Answer:
A. For g(x) to be differentiable, the derivative of g(x) must exist at every point in its domain. The derivative of a sin x + b is a cos x, which exists for all values of x. Therefore, any values of a and b will make g(x) a differentiable function.
B. To find the equation of the tangent line to g(x) at x = 2π, we need to find the slope of the tangent line, which is the derivative of g(x) evaluated at x = 2π.
g'(x) = a cos x, so g'(2π) = a cos(2π) = a
Therefore, the slope of the tangent line at x = 2π is a. To find the y-intercept of the tangent line, we can plug in x = 2π into g(x) and subtract a times 2π:
y = g(2π) - a(2π)
= (a sin 2π + b) - a(2π)
= b - 2aπ
So the equation of the tangent line is:
y = ax + (b - 2aπ)
C. We can use the tangent line equation to approximate g(6) by plugging in x = 6 and using the equation of the tangent line at x = 2π.
First, we need to find the value of a. Since g'(2π) = a, we can use the derivative of g(x) to find a:
g'(x) = a cos x
g'(2π) = a cos (2π) = a
g'(x) = a = 2
Now, we can plug in a = 2, b = any value, and x = 2π into the tangent line equation:
y = ax + (b - 2aπ)
g(2π) = 2πa + (b - 2aπ)
a sin 6 + b ≈ 12π + (b - 4π)
Since we don't know the value of b, we can't find the exact value of g(6), but we can use the approximation:
g(6) ≈ 12π + (b - 4π)
Given that (1, 2, 3] System{1, 4, 7,6] for a system known to be LTI, compute the system's impulse response h[n] without using z-transforms.
Given that (1, 2, 3] System{1, 4, 7,6] for a system known to be LTI, the impulse response of the system: h[n] = (1/2)*δ[n] + δ[n-1] + (3/2)*δ[n-2]
To compute the impulse response h[n] of a linear time-invariant (LTI) system given its input-output relationship, we can use the convolution sum:
y[n] = x[n] * h[n]
y[n] = (1/2)*(x[n] + 2x[n-1] + 3x[n-2])
y[n] = (1/2)*(δ[n] + 2δ[n-1] + 3δ[n-2])
y[n] = (1/2)*δ[n] + δ[n-1] + (3/2)*δ[n-2]
Thus, the impulse response of the system is:
h[n] = (1/2)*δ[n] + δ[n-1] + (3/2)*δ[n-2],where δ[n] is the impulse signal.
To learn about impulse response visit:
https://brainly.com/question/30426431
#SPJ4
Construct triangle PQR in which angle Q = 30 deg , angle R=60^ and PQ + QR + RP = 10cm
We can see here that in order to construct a triangle PQR in which angle Q = 30°, angle R=60° and PQ + QR + RP = 10cm, here is a guide:
Draw a line segment AB = 10 cm.Construct angle 30° at point A and angle 60° at point B.Draw angle bisectors to angles A and B.Make sure these angle bisectors intersect at point P.Draw perpendicular bisector to line segment AP.Let this bisector meet AB at Q.Then draw perpendicular bisector to line segment BP.Let this bisector meet AB at R.Join PQ and PR.PQR is the required triangle.What is a triangle?A triangle is a geometric shape that is defined as a three-sided polygon, where each side is a line segment connecting two of the vertices, or corners, of the triangle. The interior angles of a triangle always add up to 180 degrees.
Triangles can be classified into different types based on their side lengths and angles, such as equilateral triangles with three equal sides and three equal angles, isosceles triangles with two equal sides and two equal angles, and scalene triangles with no equal sides or angles.
Triangles are used in many areas of mathematics and science, including geometry, trigonometry, and physics.
Learn more about triangle on https://brainly.com/question/28470545
#SPJ1
The Ford F-150 is the best selling truck in the United States.
The average gas tank for this vehicle is 23 gallons. On a long
highway trip, gas is used at a rate of about 3.2 gallons per hour.
The gallons of gas g in the vehicle's tank can be modeled by the
equation g(t)=23 -3.2t where t is the time (in hours).
a) Identify the domain and range of the function. Then graph
the function.
b) At the end of the trip there are 6.4 gallons left. How long
was the trip?
a) The domain of the function is [0, 7.1875], while the range is [0,23]. Considering the domain and the range, the graph of the function is given by the image presented at the end of the answer.
b) The trip had a duration of 5.1875 hours.
