The given square with a side length of one unit is known to contain five points. One must prove that at least two of these points are within square root 2/2 units of each other.
According to the Pigeonhole principle, "if n items are put into m containers, with n > m, then at least one container must contain more than one item."In this context, the square is the container, and the points inside it are the objects. If more than four points are picked, the theorem is true, and two points are nearer to each other than the square root of 2/2 units.
Let's place four points on the square's four corners. The distance between any two of these points is the square root of two units since the square's side length is 1.
Let's add another point to the mix. That point is either inside the square or outside it. Without loss of generality, let us assume that the point is inside the square. It must then be within the perimeter outlined by joining the square's corners to the point that was not a corner already.
The perimeter of the square described above is a square with a side length of square root 2 units.
Since we have five points in the square, at least two of them must be in the same smaller square, due to the pigeonhole principle. Without loss of generality, let's assume that two of the points are in the upper-left square. As a result, any points within this square are within the square root 2 units of any of the other four points. Hence, at least two points of the five selected are within the square root of 2/2 units of each other.
To know more about the "pigeonhole principle": https://brainly.com/question/13982786
#SPJ11
Shade in the regions represented by the inequalities
Answer:
Step-by-step explanation:
see diagram
A man sells an article at rs 600and makes a profit of 20%. Calculate his profit percentage
Answer:
120
Step-by-step explanation:
20 percent of 600 is 120 so he will get 120
BRAINLY AND 20 POINTS IF ANSWERED!!!!!! roberto is walking. The distance, D, in meters, he walks can be found using the equation D=1. 4t, where t is time in seconds
[ ] meters per second
1.4m/s is the rate that Roberto is walking. We know the formula for calculating the time i.e. t= d/r.
The term "distance" refers to how far we move. The rate is a measurement of our trip speed. Time is measured by how far we travel. The distance an object will travel over time and at a specific average rate is the subject of rate problems.
Given,
Distance = D
D= 1.4t
Rate= ?
Substituting the given values in the formula t= d/r
where,
t= time in seconds
d= distance
r= rate
We get,
t= 1.4t/r
t/1.4t= 1/r
t gets cancelled
so we have,
1/1.4= 1/r
r= 1.4m/s
Therefore, 1.4m/s is the rate at which Roberto is walking.
Learn more about Rate here: brainly.com/question/29781084
#SPJ4
The complete question is as follows:
Roberto is walking. The distance, D, in meters, he walks can be found using the equation D=1. 4t, where t is time in seconds.
What is the rate that Roberto's walking in meters per second?
Find the value of x.
Answer:
x=1.9
Step-by-step explanation:
[tex]\frac{x}{4.6} =\frac{4.6}{11}[/tex]
[tex]11x=21.16[/tex]
[tex]X=1.9[/tex]
8. Points P, Q, whose abscissae are 2 and 2+h, are taken on the curve y = 2x^2+1. Find the gradient of the chord PQ. To what value does this gradient approach as h decreases towards the value zero?
The gradient of the chord PQ is 2h + 8
What is the gradient of the chord?Let's first find the coordinates of points P and Q on the curve y = 2x^2+1.
Point P has an abscissa of 2, so its coordinates are (2, 2(2)^2+1) = (2, 9).
Point Q has an abscissa of 2+h, so its coordinates are (2+h, 2(2+h)^2+1) = (2+h, 2(4+4h+h^2)+1) = (2+h, 8+8h+2h^2+1) = (2+h, 2h^2+8h+9).
The gradient of the chord PQ is given by:
(m) = Δy /Δx
(m) = (2h^2+8h+9 - 9) / (2+h - 2)
(m) = (2h^2+8h) / (h)
(m) = 2h + 8
As h approaches zero, the gradient of the chord PQ approaches 8, because the term 2h becomes negligible compared to 8 when h is small. Therefore, the gradient of the tangent to the curve at point P is 8.
