To convert each of the given linear programs to standard form, we need to ensure that the objective function is to be maximized (or minimized) and that all the constraints are written in the form of linear inequalities or equalities, with variables restricted to be non-negative.
a) Minimize [tex]\(2x + y + z\)[/tex] subject to [tex]\(x + y \leq 3\) and \(y + z \geq 2\):[/tex]
To convert it to standard form, we introduce non-negative slack variables:
Minimize [tex]\(2x + y + z\)[/tex] subject to [tex]\(x + y + s_1 = 3\)[/tex] and [tex]\(y + z - s_2 = 2\)[/tex] where [tex]\(s_1, s_2 \geq 0\).[/tex]
b) Maximize [tex]\(x_1 - x_2 - 6x_3 - 2x_4\)[/tex] subject to [tex]\(x_1 + x_2 + x_3 + x_4 = 3\)[/tex] and [tex]\(x_1, x_2, x_3, x_4 \leq 1\):[/tex]
To convert it to standard form, we introduce non-negative slack variables:
Maximize [tex]\(x_1 - x_2 - 6x_3 - 2x_4\)[/tex] subject to [tex]\(x_1 + x_2 + x_3 + x_4 + s_1 = 3\)[/tex] and [tex]\(x_1, x_2, x_3, x_4, s_1 \geq 0\)[/tex] with the additional constraint [tex]\(x_1, x_2, x_3, x_4 \leq 1\).[/tex]
c) Minimize [tex]\(-w + x - y - z\)[/tex] subject to [tex]\(w + x = 2\), \(y + z = 3\)[/tex], and [tex]\(w, x, y, z \geq 0\):[/tex]
The given linear program is already in standard form as it has a minimization objective, linear equalities, and non-negativity constraints.
To know more about constraint visit-
brainly.com/question/32640239
#SPJ11
A pair of shoes has been discounted by 12%. If the sale price is $120, what was the original price of the shoes? [2] (b) The mass of the proton is 1.6726 x 10-27 kg and the mass of the electron is 9.1095 x 10-31 kg. Calculate the ratio of the mass of the proton to the mass of the electron. Write your answer in scientific notation correct to 3 significant figures. [2] (c) Gavin has 50-cent, one-dollar and two-dollar coins in the ratio of 8:1:2, respectively. If 30 of Gavin's coins are two-dollar, how many 50-cent and one-dollar coins does Gavin have? [2] (d) A model city has a scale ratio of 1: 1000. Find the actual height in meters of a building that has a scaled height of 8 cm. [2] (e) A house rent is divided among Akhil, Bob and Carlos in the ratio of 3:7:6. If Akhil's [2] share is $150, calculate the other shares.
The correct answer is Bob's share is approximately $350 and Carlos's share is approximately $300.
(a) To find the original price of the shoes, we can use the fact that the sale price is 88% of the original price (100% - 12% discount).
Let's denote the original price as x.
The equation can be set up as:
0.88x = $120
To find x, we divide both sides of the equation by 0.88:
x = $120 / 0.88
Using a calculator, we find:
x ≈ $136.36
Therefore, the original price of the shoes was approximately $136.36.
(b) To calculate the ratio of the mass of the proton to the mass of theelectron, we divide the mass of the proton by the mass of the electron.
Mass of proton: 1.6726 x 10^(-27) kg
Mass of electron: 9.1095 x 10^(-31) kg
Ratio = Mass of proton / Mass of electron
Ratio = (1.6726 x 10^(-27)) / (9.1095 x 10^(-31))
Performing the division, we get:
Ratio ≈ 1837.58
Therefore, the ratio of the mass of the proton to the mass of the electron is approximately 1837.58.
(c) Let's assume the common ratio of the coins is x. Then, we can set up the equation:
8x + x + 2x = 30
Combining like terms:11x = 30
Dividing both sides by 11:x = 30 / 11
Since the ratio of 50-cent, one-dollar, and two-dollar coins is 8:1:2, we can multiply the value of x by the respective ratios to find the number of each coin:
50-cent coins: 8x = 8 * (30 / 11)
one-dollar coins: 1x = 1 * (30 / 11)
Calculating the values:
50-cent coins ≈ 21.82
one-dollar coins ≈ 2.73
Since we cannot have fractional coins, we round the values:
50-cent coins ≈ 22
one-dollar coins ≈ 3
Therefore, Gavin has approximately 22 fifty-cent coins and 3 one-dollar coins.
(d) The scale ratio of the model city is 1:1000. This means that 1 cm on the model represents 1000 cm (or 10 meters) in actuality.
Given that the scaled height of the building is 8 cm, we can multiply it by the scale ratio to find the actual height:
Actual height = Scaled height * Scale ratio
Actual height = 8 cm * 10 meters/cm
Calculating the value:
Actual height = 80 meters
Therefore, the actual height of the building is 80 meters.
(e) The ratio of Akhil's share to the total share is 3:16 (3 + 7 + 6 = 16).
Since Akhil's share is $150, we can calculate the total share using the ratio:
Total share = (Total amount / Akhil's share) * Akhil's share
Total share = (16 / 3) * $150
Calculating the value:
Total share ≈ $800
To find Bob's share, we can calculate it using the ratio:
Bob's share = (Bob's ratio / Total ratio) * Total share
Bob's share = (7 / 16) * $800
Calculating the value:
Bob's share ≈ $350
To find Carlos's share, we can calculate it using the ratio:
Carlos's share = (Carlos's ratio / Total ratio) * Total share
Carlos's share = (6 / 16) * $800
Calculating the value:
Carlos's share ≈ $300
Therefore, Bob's share is approximately $350 and Carlos's share is approximately $300.