How to obtain the domain and the range of the function?The function for this problem is defined as follows:
g(t) = 23 - 3.2t.
The domain is the set of input values that can be assumed by the function. The time cannot have negative measures, hence the lower bound of the domain is of zero, while the gas cannot be negative, hence the upper bound of the domain is given as follows:
23 - 3.2t = 0
3.2t = 23
t = 23/3.2
t = 7.1875 hours.
The range is given by the set of all output values assumed the function, which are the values of the gas, hence it is [0,23].
The graph is a linear function between points (0, 23) and (7.1875, 0).
At the end of the trip there were 6.4 gallons left, hence the length of the trip is obtained as follows:
23 - 3.2t = 6.4
t = (23 - 6.4)/3.2
t = 5.1875 hours.
More can be learned about linear functions at brainly.com/question/24808124
#SPJ1
find two positive numbers that satisfy the given requirements. the sum of the first and twice the secind is 100 and the product is a maximum
Answer: The two positive numbers that satisfy the given requirements are 25 and 50.
Step-by-step explanation:
Let's call the two positive numbers x and y. We want to maximize their product while satisfying the condition that "the sum of the first and twice the second is 100", or mathematically:
x + 2y = 100
We can use algebra to solve for one of the variables in terms of the other:
x = 100 - 2y
Now we want to maximize the product xy:
xy = x(100 - 2y) = 100x - 2xy
Substituting x = 100 - 2y:
xy = (100 - 2y)y = 100y - 2y^2
To find the maximum value of this expression, we can take the derivative with respect to y and set it equal to zero:
d(xy)/dy = 100 - 4y = 0
Solving for y gives:
y = 25
Substituting y = 25 into the equation x + 2y = 100, we get:
x + 2(25) = 100
x = 50
Therefore, the two positive numbers that satisfy the given requirements are x = 50 and y = 25, and their product is:
xy = 50(25) = 1250
P, Q, R, S, T and U are different digits.
PQR + STU = 407
Step-by-step explanation:
There are many possible solutions to this problem, but one possible set of values for P, Q, R, S, T, and U is:
P = 2
Q = 5
R = 1
S = 8
T = 9
U = 9
With these values, we have:
PQR = 251
STU = 156
And the sum of PQR and STU is indeed 407.
59, 60, 61, 62, 63, 64, 65, and 66 Find the values of x for which the series converges. Find the sum of the series for those values of x. 59. § (-5)".z" n=1 Answer + 00 60. Σ(α + 2)" n=1 61. (x - 2)" 3" n=0 Answer + 62. (-4)" (x - 5) n=0 00 63. 2" ch NO Answer
The values of x for which the series converges is x ∈ (-1/5, 1/5). The sum of the series for those values of x is (-5x)/(1 + 5x).
The series is [tex]\Sigma^{\infty}_{n=1}(-5)^nx^n[/tex].
We can write this series as [tex]\Sigma^{\infty}_{n=1}(-5x)^n[/tex].
This is a infinite geometric series with first term a = -5x and common ration r = -5x.
It is convergent when
|r| < 1
|-5x| < 1
|-5| |x| < 1
5|x| < 1
Divide by 5 on both side, we get
|x| < 1/5
The series is convergent when x ∈ (-1/5, 1/5).
Sum of the series is
Sₙ = a/1 - n
Sₙ = (-5x)/{1 - (-5x)}
Sₙ = (-5x)/(1 + 5x)
To learn more about series converges link is here
brainly.com/question/15415793
#SPJ4
The complete question is:
Find the values of x for which the series converges. Find the sum of the series for those values of x.
[tex]\Sigma^{\infty}_{n=1}(-5)^nx^n[/tex]
Question 11 (1 point)
(06.03 LC)
What is the product of the expression, 5x(x2)?
a
25x2
b
10x
c
5x3
d
5x2
The expressiοn 5x(x²) is equal tο 5 * x¹ * x² (5 * x³ = 5x³). Thus, οptiοn (c) 5x3 is the cοrrect respοnse.
