Answer: 2.4 millimeters = 0.0024 meters
Explanation: A millimeter is 1/1000 of a meter. By diving 2.4 by 1000, you get 0.0024.
1. Draw four illustrations of a globe and paper that are positioned to yield equatorial, transverse, oblique, and polar aspect projections. Label the equator in each. Use your textbook or lecture material if you need a reference.2. On any map, why is there distortion at areas that do not fall on lines of tangency or secancy?
Answer:
1) attached below
2) assumption that the earth is spherical
Explanation:
1) Four illustrations of a globe
attached below
2) Reason for distortions at areas that do not fall on lines of tangency or secancy
The reason for distortion on areas outside the lines of tangency or secancy is because of the assumption that the earth is spherical which is not true hence map projections on the areas that fall on the lines of tangency do not experience distortion and are true
When an object is in free fall, ____________________.
Answer:
Objects that are said to be undergoing free fall, are not encountering a significant force of air resistance; they are falling under the sole influence of gravity.
Explanation:
Under such conditions, all objects will fall with the same rate of acceleration, regardless of their mass.
Một mặt phẳng vô hạn tích điện đều, mật độ σ = 4.10-9 C/cm2 , đặt thẳng đứng trong không khí. Một quả cầu nhỏ có khối lượng 8 g, mang điện tích q = 10-8 C treo gần vào mặt phẳng, sao cho dây treo lúc đầu song song với mặt phẳng. Lấy g = 9,8m/s2 . Khi cân bằng, dây treo quả cầu hợp với mặt phẳng 1 góc bằng bao nhiêu?
Answer:
The angle is 16 degree.
Explanation:
A uniformly charged infinite plane, density σ = 4.10-9 C/cm2, is placed vertically in air. A small ball of mass 8 g, with charge q = 10-8 C, hangs close to the plane, so that the string is initially parallel to the plane. Take g = 9.8m/s2 . In equilibrium, by what angle does the string hanging from the ball make an angle with the plane?
Surface charge density, σ = 4 x 10^-5 C/m^2
charge, q = 10^-8 C
mass, m = 0.008 kg
The electric field due to the plate is
[tex]E= \frac{\sigma }{2\varepsilon 0}[/tex]
Let the angle make with the vertical is A and T is the tension in the string.
[tex]T sin A = q E....(1)\\\\T cos A = m g .... (2)\\\\Divie (1) by (2)\\\\tan A =\frac{q E}{m g}\\\\tan A = \frac{10^{-8}\times 4\times 10^{-5}}{2\times 8.85\times 10^{-12}\times 0.008\times9.8}\\\\tan A = 0.288\\\\A = 16 degree\\[/tex]
Two objects are interacting, but stay stationary. Which best describes what is happening to the action and react
forces?
There are no forces acting on the objects.
The forces are equal and opposite each other.
One object is exerting more force than the other.
O Their forces are occurring at different times.
Answer:b the force are equal and opposite each other
Explanation:
A uniform metre rule of mass 10g is balanced on a knife edge placed at 45cm mark. Calculate the distance of a mass 25g from the pivot
Answer:
The distance of a mass 25g from the pivot is 18cm
Explanation:
Given
[tex]m_1 = 10g[/tex]
[tex]d_1 = 45cm[/tex]
[tex]m_2 = 25g[/tex]
Required
Distance of m2 from the pivot
To do this, we make use of:
[tex]m_1 * d_1 = m_2 * d_2[/tex] --- moments of the masses
So, we have:
[tex]10 * 45= 25* d_2[/tex]
[tex]450= 25* d_2[/tex]
Divide both sides by 25
[tex]18= d_2[/tex]
Hence:
[tex]d_2 = 18[/tex]
A black T-shirt is warmer in the summertime than a white T-shirt because the black T-shirt
A. Is reflecting all wavelengths of light.
B. Absorbs violet light, the highest energy wavelength.
C. Is absorbing all wavelengths of light. D. Doesn’t absorb red, the longest wavelength.
Answer:
c
Explanation:
darker colors absorb app light
Answer:
C. Is absorbing all wavelengths of light.
Explanation:
Black isn't a color, but rather the absence of color. We see a T-shirt as black because it isn't reflecting any light toward our eyes. A black T-shirt absorbs all of the wavelengths of light, causing it to absorb more energy and become warmer than white, which reflects light.
