Consider the differential equation:


2y'' + ty' − 2y = 14, y(0) = y'(0) = 0.


In some instances, the Laplace transform can be used to solve linear differential equations with variable monomial coefficients.


If F(s) = ℒ{f(t)} and n = 1, 2, 3, . . . ,then

ℒ{tnf(t)} = (-1)^n d^n/ds^n F(s)


to reduce the given differential equation to a linear first-order DE in the transformed function Y(s) = ℒ{y(t)}.


Requried:

a. Sovle the first order DE for Y(s).

b. Find find y(t)= ℒ^-1 {Y(s)}

Answers

Answer 1

(a) Take the Laplace transform of both sides:

[tex]2y''(t)+ty'(t)-2y(t)=14[/tex]

[tex]\implies 2(s^2Y(s)-sy(0)-y'(0))-(Y(s)+sY'(s))-2Y(s)=\dfrac{14}s[/tex]

where the transform of [tex]ty'(t)[/tex] comes from

[tex]L[ty'(t)]=-(L[y'(t)])'=-(sY(s)-y(0))'=-Y(s)-sY'(s)[/tex]

This yields the linear ODE,

[tex]-sY'(s)+(2s^2-3)Y(s)=\dfrac{14}s[/tex]

Divides both sides by [tex]-s[/tex]:

[tex]Y'(s)+\dfrac{3-2s^2}sY(s)=-\dfrac{14}{s^2}[/tex]

Find the integrating factor:

[tex]\displaystyle\int\frac{3-2s^2}s\,\mathrm ds=3\ln|s|-s^2+C[/tex]

Multiply both sides of the ODE by [tex]e^{3\ln|s|-s^2}=s^3e^{-s^2}[/tex]:

[tex]s^3e^{-s^2}Y'(s)+(3s^2-2s^4)e^{-s^2}Y(s)=-14se^{-s^2}[/tex]

The left side condenses into the derivative of a product:

[tex]\left(s^3e^{-s^2}Y(s)\right)'=-14se^{-s^2}[/tex]

Integrate both sides and solve for [tex]Y(s)[/tex]:

[tex]s^3e^{-s^2}Y(s)=7e^{-s^2}+C[/tex]

[tex]Y(s)=\dfrac{7+Ce^{s^2}}{s^3}[/tex]

(b) Taking the inverse transform of both sides gives

[tex]y(t)=\dfrac{7t^2}2+C\,L^{-1}\left[\dfrac{e^{s^2}}{s^3}\right][/tex]

I don't know whether the remaining inverse transform can be resolved, but using the principle of superposition, we know that [tex]\frac{7t^2}2[/tex] is one solution to the original ODE.

[tex]y(t)=\dfrac{7t^2}2\implies y'(t)=7t\implies y''(t)=7[/tex]

Substitute these into the ODE to see everything checks out:

[tex]2\cdot7+t\cdot7t-2\cdot\dfrac{7t^2}2=14[/tex]


Related Questions

If f(x)=ax+b/x and f(1)=1 and f(2)=5, what is the value of A and B?

Answers

Answer:

[tex]\huge\boxed{a=9 ; b = -8}[/tex]

Step-by-step explanation:

[tex]f(x) = \frac{ax+b}{x}[/tex]

Putting x = 1

=> [tex]f(1) = \frac{a(1)+b}{1}[/tex]

Given that f(1) = 1

=> [tex]1 = a + b[/tex]

=> [tex]a+b = 1[/tex]  -------------------(1)

Now,

Putting x = 2

=> [tex]f(2) = \frac{a(2)+b}{2}[/tex]

Given that f(2) = 5

=> [tex]5 = \frac{2a+b}{2}[/tex]

=> [tex]2a+b = 5*2[/tex]

=> [tex]2a+b = 10[/tex]  ----------------(2)

Subtracting (2) from (1)

[tex]a+b-(2a+b) = 1-10\\a+b-2a-b = -9\\a-2a = -9\\-a = -9\\a = 9[/tex]

For b , Put a = 9 in equation (1)

[tex]9+b = 1\\Subtracting \ both \ sides \ by \ 9\\b = 1-9\\b = -8[/tex]

A particle moves according to a law of motion s = f(t), t ≥ 0, where t is measured in seconds and s in feet. (If an answer does not exist, enter DNE.) f(t) = t3 − 8t2 + 27t

Answers

The question is not clear, but it is possible to obtain distance, s, from the given function. This, I would show.

