Answer:
y = 6x -27
Step-by-step explanation:
y-3=6(x-5)
Distribute
y-3 = 6x-30
Add 3 to each side
y-3+3 = 6x-30+3
y = 6x -27
This is in slope intercept form y=mx+b where m is the slope and b is the y intercept
Hey there! I'm happy to help!
Slope intercept form is y=mx+b. So, the first thing we want to do is isolate y on side of the equation.
y-3=6(x-5)
We use distributive property to undo parentheses.
y=3=6x-30
We add 3 to both sides.
y=6x-27
Now, this in slope intercept form.
Have a wonderful day! :D
Manipulate the radius and height of the cone, setting different values for each. Record the radius, height, and exact volume of the cone (in terms of π). The first one has been done for you. Also calculate the decimal value of the volume, and verify that it matches the volume displayed by the tool. (You might see some discrepancies in the tool due to rounding of decimals.)
Answer:
The decimal value of the volume already given= 1885.2 unit³
For radius 11 unit height 12 unit
Volume= 484π unit³
Volume= 1520.73 unit ³
For radius 4 unit height 6 unit
Volume= 32π unit³
Volume= 100.544 unit³
For radius 20 unit height 15 unit
Volume= 2000π unit³
Volume= 6284 unit³
Step-by-step explanation:
The decimal value of the volume already given= 600π
The decimal value of the volume already given= 600*3.142
The decimal value of the volume already given= 1885.2 unit³
For radius 11 unit height 12 unit
Volume= πr²h/3
Volume= 11²*12/3 *π
Volume= 484π unit³
Volume= 1520.73 unit ³
For radius 4 unit height 6 unit
Volume = πr²h/3
Volume= 4²*6/3(π)
Volume= 32π unit³
Volume= 100.544 unit³
For radius 20 unit height 15 unit
Volume= πr²h/3
Volume= 20²*15/3(π)
Volume= 2000π unit³
Volume= 6284 unit³
Here's the right answer.
Help please!!! Thank you
Answer:
2y+6x=180
Step-by-step explanation:
Because we know that side lengths BD, DC, and AD are all congruent, we can conclude that triangles BDA and CDA are congruent because they have at least two congruent sides. Since these triangles are both 45-45-90 triangles, angle C is equal to 45 degrees, or 3x. 45/3 is 15, so x=15. Angle B is equal to 45 degrees, or y, so y=45.
From there, we plug these numbers into the equation with 2(45) + 6(15), or 90+90 = 180.
I will give brainliest to the right answer!! Find the vertex and the length of the latus rectum. x= 1/2 (y - 5)² + 7
Answer:
(7, 5)2Step-by-step explanation:
When the quadratic is written in vertex form:
x = a(y -k)^2 +h
the vertex is (x, y) = (h, k), and the length of the latus rectum is 1/a.
For your given equation, ...
x = (1/2)(y -5)^2 +7
you have a=1/2, k = 5, h = 7, so ...
the vertex is (7, 5)
the length of the latus rectum is 1/(1/2) = 2
What’s is the greatest common factor of 100x^2 - 250xy + 75x
Answer:
The greatest common factor of the expression is 25x
Step-by-step explanation:
Here, we are interested in giving the greatest common factor of the expression.
We can do this by factorization till we have no common factors left.
the expression is;
100x^2 -250xy + 75x
we start with the common factor x;
x(100x -250y + 75)
The next thing to do here is to find the greatest common factor of 100,250 and 75.
The greatest common factor here is 25.
Thus, we have;
25x(4x -10y + 3)
There is no more factor to get from the terms in the bracket. This simply means that the terms in the bracket are no longer factorizable
So the greatest common factor we have is 25x
divide the sum of -5,-10 and -9 by the product of 2 and -3
Answer: 1/4
Step-by-step explanation:
Answer:
4
Step-by-step explanation:
=(-5)+(-10)+(-9)/2*(-3)
=-5-10-9/-6
=-24/-6
=4 ans.....
Can someone PLEASE help with this question? thank you
Answer:
C) 1
Step-by-step explanation:
First half:
Invert and multiply
x²/y²*y³/x²=x²y³/y²x³=y/x
Second half:
Invert and multiply
1/y*x/1=x/y
Combine
y/x*x/y=xy/xy=1
how many are 6 raised to 4 ???
Answer:
[tex]\large \boxed{1296}[/tex]
Step-by-step explanation:
6 raised to 4 indicates that the base 6 has an exponent or power of 4.
[tex]6^4[/tex]
6 is multiplied by itself 4 times.
[tex]6 \times 6 \times 6 \times 6[/tex]
[tex]=1296[/tex]
A fish jumps out of the water at a speed of 12 feet per second. The height y (in feet) of the fish above the surface of the water is represented by the equation y=-16x^2+12x, where x is the time (in seconds) since the jump began. The fish reaches its highest point above the surface of the water after 0.375 seconds. How far above the surface is the fish at this time?