2. g A spring extends by 20 cm when a force of 2 N is applied. What is the value of the spring constant in N/m
10N/m
Explanation:
f=kx
k=f/x
k=20N/0.2m
k=10N/m
0. The temperature of source is 500K with source energy 2003, what is the temperature of sink with sink energy 100 J? a. 500 K b. 300 K c. 250 K d. 125 K
Answer:
c. 250k
Explanation:
The temperature of the sink is approximately 250 K.
To find the temperature of the sink, we can use the formula for the efficiency of a heat engine:
Efficiency = 1 - (Temperature of Sink / Temperature of Source)
Given that the temperature of the source (T_source) is 500 K and the source energy (Q_source) is 2003 J, and the sink energy (Q_sink) is 100 J, we can rearrange the formula to solve for the temperature of the sink (T_sink):
Efficiency = (Q_source - Q_sink) / Q_source
Efficiency = (2003 J - 100 J) / 2003 J
Efficiency = 1903 J / 2003 J
Efficiency = 0.9497
Now, plug the efficiency back into the first equation to solve for T_sink:
0.9497 = 1 - (T_sink / 500 K)
T_sink / 500 K = 1 - 0.9497
T_sink / 500 K = 0.0503
Now, isolate T_sink:
T_sink = 0.0503 * 500 K
T_sink = 25.15 K
Since the temperature should be in Kelvin, we round down to the nearest whole number, which is 25 K. Thus, the temperature of the sink is approximately 250 K.
To learn more about sink energy, here
https://brainly.com/question/10483137
#SPJ2
Convierta 8.5mW a cal/h (1 cal=4.186 j)
Answer:
[tex] = { \bf{2.03 \times {10}^{ - 6} }}[/tex]
If you change the motor in your vehicle you need to notify the DMV within ____,
days of this change.
-20
-25
-10
-15
when you change your motor on your vehicle you need to notify the DMV within 10 days
If you change the motor in your vehicle you need to notify the DMV within 10 days of this change.
An engine or motorAn engine or motor is a machine designed to convert one or more forms of energy into mechanical energy.
Available energy sources include potential energy (e.g. energy of the Earth's gravitational field as exploited in hydroelectric power generation), heat energy (e.g. geothermal), chemical energy, electric potential, and nuclear energy (from nuclear fission or nuclear fusion). Many of these processes generate heat as an intermediate energy form, so heat engines have special importance. Some natural processes, such as atmospheric convection cells convert environmental heat into motion (e.g. in the form of rising air currents). Mechanical energy is of particular importance in transportation but also plays a role in many industrial processes such as cutting, grinding, crushing, and mixing.
Mechanical heat engines convert heat into work via various thermodynamic processes. The internal combustion engine is perhaps the most common example of a mechanical heat engine, in which heat from the combustion of fuel causes rapid pressurization of the gaseous combustion products in the combustion chamber, causing them to expand and drive a piston, which turns a crankshaft. Unlike internal combustion engines, a reaction engine (such as a jet engine) produces thrust by expelling reaction mass, by Newton's third law of motion.
Learn more about motor
https://brainly.com/question/8954449
#SPJ2
Find the magnitude and direction of a force between a 25.0 coulomb charge and a 40.0coulomb charge when they are separated by a distance of 30.0cm
Answer:
95.0 colomb
Explanation:
Make sure to understand the concept
Two plane coaxial disks are separated by a distance 0.6 m. The lower disk is solid with a diameter 0.80 m and a temperature 300 K. The upper disk , at temperature 900 K, has the same outer diameter but is ring-shaped with an inner diameter 0.40 m. Assuming the disks to be blackbodies, calculate the net rate of radiative heat exchange from disk 1 to disk 2, in kW.