Learn more on gradient of a curve here;
https://brainly.com/question/29867655
#SPJ1
Write the first four terms of the sequence defined by a n = 5
{5, if n=1
a n -1 -5, if n>1
Answer:
The sequence is defined as follows:
a1 = 5
an = an-1 - 5, for n > 1
Using this definition, we can find the first four terms of the sequence as follows:
a1 = 5
a2 = a1 - 5 = 5 - 5 = 0
a3 = a2 - 5 = 0 - 5 = -5
a4 = a3 - 5 = -5 - 5 = -10
Therefore, the first four terms of the sequence are: 5, 0, -5, -10.
Jayden evaluated the expression a + (2 + 1. 5) for a = 14. He said that the value of the expression was 8. 5. Select all the statements that are true. Jayden's solution is incorrect. Jayden added inside the parentheses before dividing. Jayden substituted the wrong value for a. Jayden divided 14 by 2 and then added 1. 5. Jayden added inside the parentheses before multiplying.
It is true that Jayden's solution is incorrect. It is false that Jayden added inside the parentheses before dividing.
It is false that Jayden substituted the wrong value for a. It is true that Jayden divided 14 by 2 and then added 1. 5. Jayden added inside the parentheses before multiplying.
1) The correct solution is
Given,
a ÷ (2 + 1. 5)
Substituting the value of a which is 14
= 14 ÷ (2 + 1. 5)
= 14 ÷ 3.5
= 4
2) As there is no term which needs to be divided so, the second statement is false.
3) Jayden didn't substitute the wrong value of a he just solved the given expression without considering the bracket and divided the 14 which is the value of a by 2.
4) Jyaden divided 14 by 2 and then added 1. 5. Jayden added inside the parentheses before multiplying.
i.e. a ÷ (2 + 1. 5)
14 ÷ 2 + 1. 5
7+1.5
8.5
This is the way Jayden solved the equation due to which he arrived at the wrong solution.
Learn more about Expression here: brainly.com/question/14083225
#SPJ4
The Correct question is as below
Jayden evaluated the expression a ÷ (2 + 1.5) for a = 14. He said that the answer was 8.5. Choose True or False for each statement.
1. Jayden's solution is incorrect.
2. Jayden added in the parentheses before dividing.
3. Jayden substituted the wrong value for a.
4. Jayden divided 14 by 2 and added 1.5
Can i get assistance with this?
Answer:
see attached
Step-by-step explanation:
You want the given triangle dilated by a factor of -3 about point A.
DilationTo find the image point corresponding to a pre-image point, multiply the pre-image point's distance from A by the dilation factor. The negative sign means the distance to the image point is measured in the opposite direction.
In the attached figure, the chosen point is 4 units up and 5 units right of A. Its image in the dilated figure is 3·4 = 12 units down, and 3·5 = 15 units left of A.
This same process can be used to locate the other vertices of the triangle's image.
Suppose Z follows the standard normal distribution. Calculate the following probabilities using the ALEKS calculator. Round your responses to at least three decimal places. (a) P(Z < 0.79) = Х 5 ? (b) P(Z > 0.75) (c) P(-1.06 < Z< 2.17) =
The probabilities Z > 0.75 is P(Z > 0.75) = 1 - P(Z < 0.75).
The probability of Z > 0.75 is 1 - 0.77337 = 0.22663
The probability of Z < -1.06 from it. P(-1.06 < Z< 2.17) = P(Z < 2.17) - P(Z < -1.06) = 0.98425 - 0.14457 = 0.83968
Suppose Z follows the standard normal distribution. The probabilities using the ALEKS calculator are given below.(a) P(Z < 0.79) = 0.78524. (rounded to 5 decimal places)(b) P(Z > 0.75) = 1 - P(Z < 0.75) = 1 - 0.77337 = 0.22663. (rounded to 5 decimal places)(c) P(-1.06 < Z< 2.17) = P(Z < 2.17) - P(Z < -1.06) = 0.98425 - 0.14457 = 0.83968. (rounded to 5 decimal places). In the standard normal distribution, the mean is equal to zero and the standard deviation is equal to 1. The notation for a standard normal random variable is z. Z is a random variable with a standard normal distribution and P(Z) denotes the probability of the random variable Z. Suppose z follows a standard normal distribution then the probability of Z < 0.79 is P(Z < 0.79) = 0.78524. So, the answer is 0.78524(rounded to 5 decimal places).Suppose z follows a standard normal distribution then the probability of Z > 0.75 is P(Z > 0.75) = 1 - P(Z < 0.75). Therefore, the probability of Z > 0.75 is 1 - 0.77337 = 0.22663(rounded to 5 decimal places).Therefore, the probability of -1.06 < Z< 2.17 can be found by finding the probability of Z < 2.17 and then subtracting the probability of Z < -1.06 from it. P(-1.06 < Z< 2.17) = P(Z < 2.17) - P(Z < -1.06) = 0.98425 - 0.14457 = 0.83968(rounded to 5 decimal places).
Learn more about Probabilities
brainly.com/question/30034780
#SPJ11
Reduce each expression to a polynomial
((y-b)^(2))/(y-b+1)+(y-b)/(y-b+1)
The given expression ((y-b)²/(y-b+1)+(y-b)/(y-b+1) after being reduced to a polynomial, can be represented as y-b.
In order to reduce the given equation to a polynomial, we are required to simplify and combine like terms. First, we can simplify the expression in the numerator by expanding the square:
((y-b)²/(y-b+1) = (y-b)(y-b)/(y-b+1) = (y-b)²/(y-b+1)
Now, we can combine the two terms in the equation by finding a common denominator:
(y-b)²/(y-b+1) + (y-b)/(y-b+1) = [(y-b)² + (y-b)]/(y-b+1)
Next, we can combine the terms in the numerator by factoring out (y-b):
[(y-b)² + (y-b)]/(y-b+1) = (y-b)(y-b+1)/(y-b+1)
Finally, we can cancel out the common factor of (y-b+1) in the numerator and denominator to get the polynomial:
(y-b)(y-b+1)/(y-b+1) = y-b
Therefore, the equation ((y-b)²)/(y-b+1)+(y-b)/(y-b+1) after being simplified, is equivalent to the polynomial y-b.
Learn more about polynomials :
https://brainly.com/question/30127172
#SPJ4
How do you find height when you are doing volume with cubic units?
Answer:calculate the cube root of a cube's volume.
Step-by-step explanation:
All the students in the sixth grade either purchased their lunch or brought their lunch from home on Monday.
• 24% of the students purchased their lunch.
• 190 students brought their lunch from home.
How many students are in the sixth grade?
The number of students that are in the sixth grade is given as follows:
250 students.
How to obtain the number of students?The number of students is obtained applying the proportions in the context of the problem.
We know that all students in the sixth grade either purchased their lunch or brought their lunch from home on Monday, and 24% of the students purchased their lunch, hence 76% of the students brought their lunch from home.
190 students brought their lunch from home, which is equivalent to 76% of the number of students, hence the number of students is given as follows:
0.76n = 190
n = 190/0.76
n = 250 students.
More can be learned about proportions at https://brainly.com/question/24372153
#SPJ1
At which values in the interval [0, 2π) will the functions f (x) = 2cos2θ and g(x) = −1 − 4cos θ − 2cos2θ intersect?
a: theta equals pi over 3 comma 4 times pi over 3
b: theta equals pi over 3 comma 5 times pi over 3
c: theta equals 2 times pi over 3 comma 4 times pi over 3
d: theta equals 2 times pi over 3 comma 5 times pi over 3
The values in the interval [0, 2π) for which the two points would intersect as required is; Choice C; theta equals 2 times pi over 3 comma 4 times pi over 3.
What values of θ make the two functions intersect?Recall from the task content; the given functions are;
f (x) = 2cos2θ and g(x) = −1 − 4cos θ − 2cos2θ
Therefore, for intersection; f (θ) and g(θ):
2 cos²θ = −1 − 4cos θ − 2cos²θ
4cos²θ + 4cosθ + 1 = 0
let cos θ = y;
4y² + 4y + 1 = 0
y = -1/2
Therefore; -1/2 = cos θ
θ = cos-¹ (-1/2)
θ = 2π/3, 4π/3.
Ultimately, the correct answer choice is; Choice C; theta equals 2 times pi over 3 comma 4 times pi over 3.
Read more on trigonometry;
https://brainly.com/question/24334139
#SPJ1
How do you work this out?
Anyone help please .
Answer:
x=5/4 or x=5/9
pls mark me brainliest
Answer:
x=5/4 (for the first x),x=5/9 (for the second x)
Find the 8th term of the arithmetic sequence x + 1 x+1, 8 x − 3 8x−3, 15 x − 7 ,
Answer: 50x - 27
Step-by-step explanation:
To find the 8th term of the arithmetic sequence, we need to first find the common difference between consecutive terms:
Common difference (d) = second term - first term
d = (8x - 3) - (x + 1)
d = 7x - 4
Now, we can use the formula to find the nth term of an arithmetic sequence:
an = a1 + (n - 1)d
where a1 is the first term, d is the common difference, and n is the term number we want to find.
Plugging in the values, we get:
a8 = (x + 1) + (8 - 1)(7x - 4)
a8 = x + 1 + 7(7x - 4)
a8 = x + 1 + 49x - 28
a8 = 50x - 27
Therefore, the 8th term of the arithmetic sequence x + 1, 8x - 3, 15x - 7 is 50x - 27.
Does someone mind helping me with this problem? Thank you!
the answer to the problem that you need to is 1024
1(1/2)= 1 1/2 draw number line and represent this
|-----|-----|-----|----|-----|-----|--│--|-----|----|-----|
-5 -4 -3 -2 -1 0 1 │ 2 3 4 5
1 1/2
On this number line, the tick mark labeled "1 1/2" is located halfway between the integer values of 1 and 2.
To represent the number 1 1/2 on a number line, we need to draw a horizontal line with evenly spaced tick marks. Each tick mark represents a specific value on the number line. Since 1 1/2 is a mixed number that includes a whole number (1) and a fraction (1/2), we need to locate it between the integer values of 1 and 2. The tick mark for 1 1/2 should be halfway between these two integers, which means it would be located at the midpoint of the line segment that connects the tick marks for 1 and 2. By placing the tick mark for 1 1/2 in the correct position on the number line, we can accurately represent this number visually.
Learn more about the number line: brainly.com/question/16191404
#SPJ4
Write the equation of a line that is perpendicular to y=½x - 9 and passes through the point (3, -2).
Answer:
y = - 2x + 4
Step-by-step explanation:
the equation of a line in slope- intercept form is
y = mx + c ( m is the slope and c the y- intercept )
y = [tex]\frac{1}{2}[/tex] x - 9 ← is in slope- intercept form
with slope m = [tex]\frac{1}{2}[/tex]
given a line with slope m then the slope of a line perpendicular to it is
[tex]m_{perpendicular}[/tex] = - [tex]\frac{1}{m}[/tex] = - [tex]\frac{1}{\frac{1}{2} }[/tex] = - 2 , then
y = - 2x + c ← is the partial equation
to find c substitute (3, - 2 ) into the partial equation
- 2 = - 2(3) + c = - 6 + c ( add 6 to both sides )
4 = c
y = - 2x + 4 ← equation of perpendicular line
A triangle has two sides of length 3 and 16. What is the largest possible whole-number length for the third side
The largest possible whole-number length for the third side is 18, which satisfies all three inequalities.
What is inequality theorem?The triangle inequality theorem explains the relationship between the three sides of a triangle. This theorem states that for any triangle, the sum of the lengths of the first two sides is always larger than the length of the third side.
According to question:Let x be the length of the third side. By the triangle inequality, we have:
3 + 16 > x and 16 + x > 3 and 3 + x > 16
Simplifying, we get:
19 > x and x > 13 and x < 19
The largest possible whole-number length for the third side is 18, which satisfies all three inequalities.
To know more about Inequality visit:
brainly.com/question/30228778
#SPJ1
Question 4(Multiple Choice Worth 2 points)
(Irrational Numbers MC)
Order √50,-7.1.3-7 from least to greatest.