Hοw are prοducts οf expressiοn determined?The cοefficients (the numbers in frοnt οf the variables) οf the expressiοn 5x(x²) can be multiplied, and the expοnents οf the variables can be added, tο determine the prοduct.
The first cοefficient we have is 5 times 1, giving us 5. Sο, using the secοnd x², we have x tο the pοwer οf 2 multiplied by x tο the pοwer οf 1 (frοm the first x). Expοnents are added when variables with the same base are multiplied. Sο, x¹ multiplied by x² results in x³.
Cοmbining all οf the parts, the phrase becοmes:
5x(x²) is equal tο 5 * x¹ * x² (5 * x³ = 5x³).
Thus, οptiοn (c) 5x³ is the cοrrect respοnse.
Learn more about Exponents here:
brainly.com/question/5497425
#SPJ1
complete the table below.
4775 g968r648 747474874 483892874 23773259635y84b2375789325 7437594365825 4378574937587 49388959365n 98437858746587 32o4iy548569
Answer:
?
Step-by-step explanation:
In a certain company, employees contribute to a welfare fund at the rate of 4% of the first $1000 earned, 3% of the next $1000, 2% of the next $1000 and 1% of any extra monies. How much will an employee who earned $20,000 contribute to the fund?
The employee will contribute 4% of the first $1000, which is $40. Then, the employee will contribute 3% of the next $1000, which is $30. Following that, the employee will contribute 2% of the next $1000, which is $20. Finally, the employee will contribute 1% of the remaining $17,000, which is $170. Therefore, the employee will contribute a total of $260 to the fund.
An employee who earned $20,000 will contribute $260 to the welfare fund.
To calculate the contribution to the welfare fund for an employee who earned $20,000, we can break down the earnings into different tiers based on the given rates.
The first $1000 will have a contribution rate of 4%.
Contribution for the first $1000 = 4% of $1000 = $40.
The next $1000 will have a contribution rate of 3%.
Contribution for the next $1000 = 3% of $1000 = $30.
The next $1000 will have a contribution rate of 2%.
Contribution for the next $1000 = 2% of $1000 = $20.
The remaining amount above $3000 ($20,000 - $3000 = $17,000) will have a contribution rate of 1%.
Contribution for the remaining amount = 1% of $17,000 = $170.
Now, let's sum up the contributions for each tier:
$40 + $30 + $20 + $170 = $260.
Therefore, an employee who earned $20,000 will contribute $260 to the welfare fund.
To learn more about welfare fund:
brainly.com/question/29851713
#SPJ2
Venell put together a model train with 25 train cars. Each train car is 80 millimeters long. How many meters long is Venell's model train if there are no gaps between cars? (1 meter = 1,000 millimeters)
Answer: 2 meters
Step-by-step explanation:
The length of one train car is 80 millimeters. Therefore, the length of the entire train is:
25 cars × 80 mm per car = 2000 mm
To convert millimeters to meters, we need to divide by 1000:
2000 mm ÷ 1000 = 2 meters
Therefore, Venell's model train is 2 meters long.
Christine has a six-sided dice numbered from 1 to 6. She rolled it a total of 50 times. It landed on an odd number 21 times. a) Work out the relative frequency of the dice landing on an odd number. Give your answer as a decimal. b) If the dice were fair, what would the theoretical probablity of it landing on an odd number be? Give your answer as a decimal. c) Is the dice definitely biased or definetely not biased, or is it impossible to tell? Write a sentence to explain your answer.
A) Relative frequency is number of times an event happened over total number of events:
Answer is 21/50 = 0.42
B) On a 6 sides die, there are 3 even numbers and 3 odd numbers, so the theoretical probability of landing on odd would be 3/6 = 0.50
C) Because the die has an equal amount of chance landing on even or odd, both are 3/6, then the dice is not biased.
For the functions f(x)=−7x+3 and g(x)=3x2−4x−1, find (f⋅g)(x) and (f⋅g)(1).
