Answer:
Hot Working
Explanation:
Given that hot working is carried out at temperatures greater than the recrystallization temperature of the metal, thereby the stress needed for deformation is considerably less.
On the other hand, cold working is carried out at temperatures lesser than the recrystallization temperature of the metal, thereby stress needed for deformation is much higher
Hence, comparing cold working to hot working, flow stress is usually lower in HOT WORKING.
How do I answer all the questions on this page?
Answer:
Create a google docs copy everything and paste hope this helps! :)
Explanation:
Pyramid is a type of ___________ structure.
Answer:
Massive or linteled
Explanation:
Pyramid is a type of massive or linteled structure.
These structures do no have not much internal spaces and they are huge edifices.
A pyramid is a solid body with outer triangular faces that converges on top. To construct a pyramid, large amounts of materials are usually involved. Pyramids were more prominent in times past before this present civilization.
An automotive fuel cell consumes fuel at a rate of 28m3/h and delivers 80kW of power to the wheels. If the hydrogen fuel has a heating value of 141,790 kJ/kg and a density of 0.0899 kg/m3, determine the efficiency of this fuel cell.
Answer:
The efficiency of this fuel cell is 80.69 percent.
Explanation:
From Physics we define the efficiency of the automotive fuel cell ([tex]\eta[/tex]), dimensionless, as:
[tex]\eta = \frac{\dot W_{out}}{\dot W_{in}}[/tex] (Eq. 1)
Where:
[tex]\dot W_{in}[/tex] - Maximum power possible from hydrogen flow, measured in kilowatts.
[tex]\dot W_{out}[/tex] - Output power of the automotive fuel cell, measured in kilowatts.
The maximum power possible from hydrogen flow is:
[tex]\dot W_{in} = \dot V\cdot \rho \cdot L_{c}[/tex] (Eq. 2)
Where:
[tex]\dot V[/tex] - Volume flow rate, measured in cubic meters per second.
[tex]\rho[/tex] - Density of hydrogen, measured in kilograms per cubic meter.
[tex]L_{c}[/tex] - Heating value of hydrogen, measured in kilojoules per kilogram.
If we know that [tex]\dot V = \frac{28}{3600}\,\frac{m^{3}}{s}[/tex], [tex]\rho = 0.0899\,\frac{kg}{m^{3}}[/tex], [tex]L_{c} = 141790\,\frac{kJ}{kg}[/tex] and [tex]\dot W_{out} = 80\,kW[/tex], then the efficiency of this fuel cell is:
(Eq. 1)
[tex]\dot W_{in} = \left(\frac{28}{3600}\,\frac{m^{3}}{s}\right)\cdot \left(0.0899\,\frac{kg}{m^{3}} \right)\cdot \left(141790\,\frac{kJ}{kg} \right)[/tex]
[tex]\dot W_{in} = 99.143\,kW[/tex]
(Eq. 2)
[tex]\eta = \frac{80\,kW}{99.143\,kW}[/tex]
[tex]\eta = 0.807[/tex]
The efficiency of this fuel cell is 80.69 percent.
Expert Review is done by end users.
Answer:nononononono
Explanation: