Answer:
[tex]r = \sqrt{ {2}^{2} + {2}^{2} - 3 } = 5 \\ {(x - 2)}^{2} + {(y - 2)}^{2} = 3[/tex]
Which is a stretch of an exponential decay function?
f(x)=4/5(5/4)x
f(x)=4/5(4/5)x
f(x)=5/4(4/5)x
f(x)=5/4(5/4)x
ou want to obtain a sample to estimate a population proportion. At this point in time, you have no reasonable estimate for the population proportion. You would like to be 99% confident that you esimate is within 0.1% of the true population proportion. How large of a sample size is required
Answer: the required sample size =1658944
Step-by-step explanation:
When the prior population proportion for the study is unknown , then the formula for sample size is [tex]Sample \ size = 0.25(\dfrac{z^*}{Margin\ of \ error})^2[/tex]
z-value for 99% confidence = 2.576
[tex]Sample \ size = 0.25(\dfrac{2.576}{0.001})^2\\\\=0.25(2576)^2\\\\=1658944[/tex]
Hence, the required sample size =1658944
Evan invested $800 in an account that pays 3.25% interest compounded annually.
Assuming no deposits or withdrawals are made, find how much money Evan would
have in the account 12 years after his initial investment. Round to the nearest tenth
(if necessary).
Answer:
Evans would have $852.8
Step-by-step explanation:
Given
[tex]PV = \$800[/tex]
[tex]r = 3.25\%[/tex]
[tex]t = 2[/tex]
[tex]n = 1[/tex] --- annually'
Required
The future value
This is calculated using:
[tex]FV = PV*(1 + \frac{r}{n})^{nt[/tex]
So, we have:
[tex]FV = 800 * (1 + 3.25\%/1)^{2*1}[/tex]
[tex]FV = 800 * (1 + 3.25\%)^{2}[/tex]
[tex]FV = 800 * (1 + 0.0325)^{2}[/tex]
[tex]FV = 800 * (1 .0325)^2[/tex]
[tex]FV = 852.845[/tex]
[tex]FV = 852.8[/tex]
FV =
Which of the following correctly names a side of the triangle below?
A. ZC
B. B
С. АВ
D. AABC
Answer:
C. [tex]\frac{}{AB}[/tex]
Step-by-step explanation:
You can solve this in two ways, firstly by eliminating all the wrong answers, and secondly by just knowing that the horizontal line in [tex]_[/tex][tex]\frac{}{AB}[/tex] means that we are talking about a line.
This is how we solve this question by using the eliminating process.
(A. ∠C) is not the right answer because the ∠ sign lets us know that this answer represents an angle, not a line
(B. B) is not the right answer because it represent a point, not a line (in math we use a singular capital letter to represent points)
(D. ΔABC) is not the right answer because the Δ sign lets us know that the answer represents a triangle, not a line.
Therefore, the only option left is C. [tex]\frac{}{AB}[/tex]
NO LINKS!!!
Change the standard form equation to vertex form and compare the function to the parent function y = x^2.
1. y = x^2 - 2x - 2
Completing the square gives
[tex]x^2-2x-2=(x-1)^2-3[/tex]
and comparing to [tex]y=x^2[/tex], the graph of [tex]y=x^2-2x-2[/tex] would be a horizontal shift to the right by 1 unit, and a vertical shift down by 3 units.
Hope this help!!!
Have a nice day!!!
Mrs Lefatshe bought 15 metres of cloth.the cost of 1 metre is P69.95. how much did she have to pay?
Answer:
1042.5
Step-by-step explanation:
Given :-
Mrs Lefatshe bought 15 metres of cloth.the cost of 1 metre is P69.95 .Using Unitary Method :-
→ Cost of 1 m is P 69.95
→ Cost of 15m is P ( 69.5 * 15 ) = P 1042.5
how can i solve the following
2(x + 3) = x - 4
Answer:
x=-10
Step-by-step explanation:
2(x+3)=x-4
2*x+2*3=x-4
2x+6=x-4
2x-x=-4-6
x=-10
Answer:
[tex]x = - 10[/tex]
Step-by-step explanation:
Let's solve:
[tex]2(x+3)=x−4[/tex]
Step 1: Simplify both sides of the equation.
[tex]2(x+3)=x−4 \\ (2)(x)+(2)(3)=x+−4(Distribute) \\ 2x+6=x+−4 \\ 2x+6=x−4[/tex]
Step 2: Subtract x from both sides.
[tex]2x+6−x=x−4−x \\ x+6=−4[/tex]
Step 3: Subtract 6 from both sides.
[tex]x+6−6=−4−6 \\ x=−10[/tex]
10. (10.04 MC)
What are the period and phase shift for f(x) = -4 tan(x − n)? (1 point)
T
Period: n; phase shift: x =
2
Period: n; phase shift: x = n
TT
Period: 2n; phase shift: x =
2
Period: 2n; phase shift: x = 0
Answer:
Period: [tex]\pi[/tex]
Phase shift: n
Step-by-step explanation:
Tangent function:
Has the following format:
[tex]f(x) = \tan{ax - n}[/tex]
In which the period is [tex]\frac{\pi}{x}[/tex] and the phase shift is n.
In this question:
[tex]f(x) = -4\tan{(x-n)}[/tex]
[tex]a = 1[/tex], and thus, the period is [tex]\pi[/tex], with a phase shift of n.
Solve the system of equations
4x + 2y + 1 = 1
2x − y = 1
x + 3y + z = 1
Answer:
x = 1/4
y = -1/2
z = 9/4
Step-by-step explanation:
Here we have a system of 3 equations with 3 variables:
4*x + 2*y + 1 = 1
2*x - y = 1
x + 3*y + z = 1
The first step to solve this, is to isolate one of the variables in one of the equations, let's isolate "y" in the second equation:
2*x - y = 1
2*x - 1 = y
Now that we have an expression equivalent to "y", we can replace this in the other two equations:
4*x + 2*(2*x - 1) + 1 = 1
x + 3*(2*x - 1) + z = 1
Now let's simplify these two equations:
8*x - 1 = 1
7*x - 3 + z = 1
Now, in the first equation we have only the variable x, so we can solve that equation to find the value of x:
8*x - 1 = 1
8*x = 1 + 1 = 2
x = 2/8 = 1/4
Now that we know the value of x, we can replace this in the other equation to find the value of z.
7*(1/4) -3 + z = 1
7/4 - 3 + z = 1
z = 1 + 3 - 7/4
z = 4 - 7/4
z = 16/4 - 7/4 = 9/4
z = 9/4
Now we can use the equation y = 2*x - 1 and the value of x to find the value of y:
y = 2*(1/4) - 1
y = 2/4 - 1
y = 1/2 - 1
y = -1/2
Then the solution is:
x = 1/4
y = -1/2
z = 9/4
Simplify − { − ( + ) − ÷ }
Answer:
- (- (+) - ÷ )
+) (-) (+) (-)
= (+) (-)
At the beginning of the year, the odometer on an SUV read 37,532 miles. At the end
of the year, it read 52,412 miles. If the car averaged 24 miles per gallon, how many
gallons of gasoline did it use during the year?
He used 620 gallons of gas
How much of a radioactive kind of rhodium will be left after 120 seconds if the half-life is 30 seconds and you start with 480 grams?
9514 1404 393
Answer:
30 grams
Step-by-step explanation:
The time 120 seconds is 4 times the half-life of 30 seconds. That means (1/2)^4 = 1/16 of the original amount will remain. That is (480 g)(1/16) = 30 g.
30 g of the radioactive rhodium will be left
Linear function please help it’s due in 30 mins
On a particular game show, there are 8 covered buckets and 2 of them contain a ball.
To win the game, a contestant must select both buckets that contain a ball. Find the
probability that a contestant wins the game if he/she gets to select 4 of the buckets.
Answer:
0.2143 = 21.43% probability that a contestant wins the game if he/she gets to select 4 of the buckets.
Step-by-step explanation:
The buckets are chosen without replacement, which means that the hypergeometric distribution is used to solve this question.
Hypergeometric distribution:
The probability of x sucesses is given by the following formula:
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
In which:
x is the number of sucesses.
N is the size of the population.
n is the size of the sample.
k is the total number of desired outcomes.
Combinations formula:
[tex]C_{n,x}[/tex] is the number of different combinations of x objects from a set of n elements, given by the following formula.
[tex]C_{n,x} = \frac{n!}{x!(n-x)!}[/tex]
In this question:
8 covered buckets, so N = 8.
4 buckets are selected, so n = 4.
2 contain a ball, which means that k = 2.
Find the probability that a contestant wins the game if he/she gets to select 4 of the buckets.
This is P(X = 2). So
[tex]P(X = x) = h(x,N,n,k) = \frac{C_{k,x}*C_{N-k,n-x}}{C_{N,n}}[/tex]
[tex]P(X = 2) = h(2,8,4,2) = \frac{C_{2,2}*C_{6,2}}{C_{8,2}} = 0.2143[/tex]
0.2143 = 21.43% probability that a contestant wins the game if he/she gets to select 4 of the buckets.
please help me this is due today!! it’s number 6
what is the length of AB
Select the true statement about the relationship between sample size and the standard deviation of distribution of sample means, also known as the standard error.
a. As sample size increases, standard error increases.
b. Sample size does not have an impact on standard error.
c. As sample size increases, standard error decreases.
d. As sample size decreases, standard error decreases.