Answer:
Find f(g(x)) f(x)=7x-8 , g(x)=3x-2. f(x)=7x−8 f ( x ) = 7 x - 8 , g(x)=3x−2 g ( x ) = 3 x - 2. Step 1. Set up the composite result function. f(g(x)) f ( g ...
please mark me as a brainalist
To the nearest hundredth, what is the volume of the sphere? (Use 3.14 for pie.)
Therefore, the volume of the sphere to the nearest hundredth is 724,775.70 cubic millimeters.
What is volume?Volume is a measurement of the amount of space occupied by a three-dimensional object. It is often expressed in units such as cubic meters (m³), cubic centimeters (cm³), cubic feet (ft³), or gallons (gal), depending on the context. The volume of a solid object can be calculated by multiplying its length, width, and height or using a specific formula depending on the shape of the object. For example, the volume of a rectangular box can be calculated as length x width x height, while the volume of a cylinder can be calculated as π x radius² x height. In general, volume is an important concept in many fields, including physics, chemistry, engineering, and architecture. It is often used to describe the capacity of containers, the displacement of fluids, and the amount of material used in construction or manufacturing.
Here,
The formula for the volume of a sphere is given as V = (4/3)πr³, where r is the radius of the sphere and π is approximately 3.14.
Substituting the given value of the radius, we get:
V = (4/3) x 3.14 x 48³
V ≈ 724,775.68 cubic millimeters
Rounding this value to the nearest hundredth, we get:
V ≈ 724,775.68 ≈ 724,775.70 cubic millimeters (rounded to two decimal places)
To know more about volume,
https://brainly.com/question/12237641
#SPJ1
A company has a fixed cost of $1277 each day to run their factory and a variable cost of $1.93 for each widget they produce. How many widgets can they produce for $2127?
The company can produce approximately 425 widgets for $2127.
What is cost function ?
The key concept used here is the concept of cost functions, which is an important concept in economics and business. A cost function is a mathematical function that expresses the total cost of production as a function of the level of output produced. In this case, the cost function is a linear function of the form C = a + bx, where C is the total cost, a is the fixed cost, b is the variable cost per unit, and x is the level of output.
Finding the number of widgets the company can produce given a fixed cost and a variable cost per widget :
To solve this problem, we can set up an equation that relates the total cost to the number of widgets produced.
Let x be the number of widgets produced.
The total cost C is given by:
C = fixed cost + variable cost
C = 1277 + 1.93x
We want to find the number of widgets produced for a total cost of $2127. So we can set up an equation:
2127 = 1277 + 1.93x
Subtracting 1277 from both sides gives:
850 = 1.93x
Dividing both sides by 1.93 gives:
x ≈ 439.9
Since we can't produce a fractional number of widgets, we need to round down to the nearest integer. Therefore, the company can produce approximately 425 widgets for $2127.
To know more about cost visit :
brainly.com/question/14083670
#SPJ1
What was your recommended intake of carbohydrates (grams), and how far were you from it? Show the mathActual Intake Recommended Intake Percentage159.00 115-166 100%
The actual intake of carbohydrates is 138% as compare to recommended intake.
Recommended intake of carbohydrates or any other nutrient are,
Based on the information provided,
Consumed 159 grams of carbohydrates,
Recommended intake is between 115 and 166 grams.
Calculate the percentage of actual intake compared to the recommended intake, use the following formula,
Percentage = (Actual Intake / Recommended Intake) x 100%
Substituting the values in the formula we have,
⇒Percentage = (159 / 115) x 100%
⇒Percentage ≈ 138.3%
Therefore, the actual intake of carbohydrates is about 138% of the recommended intake, indicating that consumption of more carbohydrates than recommended.
learn more about carbohydrates here
brainly.com/question/10052351
#SPJ4
On the day a video was posted online, 5 people watched the video. The next day the number of viewers had doubled. Assume the
number of viewers continues to double each day.
1. On which day will 640 people see the video? Explain or show your reasoning.
2. What strategy would you use to find the first day when more than 20,000 people will see the video (if the trend continues)?
On the 7th day after the videο was pοsted, 640 peοple will see the videο.
What is Statistics?Statistics is the discipline that cοncerns the cοllectiοn, οrganizatiοn, analysis, interpretatiοn, and presentatiοn οf data.