Answer:
if anyone is reading my coment your oarents will became very fine soon
The following two waves are sent in opposite directions on a horizontal string so as to create a standing wave in a vertical plane: y1(x, t) = (8.20 mm) sin(4.00πx - 430πt) y2(x, t) = (8.20 mm) sin(4.00πx + 430πt), with x in meters and t in seconds. An antinode is located at point A. In the time interval that point takes to move from maximum upward displacement to maximum downward displacement, how far does each wave move along the string?
Answer:
Explanation:
From the information given:
The angular frequency ω = 430 π rad/s
The wavenumber k = 4.00π which can be expressed by the equation:
k = ω/v
∴
4.00 = 430 /v
v = 430/4.00
v = 107.5 m/s
Similarly: k = ω/v = 2πf/fλ
We can say that:
k = 2π/λ
4.00 π = 2π/λ
wavelength λ = 2π/4.00 π
wavelength λ = 0.5 m
frequency of the wave can now be calculated by using the formula:
f = v/λ
f = 107.5/0.5
f = 215 Hz
Also, the Period(T) = 1/215 secs
The time at which particle proceeds from point A to its maximum upward displacement and to its maximum downward displacement can be computed as t = T/2;
Thus, the distance(x) covered by each wave during this time interval(T/2) will be:
x = v * t
x = v * T/2
x = λ/2
x = 0.5/2
x = 0.25 m
You have three identical metallic spheres, A, B and C, fixed to isolating pedestals. They all start off uncharged. You then charge sphere A to +32.0 uC. You use rubber gloves to move sphere A so that it briefly touches sphere B, and then is separated. Next, sphere A briefly touches sphere C, and again is separated. Finally, sphere A touches sphere B a second time, and is again separated. What will be the final charge of sphere B?
Answer:
Charge on B is 12 uC.
Explanation:
Initial charge on A = 32 uC
Initial charge on B and C = 0
Now A touches to B, so the charge on A and B both is
q = (32 + 0) / 2 = 16 uC
Now A touches to C, so the charge on A and C both is
q' = (16 + 0) / 2 = 8 uC
Now again A touches to B so the charge on B is
q''= (8 + 16) / 2 = 12 uC
Magnets produce _________ in the spaces surrounding them
Answer:
magnetic field
Explanation:
If the sum of the external forces on an object is zero, then the sum of the external torques on it
must also be zero.
A) True
B) False
Answer:
True.
Explanation:
If the sum of the external forces on an object is zero, then the sum of the external torques on it must also be zero.
The net external force and the net external torque acting on the object have to be zero for an object to be in mechanical equilibrium.
Hence, the given statement is true.
When you stand on tiptoes on a bathroom scale, there is an increase in
A) weight reading.
B) pressure on the scale, not registered as weight.
C) both weight and pressure on the scale.
D) none of the above
Answer:
B) Pressure on the scale, not registered as weight.
Explanation:
This is because energy (derived from weight) becomes compiled on the tips of your toes, and therefore does not increase your weight, but simply the pressure at a smaller point
g Consider a mass-spring system where the spring constant is 5 N/m and the mass on the spring is 0.5 kg. The mass is moved a distance of -0.9 m from its equilibrium position. How much work is done by the spring
Answer:
The work done by the spring is 2.025 J
Explanation:
Given;
mass on the spring, m = 0.5 kg
spring constant, k = 5 N/m
extension of the spring, x = 0.9 m
The work done by the spring is calculated as;
[tex]W = \frac{1}{2} kx^2\\\\W = \frac{1}{2} \times 5 \times (0.9)^2\\\\W = 2.025 \ J[/tex]
Therefore, the work done by the spring is 2.025 J
The pressure exerted at the bottom of a column of liquid is 30 kPa. The height of the
column is 3,875 m. What type of liquid is used?
Answer:
For example, the pressure acting on a dam at the bottom of a reservoir is ... pressure = height of column × density of the liquid × gravitational field ... The density of water is 1,000 kg/m 3.
Turning a corner at a typical large intersection in a city means driving your car through a circular arc with a radius of about 25 m. if the maximum advisable acceleration of your vehicle through a turn on wet pavement is 0.40 times the free-fall acceleration, what is the maximum speed at which you should drive through this turn?
Answer:
9.89 m/s.
Explanation:
Given that,
The radius of the circular arc, r = 25 m
The acceleration of the vehicle is 0.40 times the free-fall acceleration i.e.,a = 0.4(9.8) = 3.92 m/s²
Let v is the maximum speed at which you should drive through this turn. It can be solved as follows :
[tex]a=\dfrac{v^2}{r}\\\\v=\sqrt{ar} \\\\v=\sqrt{3.92\times 25} \\\\=9.89 m/s[/tex]
So, the maximum speed of the car should be 9.89 m/s.
Two speakers in a stereo emit identical pure tones. As you move around in front of the speakers, you hear the sound alternating between loud and zero. This occurs because of
Answer:
Interference
Explanation:
When two traveling waves traveling waves along the same path are superimposed(combine). The superimposition of these two waves results in the production of a resultant wave which is defined by the net effect of the two waves. Wave interference occurs most types of waves including radio wave, light, acoustic waves and other wave types. Alternating sound between loud and Zero is heard as the two speakers emit identical pure tones because the resultant amplitude after the interference of the two sound waves is the vector sum of each of their amplitudes. A loud sound is heard, when the crest of both waves meets each other and a zero is heard if the crest of one meets the trough of the other as they cancel out.
A system is acted on by its surroundings in such a way that it receives 50 J of heat while simultaneously doing 20 J of work. What is its net change in internal energy
Answer:
30J
Explanation:
Given data
The total quantity of heat recieved= 50J
Quantity of heat used to do work= 20J
Hence the net change is
ΔU= Total Heat - Net work
ΔU= 50-20
ΔU= 30J
Hence the change in the internal energy is 30J
A ball has a mass of 4.65kg and approximates a ping pong ball of mass 0.060kg that is at rest by striking it in an elastic collision. The initial velocity of the bowling ball is 5.00m/s, determine the final velocities of both masses after the collision.
Answer:
Look at work
Explanation:
Elastic Collision: Ki=Kf
M1=4.65kg
M2: 0.060kg
v1=5m/s
v2=0m/s
4.65*5+0.060*0=4.65*v1'+0.060*v2'
23.25+0=4.65v1'+0.060v2'
Also since it is an elastic collision we can use
v1+v1'=v2+v2'
4.65+v1'=v2'
4.65+v1'=v2'
Substitute into the earlier equation
23.25=4.65v1'+0.060(4.65+v1')
Expand
23.25=4.65v1'+0.279+0.06v1'
Solve for v1'
22.971=4.71v1'
v1'=4.88m/s
v2'=4.65+4.88=9.53m/s
A single-turn square loop of wire, 2.00 cm on each edge, carries a clockwise current of 0.240 A. The loop is inside a solenoid, with the plane of the loop perpendicular to the magnetic field of the solenoid. The solenoid has 30.0 turns/cm and carries a clockwise current of 15.0 A. Find:
a. the force on each side of the loop
b. the torque acting on the loop.
Answer:
Explanation:
a )
Magnetic field inside solenoid B = μ₀ NI ,
μ₀ = 4π x 10⁻⁷ ; N is no of turns per meter length in solenoid and I is current B= 4π x 10⁻⁷ x 30 x 10² x 15
= .0565 T .