Answer:
c. As sample size increases, standard error decreases.
Step-by-step explanation:
Central Limit Theorem
The Central Limit Theorem establishes that, for a normally distributed random variable X, with mean [tex]\mu[/tex] and standard deviation [tex]\sigma[/tex], the sampling distribution of the sample means with size n can be approximated to a normal distribution with mean [tex]\mu[/tex] and standard deviation [tex]s = \frac{\sigma}{\sqrt{n}}[/tex].
Thus:
The standard error is inversely proportional to the square root of the sample size, that is, as the sample size increases, the standard error decreases, and the correct answer is given by option c.
The table shows the results of an experiment in which the spinner shown above was spun 50 times. Find the experimental probability of each outcome.
not shaded
Answer:
[tex]P(x < 4) = \frac{9}{50}[/tex]
Step-by-step explanation:
Given
[tex]n(S) = 50[/tex]
See attachment for distribution
Required
[tex]P(x < 4)[/tex]
This is calculated as:
[tex]P(x < 4) = \frac{n(1) + n(2) + n(3)}{n(S)}[/tex]
Using the data on the frequency distribution table, we have:
[tex]P(x < 4) = \frac{4 + 2 + 3}{50}[/tex]
[tex]P(x < 4) = \frac{9}{50}[/tex]
Helpp please… due at 12:00
Answer:alternate exterior angles
Step-by-step explanation:
Since they’re on the outside of the parallel lines that makes them exterior
Donte simplified the expression below.
4(1+3i)-(8-5i)
4+3i-8+5i
-4+8i
What mistake did he make?
Answer:
A. He did not apply the distributive property correctly for 4(1+3i)
Step-by-step explanation:
what is the prime factorization of 225 in exponent form
Answer:
prime factorization of 225 = 32•52.
Step-by-step explanation:
The number 225 is a composite number so, it is possible to factorize it. 225 can be divided by 1, by itself and at least by 3 and 5.
A composite number is a positive integer that has at least one positive divisor other than one or the number itself. In other words, a composite number is any integer greater than one that is not a prime number.
Zahara frosted eleven cupcakes today. Dania frosted seven times as many. How many cupcakes did Dania frost?
simplify 16 + 15 - 5
A cheetah can run at a speed of 70 miles per hour. Which representation shows the distance a cheetah can travel
at this rate?
I’ll give brainliest
Answer:
Sorry if this is wrong, but seeing the question I think the best answer following the question would be answer B, because for A it shows that 1 hour is 35 miles when it says 70 miles in 1 hour, not C because as the time rises so does the distance, and I checked D and it's wrong.
Step-by-step explanation:
Suppose that your boss must choose four employees in your office to attend a conference in Jamaica. Because all 15 of you want to go, he decides that the only fair way is to draw names out of a hat. What is the probability that you, Kyle, Carol, and Adam are chosen? Enter a fraction or round your answer to 4 decimal places, if necessary.
Answer:
1 / 1365
Step-by-step explanation:
Given that :
Number of employees to choose from = 15
Number of employees to be chosen = 4
Probability of choosing You, Kyle, Carol and Adam
Recall ;
P(A) = number of required outcome / Total possible outcomes
Number of required outcome = 4C4
Total possible outcomes = 15C4
nCr = n! ÷ (n-r)!r!
Using calculator to save computation time :
15C4 = 1365
4C4 = 1
P(choosing you, Kyle, Carol and Adam) :
1 / 1365
where is EF to the nearest tenth??
Answer:
37.7
Step-by-step explanation:
EF and ED define the Tangent of D
Tan(37) = side opposite D / side adjacent to D
Opposite means a line (FE) that is not connected to the angle. It is never the longest line (hypotenuse) in a Right Triangle
Adjacent means the leg that is connected to the angle, but is not the hypotenuse.
Tan(D) = opposite over adjacent
Opposite = x
Adjacent = 50
Tan(37) = 0.7536 rounded to 4 places, but I've kept the exact value in my calculator.
0.7536 = x / 50 Multiply both sides by 50
0.7536*50 = x
x = 37.6777
The nearest 1/10 is 37.7
What is the area of the triangle
Answer:
60m^2 is the answer im pretty sure
Step-by-step explanation:
yeah man thats it
I don't get it please Help me
Step-by-step explanation:
A. 2(x+4)=2x+8
=G
B. 3(2x-1)=6x-3
=I
C. 4(x+2)=4x+8
=J
D. 2(x+3)=2x+6
=K
E. 3(4x+1)=12x+3
=H
A - G
B - I
C - J
D - K
E - H
HOPE IT HELP
What is the proof the outcome (not A)?