Answer:

s = 17 units

Step-by-step explanation:

Given f(t) = t³ - 8t² + 27t

Differentiating f(t), we have

f'(t) = 3t² - 16 t + 27

At t = 0

f'(t) = 27

This is the required obtainaible distance, s.

Consider the following ordered data. 6 9 9 10 11 11 12 13 14 (a) Find the low, Q1, median, Q3, and high. low Q1 median Q3 high (b) Find the interquartile range.

Answers

Answer:

Low             Q1                Median              Q3                 High

6                  9                     11                      12.5                14

The interquartile range = 3.5

Step-by-step explanation:

Given that:

Consider the following ordered data. 6 9 9 10 11 11 12 13 14

From the above dataset, the highest value = 14  and the lowest value = 6

The median is the middle number = 11

For Q1, i.e the median  of the lower half

we have the ordered data = 6, 9, 9, 10

here , we have to values as the middle number , n order to determine the median, the mean will be the mean average of the two middle numbers.

i.e

median = [tex]\dfrac{9+9}{2}[/tex]

median = [tex]\dfrac{18}{2}[/tex]

median = 9

Q3, i.e median of the upper half

we have the ordered data = 11 12 13 14

The same use case is applicable here.

Median = [tex]\dfrac{12+13}{2}[/tex]

Median = [tex]\dfrac{25}{2}[/tex]

Median = 12.5

Low             Q1                Median              Q3                 High

6                  9                     11                      12.5                14

The interquartile range = Q3 - Q1

The interquartile range =  12.5 - 9

The interquartile range = 3.5

A signal light is green for 4 minutes, yellow for 10 seconds, and red for 3 minutes. If you drive up to this light, what is the probability that it will be green when you reach the intersection? Round your answer to two decimal places.

Answers

Answer:

0.56 is the required probability.

Step-by-step explanation:

Time for which signal shows green light = 4 minutes

Time for which signal shows yellow light = 10 seconds

Time for which signal shows red light = 3 minutes

To find:

Probability that the signal will show green light when you reach the destination = ?

Solution:

First of all, let us convert each time to same unit before doing any calculations.

Time for which signal shows green light = 4 minutes = 4 [tex]\times[/tex] 60 seconds = 240 seconds

Time for which signal shows yellow light = 10 seconds

Time for which signal shows red light = 3 minutes = 3 [tex]\times[/tex] 60 seconds = 180 seconds

Now, let us have a look at the formula for probability of an event E:

[tex]P(E) = \dfrac{\text{Number of favorable cases}}{\text {Total number of cases}}[/tex]

Here, E is the event that green light is shown by the signal.

Number of favorable cases mean the time for which green light is shown and Total number of cases is the total time (Time for which green light is shown + Time for which Yellow light is shown + Time for which red light is shown)

So, the required probability is:

[tex]P(E) = \dfrac{240}{240+10+180}\\\Rightarrow P(E) = \dfrac{240}{430}\\\Rightarrow \bold{P(E) \approx 0.56 }[/tex]

(a^8)3/2 in simplest form ​

Answers

Answer:

[tex]\large\boxed{\frac{3}{2}a^{8}}[/tex]

Step-by-step explanation:

([tex]a^{8}[/tex]) * [tex]\frac{3}{2}[/tex]

Remove the parenthesis by multiplying

[tex]\frac{3}{2}[/tex][tex]a^{8}[/tex]

This expression cannot be simplified further

[tex]\large\boxed{\frac{3}{2}a^{8}}[/tex]

Hope this helps :)


What is the volume of a cube with a side length of
of a unit?