Force on each side of square loop = B i L
B is external magnetic field , i is current in loop and L is length of side
Force on each side of square loop = .0565 x .24 x 2 x 10⁻²
= 2.7 x 10⁻⁴ N .
b )
Torque on the loop = F x d
F is force on one side , d is distance between two sides , that is side of the square loop
= 2.7 x 10⁻⁴ x 2 x 10⁻² N.m
= 5.4 x 10⁻⁶ N.m .
A 9.0 V battery is connected across two resistors in series. If the resistors have resistances of and what is the voltage drop across the resistor?
Select one:
A. 4.6 V B. 9.4 V C. 8.6 V D. 4.4 V
Answer:
the answer to the question is known as D
11. An object moves in circular path with constant speed
a. Is the object's velocity constant? Explain.
b. Is its acceleration constant? Explain.
Answer:
B. Is its acceleration constant
Explanation:
Uniform circular motion can be described as the motion of an object in a circle at a constant speed. As an object moves in a circle, it is constantly changing its direction. ... An object undergoing uniform circular motion is moving with a constant speed. Nonetheless, it is accelerating due to its change in direction.
An electron moving in the y direction, at right angles to a magnetic field, experiences a magnetic force in the -x direction. The direction of the magnetic field is in the
Answer:
The direction of magnetic field is along + Z axis.
Explanation:
The direction of motion of electron is along y axis.
The magnetic force is along - X axis.
The force on the charged particle moving in the magnetic field is
[tex]\overrightarrow{F} = q (\overrightarrow{v}\times \overrightarrow{B})\\\\- F \widehat{i} = - q (v \widehat{j}\times \overrightarrow{B})\\[/tex]
So, the direction of the magnetic field is along + Z axis.
A wave moves in a rope with a certain wavelength. A second wave is made to move in the same rope with twice the wavelength of the first wave. The frequency of the second wave is _______________ the frequency of the first wave.
Answer:
The frequency of the second wave is half of the frequency of first one.
Explanation:
The wavelength of the second wave is double is the first wave.
As we know that the frequency is inversely proportional to the wavelength of the velocity is same.
velocity = frequency x wavelength
So, the ratio of frequency of second wave to the first wave is
[tex]\frac{f_2}{f_1} =\frac{\lambda _1}{\lambda _2}\\\\\frac{f_2}{f_1} =\frac{\lambda _1}{2\lambda _1}\\\\\frac{f_2}{f_1} =\frac{1}{2}\\\\[/tex]
The frequency of the second wave is half of the frequency of first one.
In the following image, atoms are represented by colored circles. Different colors represent different types of atoms. If
atoms are touching, they are bonded.
Which of the following boxes shows a mixture of different compounds?
A
B
C
E
Answer:
Explanation:
There are all kinds of things floating around in B. The large dark blue and the smaller dark blue are one kind of compound.
The yellow by itself could be from column 18.
So could the smaller dark blue circle (be from column 18).
There are Big blue ones that have only 1 small blue one associated with it and others with one Big blue and two smaller light blues.
B is the answer to your question.
Four toy racecars are racing along a circular race track. The cars start at the 3-o'clock position and travel CCW along the track. Car A is constantly 2 feet from the center of the race track and travels at a constant speed. The angle Car A sweeps out increases at a constant rate of 1 radian per second.
Required:
How many radians θ does car A sweep out in t seconds?
Answer:
in t seconds, Car A sweep out t radian { i.e θ = t radian }
Explanation:
Given the data in the question;
4 toy racecars are racing along a circular race track.
They all start at 3 o'clock position and moved CCW
Car A is constantly 2 feet from the center of the race track and moves at a constant speed
so maximum distance from the center = 2 ft
The angle Car A sweeps out increases at a constant rate of 1 radian per second.
Rate of change of angle = dθ/dt = 1
Now,
since dθ/dt = 1
Hence θ = t + C
where C is the constant of integration
so at t = 0, θ = 0, the value of C will be 0.
Hence, θ = t radian
Therefore, in t seconds, Car A sweep out t radian { i.e θ = t radian }