Learn more about profit and loss here:
https://brainly.com/question/26483369
#SPJ11
In the diagram below, how many different paths from A to B are possible if you can only move forward and down? A 4 B 3. A band consisting of 3 musicians must include at least 2 guitar players. If 7 pianists and 5 guitar players are trying out for the band, then the maximum number of ways that the band can be selected is 50₂ +503 C₂ 7C1+5C3 C₂ 7C15C17C2+7C3 D5C₂+50₁ +5Co
There are 35 different paths from A to B in the diagram. This can be calculated using the multinomial rule, which states that the number of possible arrangements of n objects, where there are r1 objects of type A, r2 objects of type B, and so on, is given by:
n! / r1! * r2! * ...
In this case, we have n = 7 objects (the 4 horizontal moves and the 3 vertical moves), r1 = 4 objects of type A (the horizontal moves), and r2 = 3 objects of type B (the vertical moves). So, the number of paths is:
7! / 4! * 3! = 35
The multinomial rule can be used to calculate the number of possible arrangements of any number of objects. In this case, we have 7 objects, which we can arrange in 7! ways. However, some of these arrangements are the same, since we can move the objects around without changing the path. For example, the path AABB is the same as the path BABA. So, we need to divide 7! by the number of ways that we can arrange the objects without changing the path.
The number of ways that we can arrange 4 objects of type A and 3 objects of type B is 7! / 4! * 3!. This gives us 35 possible paths from A to B.
To learn more about multinomial rule click here : brainly.com/question/32616196
#SPJ11
Fill the blanks to write general solution for a linear systems whose augmented matrices was reduce to -3 0 0 3 0 6 2 0 6 0 8 0 -1 <-5 0 -7 0 0 0 3 9 0 0 0 0 0 General solution: +e( 0 0 0 0 20 pts
The general solution is:+e(13 - e3 + e4 e5 -3e6 - 3e7 e8 e9)
we have a unique solution, and the general solution is given by:
x1 = 13 - e3 + e4x2 = e5x3 = -3e6 - 3e7x4 = e8x5 = e9
where e3, e4, e5, e6, e7, e8, and e9 are arbitrary parameters.
To fill the blanks and write the general solution for a linear system whose augmented matrices were reduced to
-3 0 0 3 0 6 2 0 6 0 8 0 -1 -5 0 -7 0 0 0 3 9 0 0 0 0 0,
we need to use the technique of the Gauss-Jordan elimination method. The general solution of the linear system is obtained by setting all the leading variables (variables in the pivot positions) to arbitrary parameters and expressing the non-leading variables in terms of these parameters.
The rank of the coefficient matrix is also calculated to determine the existence of the solution to the linear system.
In the given matrix, we have 5 leading variables, which are the pivots in the first, second, third, seventh, and ninth columns.
So we need 5 parameters, one for each leading variable, to write the general solution.
We get rid of the coefficients below and above the leading variables by performing elementary row operations on the augmented matrix and the result is given below.
-3 0 0 3 0 6 2 0 6 0 8 0 -1 -5 0 -7 0 0 0 3 9 0 0 0 0 0
Adding 2 times row 1 to row 3 and adding 5 times row 1 to row 2, we get
-3 0 0 3 0 6 2 0 0 0 3 0 -1 10 0 -7 0 0 0 3 9 0 0 0 0 0
Dividing row 1 by -3 and adding 7 times row 1 to row 4, we get
1 0 0 -1 0 -2 -2 0 0 0 -1 0 1 -10 0 7 0 0 0 -3 -9 0 0 0 0 0
Adding 2 times row 5 to row 6 and dividing row 5 by -3,
we get1 0 0 -1 0 -2 0 0 0 0 1 0 -1 10 0 7 0 0 0 -3 -9 0 0 0 0 0
Dividing row 3 by 3 and adding row 3 to row 2, we get
1 0 0 -1 0 0 0 0 0 0 1 0 -1 10 0 7 0 0 0 -3 -3 0 0 0 0 0
Adding 3 times row 3 to row 1,
we get
1 0 0 0 0 0 0 0 0 0 1 0 -1 13 0 7 0 0 0 -3 -3 0 0 0 0 0
So, we see that the rank of the coefficient matrix is 5, which is equal to the number of leading variables.
Thus, we have a unique solution, and the general solution is given by:
x1 = 13 - e3 + e4x2 = e5x3 = -3e6 - 3e7x4 = e8x5 = e9
where e3, e4, e5, e6, e7, e8, and e9 are arbitrary parameters.
Hence, the general solution is:+e(13 - e3 + e4 e5 -3e6 - 3e7 e8 e9)
The general solution is:+e(13 - e3 + e4 e5 -3e6 - 3e7 e8 e9)
learn more about coefficient matrix here
https://brainly.com/question/22964625
#SPJ11
Someone help please!
The graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].
What is the end behavior of a function?The end behavior of a function refers to how the function behaves as the input variable approaches positive or negative infinity.
The function in this problem is given as follows:
[tex]f(x) = -x^4 + 9[/tex]
It has a negative leading coefficient with an even root, meaning that the function will approach negative infinity both to the left and to the right of the graph.
Hence the graph A is the graph of the function [tex]f(x) = -x^4 + 9[/tex].
More can be learned about the end behavior of a function at brainly.com/question/1365136
#SPJ1