Answers

It’s d times it three times length width height

3.24 (4 being repeated) to a fraction

Answers

Answer:

  146/45

Step-by-step explanation:

Let x represent the value of the number of interest. Then we can do the following math to find its representation as a fraction.

  [tex]x=3.2\overline{4}\\10x=32.4\overline{4}\\10x-x=9x=32.4\overline{4}-3.2\overline{4}=29.2\\\\x=\dfrac{29.2}{9}=\boxed{\dfrac{146}{45}}[/tex]

__

Comment on procedure

The power of 10 that we multiply by (10x) is the number of repeated digits. Here, there is a 1-digit repeat, so we multiply by 10^1. If there were a 2-digit repeat, we would compute 10^2x -x = 99x to rationalize the number.

What is the slope of a line perpendicular to y=-7/4x
O A.
IN
O B.
7
O c.
4
-
O D.
7
4​

Answers

Answer:

y=4/7x

Step-by-step explanation:

perpendicular lines have opposite slopes. that means reciprocal and opposite sign.

Find the sum of (5x3 + 3x2 - 5x + 4) and (8x3 -5x2 + 8x + 9)

Answers

Answer:

(5x³+3x²-5x+4) + (8x³-5x²+8x+9)

= 5x³+3x²-5x+4 +8x³-5x²+8x+9

= 5x³+8x³+3x²-5x²-5x+8x+4+9

= 13x³-2x²+3x+13

Hope this helps

if u have question let me know in comments ^_^

what is the distance between the first and third quartiles of a data set called?

Answers

Answer:

Interquartile range is the distance between the first and third of a data.

Step-by-step explanation:

Hope it will help you :)

A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with mean 100 lb and 5 lb and standard deviation 1 lb and 0.5 lb, respectively. What percent of filled boxes weighing between 104 lb and 106 lb are to be expected?
a. 67%
b. None
c. 37%
d. 57%

Answers

Answer:

Option b. None is the correct option.

The Answer is 63%

Step-by-step explanation:

To solve for this question, we would be using the z score formula

The formula for calculating a z-score is given as:

z = (x-μ)/σ,

where

x is the raw score

μ is the population mean

σ is the population standard deviation.

We have boxes X and Y. So we will be combining both boxes

Mean of X = 100 lb

Mean of Y = 5 lb

Total mean = 100 + 5 = 105lb

Standard deviation for X = 1 lb

Standard deviation for Y = 0.5 lb

Remember Variance = Standard deviation ²

Variance for X = 1lb² = 1

Variance for Y = 0.5² = 0.25

Total variance = 1 + 0.25 = 1.25

Total standard deviation = √Total variance

= √1.25

Solving our question, we were asked to find the percent of filled boxes weighing between 104 lb and 106 lb are to be expected. Hence,

For 104lb

z = (x-μ)/σ,

z = 104 - 105 / √25

z = -0.89443

Using z score table ,

P( x = z)

P ( x = 104) = P( z = -0.89443) = 0.18555

For 1061b

z = (x-μ)/σ,

z = 106 - 105 / √25

z = 0.89443

Using z score table ,

P( x = z)

P ( x = 106) = P( z = 0.89443) = 0.81445

P(104 ≤ Z ≤ 106) = 0.81445 - 0.18555

= 0.6289

Converting to percentage, we have :

0.6289 × 100 = 62.89%

Approximately = 63 %

Therefore, the percent of filled boxes weighing between 104 lb and 106 lb that are to be expected is 63%

Since there is no 63% in the option, the correct answer is Option b. None.

The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be 63%.

What is a normal distribution?

It is also called the Gaussian Distribution. It is the most important continuous probability distribution. The curve looks like a bell, so it is also called a bell curve.

The z-score is a numerical measurement used in statistics of the value's relationship to the mean of a group of values, measured in terms of standards from the mean.