Answer:
The fish is 2.25 ft above the surface at 0.375 seconds
Step-by-step explanation:
Given:
y=-16x^2+12x
x=0.375 seconds
Substitute x=0.375 into the equation
y=-16x^2+12x
= -16(0.375)^2 +12(0.375
= -16(0.140625) + 4.5
= -2.25 + 4.5
= 2.25
y=2.25 ft
The fish is 2.25 ft above the surface at 0.375 seconds
What is 12.5% of 72
Answer:
[tex]\boxed{9}[/tex]
Step-by-step explanation:
[tex]\sf of \ refers \ to \ multiplication.[/tex]
[tex]12.5\% \times 72[/tex]
[tex]\frac{12.5}{100} \times 72[/tex]
[tex]\sf Multiply.[/tex]
[tex]\frac{900}{100} =9[/tex]
complete the square to solve
f(x)=x^2+6x-7
A certain mixture of paint contains 5 parts white paint for every 4 parts blue paint. If a can of paint contains 75 ounces of white paint, how many ounces of blue paint are in the can?
Answer:
i think 60 parts of blue paint are in the can.
Step-by-step explanation:
ratio should be equal in both cases
therefore,let blue part in second case be x(suppose)
5÷4=75÷x
by equating this we will be able to identify the value of x
and the value of x comes 60 which is the required answer....
hope this will help you..
i try my best to give correct answer..
if i am mistake, i am sorry for that...
Maggie drew lines of best fit for two scatter plots, as shown. Which statement best describes the placement of the lines Maggie drew?
Answer:
B. Only line B is a well-placed line of best fit.
Step-by-step explanation:
A good line of best fit is a line drawn to represent, as much as possible, all data points. As long as the data points are clustered along the line, and are not farther from each other, the line is a best fit for such data points.
Therefore, from the two lines drawn by Maggie, Line B seems to be the only well-placed line of best fit, as virtually all the data points are clustered along the line, compared to Line A. Line A only runs across 2 data points. The rest data points are scattered far apart from the line.
Therefore, the statement that best describes the placement of the line of best fit drawn by Maggie is: "B. Only line B is a well-placed line of best fit."
Answer:
Only line B
Step-by-step explanation:
Line A is too low on the graph to be best fit for the plot
URGENT PLZ HELP THANK YOU!
Answer:
[tex](-5)^{11}[/tex]
Step-by-step explanation:
We can use the exponent rules. If we have [tex]\frac{a^b}{a^c}[/tex], then it will simplify to [tex]a^{b-c}[/tex].
b is 5, c is -6, and a is -5 so:
[tex]-5^{5-(-6)}\\-5^{11}[/tex]
Hope this helped!
Reduce 5/15 to its lowest terms
Answer:
The answer is 1/3
Answer:
1/3
Step-by-step explanation:
The factors of 5 are 1,5;
* The factors of 15 are 1,3,5,15.
We can see that the GCD is 5 because it is the largest number by which 5 y 15 can be divided without leaving any residue.
To reduce this fraction, simply divide the numerator and denominator by 5 (the GCF).
So, 5 /15
= 5÷5 /15÷5
= 1 /3
Find f(x) and g(x) so the function can be expressed as y = f(g(x)). (1 point) [tex]y=\frac{7}{x^{2} } +10[/tex]
Answer:
The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.
Step-by-step explanation:
Let suppose that [tex]g(x) = \frac{1}{x^{2}}[/tex], then [tex]f(g(x))[/tex] is:
[tex]f(g(x)) = 7\cdot \left(\frac{1}{x^{2}} \right) + 10[/tex]
[tex]f(g(x)) = 7\cdot g(x) + 10[/tex]
Thus,
[tex]f(x) = 7\cdot x + 10[/tex]
The functions are [tex]f(x) = 7\cdot x+10[/tex] and [tex]g(x) = \frac{1}{x^{2}}[/tex], respectively.
WILL GIVE BRAINLIEST!!!
Answer:
2 x^2 sqrt(13)
Step-by-step explanation:
sqrt( 52x^4)
sqrt( 4*13 * x^2 * x^2)
We know that sqrt(ab) = sqrt(a) sqrt(b)
sqrt( 4)*sqrt(13) *sqrt( x^2) *sqrt( x^2)
2 sqrt(13) x*x
2 x^2 sqrt(13)
52|2
26|2
13|13
1
[tex]\sqrt{52x^4}=\sqrt{2^2\cdot13\cdot(x^2)^2}=2x^2\sqrt{13}[/tex]
I beed help nowww hjbiuhkju uhbjknjhiuy
Answer:
answer hoga 3/2 ok.....