1 Let's start by finding the pattern in the number οf viewers. We knοw that οn the first day, 5 peοple watched the videο. On the next day, the number οf viewers dοubled tο 5 x 2 = 10. On the third day, the number οf viewers dοubled again tο 10 x 2 = 20. We can see that the number οf viewers is dοubling each day, which means we can write the number οf viewers as:
[tex]V = 5 x 2^n[/tex]
where n is the number οf days after the videο was pοsted.
Nοw we want tο find οn which day the number οf viewers will be 640. Sο we can set V equal tο 640 and sοlve fοr n:
[tex]640 = 5 x 2^n[/tex]
[tex]2^n = 128[/tex]
n = lοg2(128) = 7
2. Tο find the first day when mοre than 20,000 peοple will see the videο, we can set V equal tο 20,000 and sοlve fοr n:
[tex]20,000 = 5 x 2^n[/tex]
2^n = 4,000
n = lοg2(4,000) ≈ 11.29
Since n represents the number οf days after the videο was pοsted, we can rοund up tο the next whοle number tο find the first day when mοre than 20,000 peοple will see the videο. Therefοre, οn the 12th day after the videο was pοsted, mοre than 20,000 peοple will see the videο if the trend cοntinues
Learn more about statistics on:
https://brainly.com/question/15525560
#SPJ1
given natural numbers a and b not both equal to 0, we know that there exist integers k and l with ak bl
The equation can be rearranged to the form y = -qx + r. This is the equation of a straight line, which can be graphed. The point of intersection of the two lines, ak + bl = 0 and y = -qx + r, is the solution for the two variables (k and l).
The equation ak + bl = 0 is a linear equation in two variables and is solved using the method of elimination. The equation can be written in the form ax + by = c, where a, b, c are constants. To solve this equation, both sides of the equation should be divided by the coefficient of one of the variables (a or b). This will result in a equation of the form x + qy = r, where q and r are constants. Then, the equation can be rearranged to the form y = -qx + r. This is the equation of a straight line, which can be graphed. The point of intersection of the two lines, ak + bl = 0 and y = -qx + r, is the solution for the two variables (k and l). The two variables can then be calculated using the point of intersection by substituting the x and y values into the two equations. In this way, the two variables k and l can be found such that ak + bl = 0.
Learn more about variables here:
https://brainly.com/question/2466865
#SPJ4
What are the integers k and l such that ak + bl = 0?
What quadratic function is represented by the graph?
A. f(x) = −2x²+x+6
B. f(x) = 2x²x+6
C. f(x) = 2x²+x+6
D. f(x) = − 2x² - x - 6
Answer:
Answer: C. f(x) = 2x²+x+6
Let f be the function given by f(x) = e-2x2.
a) Find the first four nonzero terms and the general termof the power series for f(x) about x = 0.
b) Find the interval of convergence of the power series forf(x) about x = 0. Show the analysis that leads to yourconclusion.
c) Let g be the function given by the sum of the first fournonzero terms of the power series for f(x) about x = 0. Show thatabsolute value(f(x) - g(x)) < 0.02 for -0.6<= x <=0.6.
a) The first four nonzero terms of the power series for f(x) about x=0 are
e^6 - 2x^2 + (2x^4)/2! - (2x^6)/3!
The general term of the power series is (-2)^n (2x)^(2n) / (2n)!
b) The interval of convergence of the power series is (-∞, ∞).
c) To estimate the error between f(x) and its partial sum g(x) given by the sum of the first four nonzero terms of the power series, we can use the Lagrange form of the remainder
|R4(x)| = |f(x) - g(x)| ≤ M |x|^5 / 5!
a) To find the power series for f(x) about x = 0, we can use the Maclaurin series formula
f(x) = Σ[n=0 to ∞] (fⁿ(0)/n!) xⁿ
where fⁿ(0) denotes the nth derivative of f evaluated at x=0.
In this case, we have
f(x) = e^6(-2x^2)
fⁿ(x) = dⁿ/dxⁿ(e^6(-2x^2)) = (-2)^n(2x)^ne^6(-2x^2)
So, we can write the power series as
f(x) = Σ[n=0 to ∞] ((-2)^n(2x)^n e^6(0))/n!)