A machine fills boxes weighing Y lb with X lb of salt, where X and Y are normal with a mean of 100 lb and 5 lb and standard deviation of 1 lb and 0.5 lb, respectively.

The percent of filled boxes weighing between 104 lb and 106 lb is to be expected will be

Then the Variance will be

[tex]Var = \sigma ^2[/tex]

Then for X, we have

[tex]Var (X) = 1^2 = 1[/tex]

Then for Y, we have

[tex]Var (Y) = 0.5^2 = 0.25[/tex]

Then the total variance will be

[tex]Total \ Var (X+Y) = 1 + 0.25 = 1.25[/tex]

The total standard deviation will be

[tex]\sigma _T = \sqrt{Var(X+Y)}\\\\\sigma _T = \sqrt{1.25}[/tex]

For 104 lb, then

[tex]z = \dfrac{104-105}{\sqrt{25}} = -0.89443\\\\P(x = 104) = 0.18555[/tex]

For 106 lb, then

[tex]z = \dfrac{106-105}{\sqrt{25}} = 0.89443\\\\P(x = 106) = 0.81445[/tex]

Then

[tex]P(104 \leq Z \leq 106) = 0.81445 - 0.18555 = 0.6289 \ or \ 62.89\%[/tex]

Approximately, 63%.

More about the normal distribution link is given below.

https://brainly.com/question/12421652

The table shows the height, in meters, of an object that is dropped as time passes until the object hits the ground. A 2-row table with 10 columns. The first row is labeled time (seconds), x with entries 0, 0.5, 1.0, 1.5, 2.0, 2.5, 3.0, 3.5, 4.0, 4.6. The second row is labeled height (meters), h with entries 100, 98.8, 95.1, 89.0, 80.4, 69.4, 55.9, 40.0, 21.6, 0. A line of best fit for the data is represented by h = –21.962x + 114.655. Which statement compares the line of best fit with the actual data given by the table? According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground. According to the line of best fit, the object was dropped from a lower height. The line of best fit correctly predicts that the object reaches a height of 40 meters after 3.5 seconds. The line of best fit predicts a height of 4 meters greater than the actual height for any time given in the table.

Answers

Answer: A. According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground.

The statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

What is the line of best fit?

A mathematical notion called the line of the best fit connects points spread throughout a graph. It's a type of linear regression that uses scatter data to figure out the best way to define the dots' relationship.

We have a line of best fit:

h = –21.962x + 114.655

As per the data given and line of best fit, we can say the object would have impacted the ground 0.6 seconds later than it did according to the line of best fit.

Thus, the statement first "According to the line of best fit, the object would have hit the ground 0.6 seconds later than the actual time the object hit the ground" is correct.

Learn more about the line of best fit here:

brainly.com/question/14279419

#SPJ2

Find the number of pieces of floor tiles each measuring 26cm long and 10cm wide needed to lay a floor measuring 260m long and 15m wide

Answers

Answer:

150,000

Step-by-step explanation:

1 m = 100 cm

260 m = 260 * 100 cm = 26000 cm

15 m = 15 * 100 cm = 1500 cm

area of floor = LW = 26000 cm * 1500 cm = 39,000,000 cm^2

area of 1 tile = 26 cm + 10 cm = 260 cm^2

number of tiles needed = 39,000,000/260 = 150,000

Answer: 150,000 tiles

Correct answer is 150000 tiles. Hope this helps ya

Give the domain and range of each relation using set notation​

Answers

Answer:

See below.

Step-by-step explanation:

First, recall the meanings of the domain and range.

The domain is the span of x-values covered by the graph.

And the range is the span of y-values covered by the graph.

1)

So, we have here an absolute value function.

As we can see, the domain of the function is all real numbers because the graph stretches left and right infinitely. Therefore, the domain of the function is:

[tex]\{x|x\in\textbb{R}\}[/tex]

(You are correct!)

For the range, notice how the function stops at y=7. The highest point of the function is (-2,7). There graph doesn't and won't ever reach above y=7. Therefore, the range of the graph is all values less than or equal to 7. In set notation, this is:

[tex]\{y|y\leq 7\}[/tex]

2)

We have here an ellipse.

First, for the domain. We can see the the span of x-values covered by the ellipse is from x=-4 to x=6. In other words, the domain is all values in between these two numbers and including them. Therefore, we can write it as such:

[tex]-4\leq x\leq 6[/tex]

So x is all numbers greater than or equal to -4 but less than or equal to 6. This describes the span of x-values. In set notation, this is:

[tex]\{x|-4\leq x\leq 6\}[/tex]

For the range, we can see that the span of x values covered by the ellipse is from y=-5 to y=1. Just like the domain, we can write it like this:

[tex]-5\leq y\leq 1[/tex]

This represents all the y-values between -5 and 1, including -5 and 1.

In set notation, thi is:

[tex]\{y|-5\leq y\leq 1\}[/tex]

if f(x)=3x-3 and g(x)=-x2+4,then f(2)-g(-2)=

Answers

Answer:

3

Step-by-step explanation:

f(x)=3x-3

g(x)=-x^2+4,

f(2) = 3(2) -3 = 6-3 =3

g(-2) = -(-2)^2+4 = -4+4 = 0

f(2)-g(-2)= = 3-0 = 3

Please answer this correctly without making mistakes

Answers

Answer:

so to get a third you divide it by 3

first convert it to fraction

so it is 26/3

so do 26/3 divided by 3

so we do keep switch flip

26/3*1/3

so answer is 26/9 or 2 8/9

Step-by-step explanation:

Answer:

[tex]\large \boxed{\mathrm{2 \ 8/9 \ tablespoons \ of \ red \ chilies }}[/tex]

Step-by-step explanation:

8 2/3 tablespoons of red chilies is required for a recipe.

One-third of the original recipe would mean that the quantity of red chilies will be also one-third.

8 2/3 × 1/3

Convert to an improper fraction.

26/3 × 1/3

Multiply the fractions.

26/(3 × 3) = 26/9

Convert to a mixed fraction.

26/9 = 2 8/9

14. Twice the sum of a number and eight

Answers

Answer: 2(x + 8) is the expression.

Use distributive property to simplify,

2x+16

I didn't know which answer you wanted so....

Answer:

2(x + 8)

Step-by-step explanation:

Hello!

Twice the sum means we multiply by 2

2

the sum of a number and eight is x + 8

2 * x + 8

Since we have to twice the sum we put x + 8 in parenthesis to show to do that first

2(x + 8)

Hope this Helps!

A survey showed that among 785 randomly selected subjects who completed four years of college, 144 of them are smokers and 84 do not smoke (based on data from the American Medical Association). Suppose you want to test at the 0.01 significance level the claim that the rate of smoking among those with four years of college is less than the 27% rate for the general population.
A. State the null and alternative hypotheses.
B. Find the sample statistic and the p-value.
C. What is your conclusion?

Answers

Answer:

We conclude that the rate of smoking among those with four years of college is less than the 27% rate for the general population.

Step-by-step explanation:

We are given that a survey showed that among 785 randomly selected subjects who completed four years of college, 144 of them are smokers.

Let p = population proportion of smokers among those with four years of college

So, Null Hypothesis, [tex]H_0[/tex] : p [tex]\geq[/tex] 27%      {means that the rate of smoking among those with four years of college is more than or equal to the 27% rate for the general population}

Alternate Hypothesis, [tex]H_A[/tex] : p < 27%      {means that the rate of smoking among those with four years of college is less than the 27% rate for the general population}

The test statistics that will be used here is One-sample z-test for proportions;

                             T.S.  =  [tex]\frac{\hat p-p}{\sqrt{\frac{p(1-p)}{n} } }[/tex]  ~   N(0,1)

where, [tex]\hat p[/tex] = sample proportion of smokers = [tex]\frac{144}{785}[/tex] = 0.18

           n = sample of subjects = 785

So, the test statistics =  [tex]\frac{0.18-0.27}{\sqrt{\frac{0.27(1-0.27)}{785} } }[/tex]

                                     =  -5.68

The value of z-test statistics is -5.68.

