Answer:
[tex]\begin{array}{cc}{Class}& {Frequency} & 138 - 202 & 14 & 203 - 267 & 5 & 268 - 332 & 3 & 333 - 397 & 1 & 398 - 462 & 3 \ \end{array}[/tex]
The class with the greatest is 138- 202 and the class with the least relative frequency is 333 - 397
Step-by-step explanation:
Solving (a): The frequency distribution
Given that:
[tex]Lowest = 138[/tex] --- i.e. the lowest class value
[tex]Class = 5[/tex] --- Number of classes
From the given dataset is:
[tex]Highest = 459[/tex]
So, the range is:
[tex]Range = Highest - Lowest[/tex]
[tex]Range = 459 - 138[/tex]
[tex]Range = 321[/tex]
Divide by the number of class (5) to get the class width
[tex]Width = 321 \div 5[/tex]
[tex]Width = 64.2[/tex]
Approximate
[tex]Width = 64[/tex]
So, we have a class width of 64 in each class;
The frequency table is as follows:
[tex]\begin{array}{cc}{Class}& {Frequency} & 138 - 202 & 14 & 203 - 267 & 5 & 268 - 332 & 3 & 333 - 397 & 1 & 398 - 462 & 3 \ \end{array}[/tex]
Solving (b) The relative frequency histogram
First, we calculate the relative frequency by dividing the frequency of each class by the total frequency
So, we have:
[tex]\begin{array}{ccc}{Class}& {Frequency} & {Relative\ Frequency} & 138 - 202 & 14 & 0.53 & 203 - 267 & 5 & 0.19 & 268 - 332 & 3 & 0.12 & 333 - 397 & 1 & 0.04 & 398 - 462 & 3 & 0.12 \ \end{array}[/tex]
See attachment for histogram
The class with the greatest is 138- 202 and the class with the least relative frequency is 333 - 397
1) Write an equation in slope-intercept form of the line with slope of 6 and y-intercept of -3. Then graph the line. 2) Write an equation in point-slope form of the line with slope -3/5 that contains(-10 ,8). Then graph the line.
Answer:
An equation in the slope-intercept form is:
y = a*x + b
Where a is the slope, and b is the y-intercept.
a)
Here we have a slope of 6 and a y-intercept of -3
Then the equation is:
y = 6*x - 3
Now we want to graph this.
To graph it, we first need to find two points (x, y) that belong to this equation, then we can graph the points, and connect them with a line.
To find the points, we evaluate in two different values of x.
x = 0
y = 6*0 - 3 = -3
Then we have the point (0, -3)
x = 1
y = 6*1 - 3 = 3
Then we have the point (1, 3)
The graph of this line can be seen in the image below (the red one)
b) Similar to before, here the slope is -3/5, then the equation is something like:
y = (-3/5)*x + b
Now we also know that the line passes through the point (-10, 8)
This means that when x = -10, we must have y = 8
Replacing these two in the equation we get:
8 = (-3/5)*-10 + b
8 = 6 + b
8 - 6 = 2 = b
Then this equation is:
y = (-3/5)*X + 2
The graph can be found in the same way as before, the graph of this function can also be seen in the image below (the green one)
Find the distance between the points (3,4) and (–8,4)
Answer:
distance = 11
Step-by-step explanation:
distance = [tex]\sqrt{[3-(-8)]^{2} +(4-4)^{2}}[/tex]
= [tex]\sqrt{11^{2} }[/tex]
= 11
Zero is not a real number True or
False
What transformation to the linear parent function, f(x) = x, gives the function
g(x) = x + 7?
A. Shift 7 units left.
B. Shift 7 units right.
C. Vertically stretch by a factor of 7
D. Shift 7 units down
Answer:
I think A
Step-by-step explanation:
Matthew participates in a study that is looking at how confident students at SUNY Albany are. The mean score on the scale is 50. The distribution has a standard deviation of 10 and is normally distributed. Matthew scores a 65. What percentage of people could be expected to score the same as Matthew or higher on this scale
Answer:
The percentage of people that could be expected to score the same as Matthew or higher on this scale is:
= 93.3%.