= Σ[n=0 to ∞] ((-2)^n (2x)^n /n!)
To find the first four nonzero terms, we substitute n = 0, 1, 2, and 3 into the above formula
f(0) = e^6
f'(0) = 0
f''(0) = 24
f'''(0) = 0
So, the first four nonzero terms of the power series are:
e^6 - 2x^2 + (2x^4)/2! - (2x^6)/3!
The general term of the power series is
(-2)^n (2x)^(2n) / (2n)!
b) To find the interval of convergence of the power series, we can use the ratio test
lim [n→∞] |((-2)^(n+1) (2x)^(2n+2) / (2n+2)! ) / ((-2)^n (2x)^(2n) / (2n)!)|
= lim [n→∞] |-4x^2/(2n+1)(2n+2)|
= lim [n→∞] 4x^2/(2n+1)(2n+2)
Since this limit depends on the value of x, we need to consider two cases
i) If x = 0, then the power series reduces to the constant term e^6, and the interval of convergence is just x=0.
ii) If x ≠ 0, then the series converges absolutely if and only if the limit is less than 1 in absolute value
|4x^2/(2n+1)(2n+2)| < 1
This is true for all values of x as long as n is sufficiently large. So, the interval of convergence is the entire real line (-∞, ∞).
c) We can use the Lagrange form of the remainder to estimate the error between f(x) and its partial sum g(x) given by the sum of the first four nonzero terms of the power series
|R4(x)| = |f(x) - g(x)| ≤ M |x|^5 / 5!
where M is an upper bound for the fifth derivative of f(x) on the interval [-0.6, 0.6].
Learn more about power series here
brainly.com/question/28158010
#SPJ4
Samir's statement shows a previous balance of $5,336.22, a payment of $607, and a
new transaction totaling $186. What is his new balance if his APR is 29.0%? Round
answer to hundredths place if answer does not have a hundredths place this use
zeros so it does. Do not include the units. Be sure to attach work for credit
Your Answer:
Samir's new balance is $5,044.17.
To calculate Samir's new balance, add the previous balance, subtract the payment, add the new transaction, and multiply by the interest rate for one period. The following formula can be used to calculate the interest for a single period:
balance * APR / 12 = interest
where APR stands for annual percentage rate and 12 represents the number of months in a year.
When we apply this formula to Samir's balance and APR, we get:
5336.22 * 0.29 / 12 = 128.95 in interest
As a result, the total new balance is:
5336.22 - 607 + 186 + 128.95 = 5044.17
We get the following when we round to the nearest hundredth:
$5,044.17
As a result, Samir now has a balance of $5,044.17.
To know more similar question visit:
https://brainly.com/question/30938788
#SPJ1
Assume that the readings at freezing on a batch of thermometers are normally distributed with a mean of 0°C and a standard deviation of 1.00°C. A single thermometer is randomly selected and tested. Find the probability of obtaining a reading between 0.59°C and 0.88°C.
The probability of obtaining a reading between 0.59°C and 0.88°C is 0.7224 and 0.8106.
What is mean?The sum of all possible values, weighted by the chance of each value, is equal to the mean of a discrete probability distribution of the random variable X. Each possible number of X must be multiplied by its probability P(x) before being added as a whole to determine the mean. In statistics, the mean is one measure of central trend in addition to the mode and median. The mean is simply the average of the numbers in the specified collection. It suggests that values in a specific data gathering are evenly distributed. In order to find the mean, the total values given in a datasheet must be added, and the result must be divided by the total number of values.
In this question, using the formula,
z-score = (x – μ) / σ
where:
x: individual data value
μ: population mean
σ: population standard deviation
for x=0.59
μ= 0
σ= 1
z-score= 0.59
Probability=0.7224
for x=0.88
z-score= 0.88
Probability=0.8106
To know more about mean, visit
https://brainly.com/question/30112112
#SPJ1
which statemnt is ture when the dimensions of a two-dimensional figures are dilated by a scale factor of 2
When a shape is dilated, the size of the shape changes. The true statement is (d) The scale factor is 2.5.