Also, the P-value of the test statistics is given by;

             P-value = P(Z < -5.68) = Less than 0.0001

Now, at a 0.01 level of significance, the z table gives a critical value of -2.3262 for the left-tailed test.

Since the value of our test statistics is less than the critical value of z, so we have sufficient evidence to reject our null hypothesis as it will fall in the rejection region.

Therefore, we conclude that the rate of smoking among those with four years of college is less than the 27% rate for the general population.

An experimental probability is ______ likely to approach the theoretical probability if the number of trials simulated is larger. A. as B. more C. less D. not

Answers

Answer:

B. More

Step-by-step explanation:

This is according to the law of large numbers

An experimental probability is more likely to approach the theoretical probability if the number of trials simulated is larger.

What is an experimental probability and theoretical probability?

Experimental probability is an experimental outcome whereas theoretical probability is a possible or expected outcome.

An experimental probability is more likely to approach the theoretical probability if the number of trials increased because of the law of large numbers which states that the average of the results obtained from a large number of trials should be close to the expected value and tends to become closer to the expected value as more trials are performed

Thus using the concept of the law of large numbers we can say that an experimental probability is more likely to approach the theoretical probability.

Learn more about probability here:

https://brainly.com/question/9627169

#SPJ5

Transform the polar equation to a Cartesian (rectangular) equation: r= 4sinθ

options include:

x^2+y^2 = 4y

x^2+y^2 = -4

x^2+y^2 = 4

x^2+y^2 = -4y

Answers

Answer:

  x^2 +y^2 = 4y

Step-by-step explanation:

Using the usual translation relations, we have ...

  r^2 = x^2+y^2

  x = r·cos(θ)

  y = r·sin(θ)

Substituting for sin(θ) the equation becomes ...

  r = 4sin(θ)

  r = 4(y/r)

  r^2 = 4y

Then, substituting for r^2 we get ...

  x^2 +y^2 = 4y . . . . . matches the first choice

Which expression is equivalent to (jk)l? A. (j + k) + l B. j(kl) C. (2jk)l D. (j + k)l

Answers

Answer:

B. j(kl)

Step-by-step explanation:

(jk)l

We can change the order we multiply and still get the same result

j(kl)

Answer:

Step-by-step explanation:

its B i did it

Jilk Inc.'s contribution margin ratio is 62% and its fixed monthly expenses are $45,000. Assuming that the fixed monthly expenses do not change, what is the best estimate of the company's net operating income in a month when sales are $132,000?

Answers

Answer: $ 36,840.

Step-by-step explanation:

contribution margin=62% =0.62

fixed monthly expenses = $45,000

Sales =  $132,000

We assume that the fixed monthly expenses do not change.

Then, company's net operating income = (contribution margin×Sales )-fixed monthly expenses

=$( (0.62×132000)-45000 )

= $ (81840-45000)

= $ 36,840

Hence, the best estimate of the company's net operating income in a month when sales are $132,000 is $ 36,840.

How should a musician effectively convey emotions or ideas in a performance?

Answers

Answer:

Within the factors hindering expression in music, tempo is the most important number of factors such as your mood.

Step-by-step explanation:

If one wants to convey a message, they should try these:

a) Use real life

b) introduce symbolism

c) convey sensory disruption, e.t.c.

Hope these helps.

write a thirdthird-degree polynomial expression that has only two terms with a leading term that has a coefficient of five and a constant of negative two ​

Answers

Answer:

5x^3-2

[tex]ax^{3} +bx^{2} +cx+d\\5x^{3}-given\\ d=-2-given\\5x^{3} -2[/tex]

Answer: [tex]5x^3 - 2[/tex]

Explanation:

The two terms are [tex]5x^3[/tex] and [tex]2[/tex]. Terms are separated by either a plus or minus.