Step-by-step explanation:
a) Data and Calculations:
Mean score on the scale, μ = 50
Distribution's standard deviation, σ = 10
Matthew scores, x = 65
Calculating the Z-score:
Z-score = (x – μ) / σ
= (65-50)/10
= 1.5
The probability based on a Z-score of 1.5 is 0.93319
Therefore, the percentage of people that could be expected to score the same as Matthew or higher on this scale is 93.3%.
me to
ICS A
V
t
V
30
A vehicle accelerates from 0 to 30 m/s in 10 seconds on a
straight road, then travels 15 seconds at a constant velocity.
Next it slows down, coming to a stop in 5 seconds. The car
waits 10 seconds, and then backs up for 5 seconds
accelerating from 0 to -10 m/s. Draw a graph showing the
vehicle's velocity vs time by following these steps.
20
What is the velocity of the vehicle at 0 seconds?
v m/s
Velocity (m/s)
es
10
40
20 30
Time (s)
Elementary
-10
S
Secondary
< Previous Activity
enuity.com/ContentViewers/Frame Chain/Activity
US 1:09
I don’t think I got the right answer?
Answer:
it's third option the one who says 10 units up
The sum of a number and 2 times its reciprocal is -3
Answer:
(-2,-1)
Step-by-step explanation:
let the number=x
its reciprocal=1/x
x+2(1/x)=-3
x+2/x=-3
x²+2=-3x
x²+3x+2=0
(x+2)(x+1)=0
x=-2,-1
Find the value of x. What is the value of x?
Answer:
x = 16
Step-by-step explanation:
The product of the lengths theorem is a property that can be sued to describe the relationships of the sides between the tangents and secants in a circle. One of these products states the following;
The distance between the point of tangency and its intersection point with the exterior secant squared is equal to the product of the exterior secant times the interior secant.
This essentially means the following equation can be formed;
[tex](AB)^2=(DC)(CB)[/tex]
Substitute,
[tex]12^2=x*9[/tex]
Simplify,
[tex]144=9x[/tex]
Inverse operations,
[tex]\frac{144}{9}=x\\\\16=x[/tex]
Answer:
[tex]\boxed{\sf x=7}[/tex]
Step-by-step explanation:
By Targent-secant theorem...
[tex]\sf 9(x + 9) = {12}^{2} [/tex]
Use the distributive property to multiply 9 by x+9.
[tex]\sf 9x+81= {12}^{2} [/tex]
Now, let calculate 12 to the power of 2 and get 144.
[tex]\sf 9x+81=144[/tex]
Subtract 81 from both sides.
[tex]\sf 9x=63[/tex]
Divide both sides by 9.
[tex] \sf \cfrac{ 9x}{9} = \cfrac{63}{9} [/tex]
[tex]\sf x=7[/tex]
Which pair of functions are inverses of each other?
O A. f(x) = f and g(x) = 8x?
O B. f(x) = 4 + 9 and g(x) = 4x - 9
O C. Ax) = 5x – 9 and g(x) = 149
O D. f(x) = 3 - 7 and g(x) = 247
9. What is the value of x if the quadrilateral is a rhombus? 15 5x 4x+3
Select the line segment.
Answer:
i think you need to attach a fine for us to do so?
Step-by-step explanation:
Answer:
I can't tell you without the problem
The foot of a ladder is placed 9 feet away from a wall. If the top of the ladder rests 13 feet up on the wall, find the length of the ladder.
4 feet
15.81 feet
8.81 feet
13 feet
Answer:
15.81 ft .
Step-by-step explanation:
This question is based on " Pythagoras Theorem " . If we imagine the given situation as a right angled triangle , then the base will be " 9ft " , and the perpendicular will be " 13 ft" . And the length of the ladder will be equal to hypontenuse of the triangle.
Using Pythagoras Theorem :-
[tex]\implies\rm h^2= p^2+b^2 \\\\\implies\rm h^2 = (9ft)^2+(13ft)^2 \\\\\implies\rm h^2 = 81 ft^2 + 169 ft^2 \\\\\implies\rm h^2 = 250ft^2 \\\\\implies \boxed{ \rm Ladder's \ Length = 15.81 \ ft }[/tex]
Hence the length of the ladder is 15.81 ft.
Uma lâmpada de incandescência traz os seguintes dados inscritos no seu bulbo. U= 220 V e P = 100 W. Conhecendo as relações U = R. i e P = U. i , pode-se afirmar que o valor da resistência R da lâmpada durante o funcionamento é, em omhs:
Answer:
The resistance is 484 ohm.
