average speed of 60 feet/second. The entire trip took her 2 minutes. What is the total distance she traveled. [Hint: use t = time traveling down the hill]
Answer:
The total distance Allie traveled was 0.81 miles.
Step-by-step explanation:
Since Allie rode her bike up a hill at an average speed of 12 feet / second, and she then rode back down the hill at an average speed of 60 feet / second, and the entire trip took her 2 minutes, to determine what is the total distance she traveled, the following calculation must be performed:
12 + 60 = 72
72 x 60 = 4320
1000 feet = 0.189394 miles
4320 feet = 0.8181818 miles
Therefore, the total distance Allie traveled was 0.81 miles.
A party supply company makes cone shaped party hats for children using thin cardboard. To the nearest square centimeter, how much cardboard is required to make the party hate use pie = 3.14.
Answer:
A. 754 cm²
Step-by-step explanation:
Amount of cardboard needed = surface area of the cone
Curved surface area of the cone = πrl
Where,
π = 3.14
r = ½(20) = 10 cm
l = 24 cm
Plug in the values into the formula
Curved surface area = 3.14 × 10 × 24 = 753.6 ≈ 754 cm²
A certain list of movies were chosen from lists of recent Academy Award Best Picture winners, highest grossing movies, series movies (e.g. the Harry Potter series, the Spiderman series), and from the Sundance Film Festival and are being analyzed. The mean box office gross was $138.64 million with a standard deviation of $11.2526 million. Given this information, 98.49% of movies grossed greater than how much money (in millions)
does anyone know the answer to this?
Answer:
-32
Step-by-step explanation:
f o h
f(x) = -3x -8
h(x) = [tex]\frac{x+8}{-3}[/tex]
foh = [tex]-3(\frac{x+8}{-3} )[/tex] -8 = x+8 -8 = x
foh(-32) = -32
What is the solution to the linear equation?
-12 + 3b - 1 = -5 - b
Answer:
b=2
Step-by-step explanation:
* Insert a digit to make numbers that are divisible by 6 if it is possible:
234_6
Answer:
i put in 3 to make 23436 because 36 is divisible by 6