We can write it as [tex]5x^3+(-2)[/tex] which is an equivalent form. Here the two terms are [tex]5x^3[/tex] and [tex]-2[/tex]. This is because adding a negative is the same as subtracting.

The coefficient is the number to the left of the variable.

The degree is the largest exponent, which helps form the leading term.

The third degree polynomial written above is considered a cubic binomial. "Cubic"  refers to the third degree, while "binomial" means there are 2 terms.

We can write something like [tex]5x^3[/tex] as 5x^3 when it comes to computer settings.

On a coordinate plane, 2 lines are shown. Line A B has points (negative 4, negative 2) and (4, 4). Line C D has points (0, negative 3) and (4, 0). Which statement best explains the relationship between lines AB and CD? They are parallel because their slopes are equal. They are parallel because their slopes are negative reciprocals. They are not parallel because their slopes are not equal. They are not parallel because their slopes are negative reciprocals.

Answers

Answer:

A. they are parallel because their slopes are equal.

Step-by-step explanation:

edge 2020

Answer:

its A in egde

Step-by-step explanation:

The formula for the area of a square is s2, where s is the side length of the square. What is the area of a square with a side length of 6 centimeters? Do not include units in your answer.

Answers

Answer:

36

Step-by-step explanation:

formula of area for square:

A=s^2

s=6

A=6^2

A=36

Answer:

36

Step-by-step explanation:

I got it right

The value (in dollars) of an airplane depends on the flight hours as given by the formula V= 1,800,000 - 250x . After one year, the value of the plane is between $1,200,000 and $1,300,000. Which range for the flight hours does this correspond to?

a. 1800 <= x <= 2100
b. 2200<= x <= 2500
c. 1500<= x <= 1800
d. 2000<= x <= 2400

Answers

Answer:

D

Step-by-step explanation:

To determine the range we must solve this inequality;

● 1200000<1800000-250x<1300000

Substract 1800000 from both sides.

● 1200000-1800000<1800000-250x<1300000-1800000

● -600000< -250x < -500000

Divide both sides by 250

● -600000/250 < -250x/250 < -500000/250

● -2400 < -x < -2000

Multiply both sides by -1 and switch the signs

● 2000 < x < 2400

The correct option is D. 2000<= x <= 2400

Given, the value of an airplane depends on the flight hours,

[tex]V= 1800000-250x[/tex], here x is the flight hours.

We have to calculate the range of x After one year.

Since, [tex]V= 1800000-250x[/tex]

[tex]250x=1800000-V\\\\x=\dfrac{1800000-V}{250}[/tex]

Since the value of the plane is between $1,200,000 and $1,300,000. So,

[tex]x=\dfrac{1800000-1200000}{250}[/tex]

[tex]x=\dfrac{600000}{250}[/tex]

[tex]x=2400\\[/tex]

When V is 1300000 then x will be,

[tex]x=\dfrac{1800000-1300000}{250} \\[/tex]

[tex]x=\dfrac{500000}{250}[/tex]

[tex]x=2000[/tex]

Hence the range of x will be from 2000 to 2400.

The correct option is D. 2000<= x <= 2400.

For more details on range follow the link:

https://brainly.com/question/10185991

Write "six and thirty-four thousandths" as a decimal

Answers

Answer:

6.034

Step-by-step explanation:

6 is a whole number.

.034 because it is 34 thousandths, not 34 hundredths.

What is 5 feet and 11 inches in inches

Answers

Answer:

60

Step-by-step explanation:

5 is 60 inch

The area of the circle x² + y2 - 6x-4y +9 = 0 is​

Answers

Answer:

Your answer is here.Enjoy dude

Answer:

12.56 unit²

Step-by-step explanation:

Given:x² + y² - 6x - 4y + 9 = 0To find:The area of circleSolution:

The form of the circle is:

(x- h)² + (y-k)² = r²

Let's bring the given to the form of a circle as above:

x² + y² - 6x - 4y + 9 = 0x² - 6x  + y²-  4y + 9 = 0        ⇒ combining like terms and completing squarex² - 6x + 9 + y²- 4y + 4 = 4    ⇒ adding 4 to both sides(x-3)² + (y - 2)² = 2²                ⇒ got the form of this circle

As per the form, we got r² = 2², so the radius of circle is 2 units.