Step-by-step explanation:
An incandescent lamp has the following data inscribed on its bulb. U= 220 V and P = 100 W. Knowing the relations U = R. i and P = U. i , it can be stated that the value of the resistance R of the lamp during operation is, in omhs:
P = 100 W
V = 220 V
Let the current is I.
P = V I
100 = 220 I
I = 0.45 A
Now,
V = I R
220 = 0.45 x R
R = 484 ohm
The resistance is 484 ohm.
What is the GCF of 1683t, 4085, and 68t??
O 4
O 483t
O 8
O 8837
Answer:I’m pretty sure ( not 100% thou ) the awnser would be A) 4
Help me please with this maths question thank you
Answer:
Step-by-step explanation:
A)
The opposite sides of a rectangle are equal. The width make this obvious because both of them are x.
B)
The lengths are not so obvious, but it is never the less true. The two sides are obvious and they are therefore true.
4x + 1 = 2x + 12 Subtract 1 from both sides.
- 1 -1
4x = 2x + 11 Subtract 2x from both sides
-2x -2x
2x = 11 Divide by 2
x = 11/2
x = 5.5
C)
P = L + L + w + w
P = 4(5.5) + 1 + 2(5.5) + 12 + 5.5 + 5.5
P = 22 + 1 + 11 + 12 + 11
P = 23 + 23 + 11
P = 57
What is the scare root of 85 roused to nearest tenth?
Answer:
9.2
Step-by-step explanation:
You can do this calculation with a calculator by taking the square root of 85.
Hi there!
»»————- ★ ————-««
I believe your answer is:
9.2
»»————- ★ ————-««
Here’s why:
Assuming that you mean "the square root of 85 rounded to the nearest tenth..."
⸻⸻⸻⸻
[tex]\boxed{\text{Calculating the Answer...}}\\\\\rightarrow \sqrt{85} = 9.21954445729....[/tex]
⸻⸻⸻⸻
Since the digit to the right of the tenth (the 1) is less than or equal to four, we round down.
⸻⸻⸻⸻
[tex]9.21954445729...\approx\boxed{9.2}[/tex]
⸻⸻⸻⸻
»»————- ★ ————-««
Hope this helps you. I apologize if it’s incorrect.
Starting from point A, a boat sales due south for 4 miles, then due east for 5 miles, then due south again for 6 miles. How far is the boat from point A?
Answer:
17 miles
By adding the miles they have traveled, you get you total distance.
The average THC content of marijuana sold on the street is 9.6%. Suppose the THC content is normally distributed with standard deviation of 1%. Let X be the THC content for a randomly selected bag of marijuana that is sold on the street. Round all answers to 4 decimal places where possible,
a. What is the distribution of X? X ~ N(
9.6
Correct,
1
Correct)
b. Find the probability that a randomly selected bag of marijuana sold on the street will have a THC content greater than 9.8.
c. Find the 67th percentile for this distribution.
%
Answer:
Im sorry but why is this a question? Like what school gives this out
HELP
Identify the domain of the function shown in the graph.
Answer:
D = [4, 10]
Step-by-step explanation:
Since the line starts when x = 4, the domain begins there. And since the line ends when x=10, the domain ends there.
what is the value of -2x²y³ when ×=2 and y=4?
Answer:
1024
Step-by-step explanation:
Given :-
x = 2 y = 4Value of -2x²y³
2x³ y³2 * (2)³ * (4)³2 * 8 * 64 1024Answer:
254
Step-by-step explanation:
^ <- this is the square sign
-2x^y^3
x=2
y=4
put x values in to x place and y value in to y place.
-2(2)^2(4)^3
Find the squares and - it with 2
-2(4)(64)
2-256=254
:. the value of -2x^2y^3 =254
That the answer.
Hope this is what you asked.
Step 1: For each circle (A-G) in the table below, use the given information to determine the missing
information. Include supporting work showing and explaining how you found the missing information.
Circle
Center
Radius
Equation
A
(x - 9)2 + (y - 12)2 = 64
B
(-1,-17)
5
С
(-9,13)
9n
D
x2 + (0 - 1)2 = 36
E
x2 + y2 – 26x = -160
F
*2 + y2 + 22x +12y = -93
G
x2 + y2 – 10x+12y = -52
Answer:
I don't really understand the question
Step-by-step explanation:
c
Determine which statements about the relationship are true. Choose two options. g is the dependent variable. u is the dependent variable. g is the independent variable. u is the independent variable. The two variables cannot be labeled as independent or dependent without a table of values.
Answer:
1) g is the dependent variable.(A)
2) u is the independent variable.(D)
Step-by-step explanation:
If a woman makes $32,000 a year receives a cost of living increase 2.2% what will her new salary be?
Answer:
$32 704
Step-by-step explanation:
(102.2÷100) × 32 000 = $32 704
The ratio of the number of cherry tomatoes in a tossed salad to people served is 7:15. If Waldo wants to serve 105 people, how many cherry tomatoes will Waldo use
Answer: 49 cherry tomatoes.
Step-by-step explanation:
7 x
— = — cross multiply and done.
15 105
When four times a number is added to 8 times the number, the result is 36. What is the number
Let the number = X
4x + 8x = 36
Simplify:
12x = 36
Divide both sides by 12:
x = 3
The number is 3
Help and explain explain !!!!!!!!!!
Answer:
[tex]x=-1\text{ or }x=11[/tex]
Step-by-step explanation:
For [tex]a=|b|[/tex], we have two cases:
[tex]\begin{cases}a=b,\\a=-b\end{cases}[/tex]
Therefore, for [tex]18=|15-3x|[/tex], we have the following cases:
[tex]\begin{cases}18=15-3x,\\18=-(15-3x)\end{cases}[/tex]
Solving, we have:
[tex]\begin{cases}18=15-3x, -3x=3, x=\boxed{-1},\\18=-(15-3x), 18=-15+3x, 33=3x, x=\boxed{11}\end{cases}[/tex].
Therefore,
[tex]\implies \boxed{x=-1\text{ or }x=11}[/tex]
If f(x) =4x2 - 8x - 20 and g(x) = 2x + a, find the value of a so that the y-intercept of the graph of the composite function (fog)(x) is (0, 25).
Answer:
The possible values are a = -2.5 or a = 4.5.
Step-by-step explanation:
Composite function:
The composite function of f(x) and g(x) is given by:
[tex](f \circ g)(x) = f(g(x))[/tex]
In this case:
[tex]f(x) = 4x^2 - 8x - 20[/tex]
[tex]g(x) = 2x + a[/tex]
So
[tex](f \circ g)(x) = f(g(x)) = f(2x + a) = 4(2x + a)^2 - 8(2x + a) - 20 = 4(4x^2 + 4ax + a^2) - 16x - 8a - 20 = 16x^2 + 16ax + 4a^2 - 16x - 8a - 20 = 16x^2 +(16a-16)x + 4a^2 - 8a - 20[/tex]
Value of a so that the y-intercept of the graph of the composite function (fog)(x) is (0, 25).
This means that when [tex]x = 0, f(g(x)) = 25[/tex]. So
[tex]4a^2 - 8a - 20 = 25[/tex]
[tex]4a^2 - 8a - 45 = 0[/tex]
Solving a quadratic equation, by Bhaskara:
[tex]\Delta = (-8)^2 - 4(4)(-45) = 784[/tex]
[tex]x_{1} = \frac{-(-8) + \sqrt{784}}{2*(4)} = \frac{36}{8} = 4.5[/tex]
[tex]x_{2} = \frac{-(-8) - \sqrt{784}}{2*(4)} = -\frac{20}{8} = -2.5[/tex]
The possible values are a = -2.5 or a = 4.5.
A river is 212 mile long. What is the length of the river on a map, if the scale is 1 inch : 50 miles?
Answer:
4.24 inches
Step-by-step explanation:
1 inch / 50 miles = x / 212 miles Cross multiply
1 inch * 212 miles = 50 miles * x Divide by 50 miles
1 inch * 212 miles / 50 miles = x
x = 4.24 inches.
How much is 0.24 of an inch?
0.24 * 50 = 12
So 0.24 inches represents 12 miles.
I need help with this question.
Answer:
Step-by-step explanation:
f(x-2) means that x is happening sooner or a shift to the left and
+4 means that the whole function moves up 4.
The 1st choice looks good