0 -7.1.-7. √50,23
O
0-71.-7.7.23,√50
O
0 -7.1.-723√50
0-7-7.1,√50,23
Answer:
D
Step-by-step explanation:
The square root of 50 is approximately equal to 7.07
-7.1111… can be rounded to -7.11
23/3 is equal to approximately 7.67
-7 1/5 is equal to -7.2
the product of 2 rational numbers is 16/3.If one of the rational number is -26/3,find the other rational number
Answer:
- [tex]\frac{8}{13}[/tex]
Step-by-step explanation:
let n be the other rational number , then
- [tex]\frac{26}{3}[/tex] n = [tex]\frac{16}{3}[/tex]
[a number × its reciprocal = 1 ]
multiply both sides by the reciprocal - [tex]\frac{3}{26}[/tex]
n = [tex]\frac{16}{3}[/tex] × - [tex]\frac{3}{26}[/tex] ( cancel the 3 on numerator/ denominator )
n = - [tex]\frac{16}{26}[/tex] = - [tex]\frac{8}{13}[/tex]
A surfboard is in the shape of a rectangle and semicircle. The perimeter is to be 4m. Find the maximum area of the surfboard correct to 2 places.
The maximum area of the surfboard correct to 2 places is 0.67 m².
Given that a surfboard is in the shape of a rectangle and a semicircle, and its perimeter is to be 4m. We need to find the maximum area of the surfboard, correct to 2 decimal places.
Let the radius of the semicircle be 'r' and the length and breadth of the rectangle be 'l' and 'b' respectively. Perimeter of the surfboard = [tex]4m => l + 2r + b + 2r = 4 => l + b = 4 - 4r[/tex] -----(1)
Area of surfboard = Area of rectangle + Area of semicircle Area of rectangle = l × b Area of semicircle = πr²/2 + 2r²/2 = (π + 2)r²/2Area of surfboard = l × b + (π + 2)r²/2 -----(2)
We have to maximize the area of the surfboard. So, we have to find the value of 'l', 'b', and 'r' such that the area of the surfboard is maximum .From equation (1), we have l + b = 4 - 4r => l = 4 - 4r - bWe will substitute this value of 'l' in equation (2)
Area of surfboard = l × b + (π + 2)r²/2 = (4 - 4r - b) × b + (π + 2)r²/2 = -2b² + (4 - 4r) b + (π + 2)r²/2Now, we have to maximize the area of the surfboard, that is, we need to find the maximum value of the above equation.
To find the maximum value of the equation, we can differentiate the above equation with respect to 'b' and equate it to zero. d(Area of surfboard)/db = -4b + 4 - 4r = 0 => b = 1 - r Substitute the value of 'b' in equation (1),
we get l = 3r - 3Now, we can substitute the values of 'l' and 'b' in the equation for the area of the surfboard.
Area of surfboard =
[tex]l × b + (π + 2)r²/2 = (3r - 3)(1 - r) + (π + 2)r²/2 = -r³ + (π/2 - 1)r² + 3r - 3[/tex]
[tex]-r³ + (π/2 - 1)r² + 3r - 3 = -0.6685 m² \\[/tex]
for such more questions on quadratic equations
https://brainly.com/question/30164833
#SPJ11
Write 735 as the product of its prime factor.
Answer:
[tex]735 = 3 \times 5 \times {7}^{2} [/tex]
Step-by-step explanation:
[tex]735 = 7 \times 105[/tex]
[tex]735 = 7 \times 3 \times 35[/tex]
[tex]735 = 7 \times 3 \times 5 \times 7[/tex]
[tex]735 = 3 \times 5 \times {7}^{2} [/tex]
In order to make the same amount of money, they would have to each sell ______ bicycles. They would both make $______.
In order to make the same amount of money, they would have to each sell 5 bicycles. They would both make $500
How many bicycle would they sell to make the same amount of money?To find the number of bicycles they would need to sell to make the same amount of money,
We can set Jim's and Tom's weekly earnings equal to each other and solve for the number of bicycles:
250 + 50x = 400 + 20x
30x = 150
x = 5
So they would need to sell 5 bicycles to make the same amount of money.
How much would they make for selling that amountTo find out how much money they would make for selling 5 bicycles, we can substitute x = 5 into either equation.
Let's use Jim's equation:
250 + 50(5) = 500
So they would make $500 for selling 5 bicycles.
Read more about linear relation at
https://brainly.com/question/4074386
#SPJ1
in exercises 1-8 solve the inequality graph the solution
1. 6x < -30
Step-by-step explanation:
x<-5 is the answer
1.