9514 1404 393
Answer:
B
Step-by-step explanation:
If the probability of event "A" is 'p', then the probability of the event "not A" is
P(not A) = 1 - P(A) = 1 - p
For p=0.5, this is ...
P(not A) = 1 -0.5 = 0.5 . . . . . matches choice B
Answer:
○B. 0.5 is the proof the outcome (not A).
A study was conducted to determine whether there were significant differences between medical students admitted through special programs (such as retention incentive and guaranteed placement programs) and medical students admitted through the regular admissions criteria. It was found that the graduation rate was 92.4% for the medical students admitted through special programs. Be sure to enter at least 4 digits of accuracy for this problem!
If 12 of the students from the special programs are randomly selected, find the probability that at least 11 of them graduated.
prob =
At least 4 digits!
If 12 of the students from the special programs are randomly selected, find the probability that exactly 9 of them graduated.
prob =
At least 4 digits!
Would it be unusual to randomly select 12 students from the special programs and get exactly 9 that graduate?
no, it is not unusual
yes, it is unusual
If 12 of the students from the special programs are randomly selected, find the probability that at most 9 of them graduated.
prob =
At least 4 digits!
Would it be unusual to randomly select 12 students from the special programs and get at most 9 that graduate?
yes, it is unusual
no, it is not unusual
Would it be unusual to randomly select 12 students from the special programs and get only 9 that graduate?
no, it is not unusual
yes, it is unusual
Answer:
A) 0.7696
B) 0.0474
C) Yes it's unusual
D) 0.05746
E) No, it is not unusual
F) No, it is not unusual
Step-by-step explanation:
This is a binomial probability distribution question.
We are told that 92.4% of those admitted graduated.
Thus; p = 92.4% = 0.924
From binomial probability distribution, q = 1 - p
Thus;
q = 1 - 0.924
q = 0.076
Formula for binomial probability distribution is;
P(x) = nCx × p^(x) × q^(n - x)
A) At least 11 graduated out of 12.
P(x ≥ 11) = P(11) + P(12)
P(11) = 12C11 × 0.924^(11) × 0.076^(12 - 11)
P(11) = 0.3823
P(12) = 12C12 × 0.924^(12) × 0.076^(12 - 12)
P(12) = 0.3873
P(x ≥ 11) = 0.3823 + 0.3873
P(x ≥ 11) = 0.7696
B) that exactly 9 of them graduated out of 12. This is;
P(9) = 12C9 × 0.924^(9) × 0.076^(12 - 9)
P(9) = 0.0474
C) We are not given significance level here but generally when not given we adopt a significance level of α = 0.05.
Now, exactly 9 out of 12 that graduated which is P(9) = 0.0474.
We see that 0.0474 is less than the significance level of 0.05. Thus, we can say that it is unusual to randomly select 12 students from the special programs and get exactly 9 that graduate
D) that at most 9 of them out of 12 graduated.
P(x ≤ 9) = P(0) + P(1) + P(2) + P(3) + P(4) + P(5) + P(6) + P(7) + P(8) + P(9)
This is going to be very long so I will make use of an online probability calculator to get the values of P(0) to P(8) since I already have P(9) as 0.0474.
Thus, we have;
P(0) = 0
P(1) = 0
P(2) = 0
P(3) = 0.00000001468
P(4) = 0.00000040161
P(5) = 0.00000781232
P(6) = 0.00011081163
P(7) = 0.00115477385
P(8) = 0.00877476184
Thus;
P(x ≤ 9) = 0 + 0 + 0 + 0.00000001468 + 0.00000040161 + 0.00000781232 + 0.00011081163 + 0.00115477385 + 0.00877476184 + 0.04741450256
P(x ≤ 9) = 0.05746
E) P(x ≤ 9) = 0.05746 is more than the significance level of 0.05, thus we will say it is not unusual.
F) from online binomial probability calculator, probability of getting only 9 out of 12 is more than the significance value of 0.05. Thus, we will say it is not unusual
NEED HELP ON THIS ASAP PLZ!!
Answer:
cos0 = 6.8556546i/23 or sqrt-47/23
Step-by-step explanation:
hypotenuse is 23, opposite is 24
we have to find the adjacent using the pythagorean theorem
24^2 + b^2 = 23^2
576+b^2=529
subtract
b^2=-47
b=sqrt-47
sqrt of -47 is 6.8556546i, there is an i since it is the square root of a negative
cos = adjacent/hypotenuse