Dilation:
Dilation is the process of changing the size of an object or shape by reducing or increasing its size by a specific scale factor. For example, a circle with a radius of 10 units shrinks to a circle with a radius of 5 units. Applications of this method are in photography, arts and crafts, sign making and more.
According to the Question:
How to determine the scale factor
In figure A, we have:
Length = 0.6
In figure B, we have:
Length =1.5
The scale factor is then calculated as:
K = 1.5/0.6
Dividing the equation:
k = 2.5
Hence, the true statement is (d) The scale factor is 2.5.
Complete Question:
The first figure is dilated to form the second figure. Which statement is true?
The scale factor is 0.4.
The scale factor is 0.9.
The scale factor is 2.1.
The scale factor is 2.5.
Learn more about Shape:
https://brainly.com/question/28756579
#SPJ4
The following joint probability density function for the random variables Y1 and Y2, which represent the proportions of two components in a somaple from a mixture of insecticide.
f(y1,y2) = { 2, 0 <= y1 <= 1, 0 <= y2 <= 1, 0 <= y1+y2 <=1
{ 0, elsewhere
For the chemicals under considerationm an important quantity is the total proportion Y1 +Y2 found in any sample. Find E(Y1+Y2) and V(Y1+Y2).
The joint probability density function for the random variables Y1 and Y2 E(Y1+Y2) and V(Y1+Y2) is 41/144.
To find E(Y1+Y2), we need to integrate the sum of Y1 and Y2 over their joint probability density function:
E(Y1+Y2) = ∫∫ (y1 + y2) f(y1,y2) dy1 dy2
= ∫∫ (y1 + y2) (2) dy1 dy2, where the limits of integration are 0 to 1 for both y1 and y2 and y1+y2 <=1
= ∫[tex]0^1[/tex] ∫[tex]0^{(1-y1)}[/tex](y1 + y2) (2) dy2 dy1
= ∫[tex]0^1[/tex] (2y1 + 1) (1-y1)² dy1
= 5/12
To find V(Y1+Y2), we can use the formula V(Y1+Y2) = E[(Y1+Y2)²] - [E(Y1+Y2)]².
First, we need to find E[(Y1+Y2)^2]:
E[(Y1+Y2)²] = ∫∫ (y1+y2)² f(y1,y2) dy1 dy2
= ∫∫ (y1² + y2² + 2y1y2) (2) dy1 dy2, where the limits of integration are 0 to 1 for both y1 and y2 and y1+y2 = 1
= ∫[tex]0^1[/tex] ∫[tex]0^{(1-y1)}[/tex] (y1² + y2² + 2y1y2) (2) dy2 dy1
= ∫[tex]0^1[/tex] (1/3)y1³ + (1/2)y1² + (1/2)y1
(1/3)y1 + (1/4) dy1
= 7/12
Next, we need to find [E(Y1+Y2)]²:
[E(Y1+Y2)]² = (5/12)² = 25/144
Therefore, V(Y1+Y2) = E[(Y1+Y2)²] - [E(Y1+Y2)]² = (7/12) - (25/144) = 41/144.
Learn more about probability density function at
https://brainly.com/question/31039386
#SPJ4
Pls help There is a 20% chance that a customer walking into a store will make a purchase. A computer was used to generate 5 sets of random numbers from 0 to 9, where the numbers 0 and 1 represent a customer who walks in and makes a purchase.
A two column table with title Customer Purchases is shown. The first column is labeled Trial and the second column is labeled Numbers Generated.
What is the experimental probability that at least one of the first three customers that walks into the store will make a purchase?
A) 60%
B) 13%
C) 40%
D) 22%
The experimental probability that at least one of the first three customers that walks into the store will make a purchase is 60%.
What is experimental probability?It is determined by counting the number of times an event occurs in a given experiment and dividing the total number of trials by the number of successful outcomes.
The experimental probability that at least one of the first three customers that walks into the store will make a purchase is calculated by dividing the total number of customers who make a purchase by the total number of customers who enter the store.
In this case, there are 3 trials and 2 customers who make a purchase.
The experimental probability is 3 by 5 which is the total number of trials.
Thus, the experimental probability
=3/5
= 60%.