6x=-30
2.
x=-5
3.
x<-5
What geometric shapes can you draw that have exactly one pair of parallel sides? Use pencil and paper. Sketch examples for as many different types of shapes as you can. Use appropriate marks to show the pairs of parallel sides.
A. regular pentagon
B. square
C. Trapezoid
D. parallelogram
If 140 men working 10 hours a day can build a house in 16 days, find out how many men will build same kind of house in 12 days by working 13 hours a day?
We need 144 men to build the house in 12 days working 13 hours a day.
Let M be the number of men needed to build the house in 12 days working 13 hours a day.
140 x 10 x 16 = M x 13 x 12
Simplifying the equation, we get:
22400 = 156M
Dividing both sides by 156, we get:
M = 144.1
An equation in mathematics is a statement that two expressions are equal. It consists of two sides, the left-hand side (LHS) and the right-hand side (RHS), separated by an equal sign (=). The expressions on either side can be numbers, variables, or combinations of both. The equation expresses that the values of the expressions on both sides are equivalent.
Equations play a fundamental role in many areas of mathematics and are used to model various real-world situations, such as physics, engineering, and finance. They can be solved using various techniques, such as substitution, elimination, or graphing, to find the values of the variables that satisfy the equation.
To learn more about Equation visit here:
brainly.com/question/29538993
#SPJ4
b) There are x number of books that worth Rs. 35 each and 5 books worth Rs. 30 each in a parcel prepared as a gift. The value of two such parcels is Rs. 580. i. Build up an equation using the above information. ii. Find the value of x by solving the equation.
Answer:
Equation: 2(357+30×5) = 580
x=4
Step-by-step explanation:
In one package, there is such a relationship:
357+30X5 = y
(Y is the price of a package)
The price of two parcels is 580:
then. 24=580
y= 290
x=4, so: equation: 2(35x+150) =580
Step-by-step explanation:
A shopkeeper buys a number of books for Rs. 80. If he had bought 4 more for the same amount each book would have cost Rs. 1 less. How many books did he buy?
A
8
B
16
Correct Answer
C
24
D
28
Medium
Open in App
Updated on : 2022-09-05
Solution

Verified by Toppr
Correct option is B)
Let the shopkeeper buy x number of books.
According to the given condition cost of x books =Rs80
Therefore cost of each book =x80
Again when he had brought 4 more books
Then total books in this case =x+4
So cost of each book in this case =x+480
According to Question,
x80−x+480=1
x(x+4)80(x+4)−80x=1
x2+20x−16x−320=0
(x−16)(x+20)=0
x=16orx=−20
Hence the shopkeeper brought 16 books
Find the interest refund on a 35-month loan with interest of $2,802 if the loan is paid in full with 13 months remaining.
Answer: $1,071.54
Step-by-step explanation:
To find the interest refund, first we need to calculate the total interest charged on the loan. We can do this by multiplying the monthly interest by the number of months in the loan:
Monthly interest = Total interest / Number of months
Monthly interest = $2,802 / 35
Monthly interest = $80.06
Total interest charged on the loan = Monthly interest x Number of months
Total interest charged on the loan = $80.06 x 35
Total interest charged on the loan = $2,802.10
Now we need to calculate the interest that would have been charged for the remaining 13 months of the loan:
Interest for remaining 13 months = Monthly interest x Remaining months
Interest for remaining 13 months = $80.06 x 13
Interest for remaining 13 months = $1,040.78
Finally, we can find the interest refund by subtracting the interest for the remaining 13 months from the total interest charged on the loan:
Interest refund = Total interest charged - Interest for remaining months
Interest refund = $2,802.10 - $1,040.78
Interest refund = $1,074.32
Therefore, the interest refund on the loan is $1,074.30.
Pablo needs to memorize words on a vocabulary list for Latin class he has 12 words to memorize and he is 3/4 done how many words has Pablo memorized so far
Answer:
9 words
Step-by-step explanation:
We know
He has 12 words to memorize, and he is 3/4 done.
How many words has Pablo memorized so far?
We Take
12 x 3/4 = 9 words
So, Pable has memorized 9 words.