The area of circle:

A= πr² = 3.14×2² = 12.56 unit²

Other Questions
The boy washes the dishes. how will this phrase appear in ASL? a. Boy washed dishes. b.Dishes boy washed. c.The boy washed dishes. d.Washed boy dishes. The earth has a vertical electric field at the surface,pointing down, that averages 102 N/C. This field is maintained by various atmosphericprocesses, including lightning. What is the excess charge on the surface of the earth? inC A certain pole has a cylinder-like shape, where the base's radius is 10 centimeters and the height is 2 meters. What calculation will give us the estimated surface area of the pole in square centimeters? What is true about a scale (Music) Answer two questions about Equations A and B: A.5x=20 \ B.x=4 1) How can we get Equation B from Equation A? Choose 1 answer: (Choice A) Multiply/divide both sides by the same non-zero constant (Choice B,) Multiply/divide both sides by the same variable expression (Choice C) Add/subtract the same quantity to/from both sides (Choice D) Add/subtract a quantity to/from only one side Bob cycles 5.4 km every morning.how many feet are in 5.4 km, given that 1 mile=1.609 km and 1 mile=5,280 feet? Which is a category for mental health disorders Why do roosters hibernate? In a widely publicized dispute, William O'Hara refused to sell his land in Willamette County to the local school board. O'Hara believed that the price the school board offered for the land was not sufficient. If the school board wanted to pursue the matter in court, what proceeding would it institute to attempt to force O'Hara to sell the land? g Which ONE of the following pairs of organic compounds are NOT pairs of isomers? A) butanol ( CH3-CH2-CH2-CH2-OH ) and diethyl ether ( CH3CH2OCH2CH3 ) B) isopentane ( (CH3)2-CH-CH2-CH3 ) and neopentane ( (CH3)4C ) C) ethanolamine ( H2N-CH2-CH2-OH ) and acetamide ( CH3-CO-NH2 ) D) acrylic acid ( CH2=CH-COOH ) and propanedial ( OHCCH2CHO ) E) trimethylamine ( (CH3)3N ) and propylamine ( CH3-CH2-CH2-NH2 ) how do each of the following factors affect the productivity in this process of photosynthesis ? 1)Temperature 2) Water 3) carbondioxide In order to study the mean blood pressure of people in his town, Richard samples the population by dividing the residents by age and randomly selecting a proportionate number of residents from each age group. Which type of sampling is used? a. Convenience sampling b. Cluster sampling c. Stratified sampling d. Systematic sampling Jess receives a $15000 salary for working as an engineer. If Jess has to spend $6000 of her salary on expenses each year, then what percent of Jess's money does she have to spend? Round your answer to the nearest whole number if necessary. A terrarium is a small, enclosed ecosystem. If you change certain aspects of the terrarium, the climate that exists inside it will also change. Examine the image of a terrarium. Then identify one attribute of the terrarium that you could change to alter the climate inside. How would this change mimic the climate changes that we see on Earth? How many grams of H2O will be formed when 32.0 g H2 is mixed with 73.0 g of O2 and allowed to react to form water 1) To point the lens of a camera up or down is called:A) ArcB)DollyC)PanD)tilt the unit of energy is a derived unit Which term describes a category of attacks that generally are conducted over short periods of time (lasting at most a few months), involve a smaller number of individuals, have little financial backing, and are accomplished by insiders or outsiders who do not seek collusion with insiders? The temperature in Anchorage, Alaska at 6:00 am was 2C. If the temperature drops 2 degrees each hour, what is the temperature in degrees celsius at 2:00 pm Match each hormone to its function luteinizing hormone testosterone oxytocinfollicle-stimulating hormone estrogen gonadotropin-releasing hormone