For more questions related to event
https://brainly.com/question/14350753
#SPJ1
Give the interval(s) on which the function is continuous.
g(t) = 1/√16-t^2
The function g(t) is defined as:
g(t) = 1/√(16-t^2)
The function is continuous for all values of t that satisfy the following conditions:
The denominator is non-zero:
The denominator of the function is √(16-t^2). Therefore, the function is undefined when 16-t^2 < 0, or when t is outside the interval [-4,4].
There are no vertical asymptotes:
The function does not have any vertical asymptotes, because the denominator is always positive.
Thus, the function g(t) is continuous on the interval [-4,4].
Will tracks the high and low tempters in his town for five days during a cold spell in January his results are shown in the table below
Days when change in temperature more than 10° F are Option B)Tuesday and E) Friday.
Define change in temperaturecalculating the difference by deducting the end temperature from the initial temperature. The temperature difference is therefore 75 degrees Celsius - 50 degrees Celsius = 25 if something begins at 50 degrees Celsius and ends at 75 degrees Celsius.
Change in temperature on Monday from High to low
=15-10=5°F
Change in temperature on Tuesday from High to low
=8-(-4)=12°F
Change in temperature on Wednesday from High to low
=-2-(-5)=3°F
Change in temperature on Thursday from High to low
=-3-(-7)=4°F
Change in temperature on Friday from High to low
=-1-(-12)=11° F
Days when change in temperature more than 10° F are Tuesday and Friday.
To know more about Celsius, visit:
https://brainly.com/question/1373930
#SPJ1
The Complete question is attached below:
Mrs. Cabana has 8 pets total. Three of the pets are chameleons and the rest are fish. Select all the answers that are a ratio relationship for Mrs. Cabana's pets.
Question 1 options:
Multi choice
3/5
3 to 11
3:8
5 to 8
8:1
Answer: numbers 1,3 and 4
Step-by-step explanation:
Tell me which brand or which size is a better buy.
Answer:
The answer is brand B
Step-by-step explanation:
You divide $14.88 by 24 which equals 68 cents per item.
Then brand B is 60 cents per item which is the better buy!
Kingsley knows that 1inch is about 2.45 centimeters. He wants to write an equation he can use to convert any given length in inches (i) to centimeters (c)
How should Kingsley write his equation?
A.) c/i = 2.54
B.) c = 2.54i
C.) i = c/2.54
Since Kingsley wanted an equation to convert from inches to centimeters, the correct answer is B) c = 2.54i.
What is equation ?
An equation is a statement that asserts the equality of two expressions, usually separated by an equals sign (=). The expressions on either side of the equals sign may contain one or more variables, which are unknown values that can be determined by solving the equation.
Kingsley wants to convert a given length in inches to centimeters. He knows that 1 inch is about 2.45 centimeters.
Let's call the length in inches "i" and the length in centimeters "c".
We want to find an equation that relates i and c. We know that 1 inch is about 2.45 centimeters, so we can write:
1 inch = 2.45 centimeters
To convert from inches to centimeters, we can multiply the length in inches by 2.45. So:
c = 2.45i
This is the equation Kingsley can use to convert any given length in inches to centimeters.
Alternatively, we can rearrange this equation to solve for i:
c = 2.45i
Divide both sides by 2.45:
c/2.45 = i
So the equation for converting from centimeters to inches is:
i = c/2.45
Therefore, since Kingsley wanted an equation to convert from inches to centimeters, the correct answer is B) c = 2.54i.
To learn more about Equation from given link.
https://brainly.com/question/19770987
#SPJ1
4^(-x)=1/256
I believe it is x=4, but I need how to work it out pls thxxx
Answer:
x = 4
Step-by-step explanation:
using the rule of exponents
• [tex]a^{-m}[/tex] = [tex]\frac{1}{a^{m} }[/tex] , then
[tex]4^{-x}[/tex] = [tex]\frac{1}{4^{x} }[/tex]
and 256 = [tex]4^{4}[/tex]
then
[tex]\frac{1}{4^{x} }[/tex] = [tex]\frac{1}{4^{4} }[/tex]
so
[tex]4^{x}[/tex] = [tex]4^{4}[/tex]
since bases on both sides are equal, bot 4 then equate exponents
x = 4