Answer: 3/2
Step-by-step explanation:
April typed a 5 page report in 50 mintues. Each page had 500 words at what rate is April typing
Answer:
Amy types at a rate of 50 words per minute
Step-by-step explanation:
In this question, we are interested in calculating the rate at which April is typing.
From the question, we can deduce that she typed a 5 page report, with each page having a total of 500 words.
Now, if each page has 500 words, the total number of words in all of the pages will be 5 * 500 = 2,500 words
Now, from here, we can see that 2,500 words were typed in 50 minutes.
The number of words per minute will be ;
Total number of words/Time taken = 2500 words/50 minutes
That will give a value of 50 words per minute
The winning times (in seconds) in a speed-skating event for men can be represented by the formula T = 46.97 - 0.099x, where x represents the year, with x = 0 corresponding to 1920. (For example in 1992, x would be 1992 - 1920 = 72.) According to the formula, what was the winning time in 1997? Round to the nearest hundredth. * 1 point 40.34 sec 39.35 sec 3609.07 sec 41.33 sec
Answer:
39.35 sec
Step-by-step explanation:
Given that:
The winning time is represented by the function:
T = 46.97 - 0.099x
Where x = year ; x = 0 corresponding to 1920
According to the formula, what was the winning time in 1997?
first find the value of x;
x = 1997 - 1920 = 77 years
Nowing plugging the value of x in the function :
T = 46.97 - 0.099(77)
T = 46.97 - 7.623
T = 39.347 seconds
T = 39.35 s
Which polynomial is a factor of both expressions? x – 8 x + 7 x – 2 (x – 2)2
Answer:
C. x-2
Step-by-step explanation:
edge
Answer: the 3rd the answer c
x-2
Step-by-step explanation:
I answered all my work correctly but I don’t understand this one.
Name a real world context to describe the sums of rational numbers.
Step-by-step explanation:
when you are cooking you need to measure fractions of ingredients
what is the sum of the interior angles of a regular hexagon
Answer:
see below
Step-by-step explanation:
The sum of the interior angles of any polygon can be found with the formula 180(n - 2) where n = number of sides. In this case, n = 6 so the answer is 180(6 - 2) = 180 * 4 = 720°.
Answer:
The sum of the interior angles of a regular hexagon is 720°
Step-by-step explanation:
As we know that the sum of interior angle is 180(n-2). So the number of sides of hexagon is 6. Now, 180(6-2)=180*4=720°
Jack is building a square garden. Each side length measures 777 meters. Jack multiplies 7\times77×77, times, 7 to find the amount of space in his garden is equal to 494949 square meters. Which measurement does 494949 square meters represent?
Answer:
49 square meters represent area of the square garden
Step-by-step explanation:
Each side length=7 meters
He multiplied 7 × 7 times to find the amount of space
=49 square meters
Jack is trying to measure the area of his square garden
Area of the square garden = length^2
=Length × length
Recall,
Length=7 meters
Area of the square garden= 7 meters × 7 meters
=49 square meters
the perimeter of square is 76 cm find are of square
Answer:
Given the information above, the area of the square is 361 cm²
Step-by-step explanation:
A square is a shape with four equal sides. So, in order to find the area of the square, we must find the length of each individual side. We can do this by dividing the perimeter by 4 because a square has 4 equal sides meaning they have the same lengths.
The perimeter of the square is 76. So, let's divide 76 by 4.
76 ÷ 4 = 19
So, the lengths of each sides in the square is 19cm.
In order to find the area, we must multiply the length and the width together. Since a square has equal sides, then we will multiply 19 by 19 to get the area.
19 × 19 = 361
So, the area of the square is 361 cm²
Answer:
361 cm^2
Step-by-step explanation:
The area of a square can be found by squaring the side length.
[tex]A=s^2[/tex]
A square has four equal sides. The perimeter is the sum of all four sides added together. Therefore, we can find one side length by dividing the perimeter by 4.
[tex]s=\frac{p}{4}[/tex]
The perimeter is 76 centimeters.
[tex]s=\frac{76 cm}{4}[/tex]
Divide 76 by 4.
[tex]s=19 cm[/tex]
The side length is 19 centimeters.
Now we know the side length and can plug it into the area formula.
[tex]A=s^2\\s=19cm[/tex]
[tex]A= (19 cm)^2[/tex]
Evaluate the exponent.
(19cm)^2= 19 cm* 19cm=361 cm^2
[tex]A= 361 cm^2[/tex]
The area of the square is 361 square centimeters.
How to do this question plz answer my question plz
Answer:
£22.40
Step-by-step explanation:
60% of 12 is 7.2 (you can also write it as 7.20) so you times that by 2 to get 14.4 (you can also write it as 14.40) and [tex]\frac{1}{3}[/tex] of 24 is 8, so you add that to the 14.4 and you get 22.4 (also writen as 22.4) hope this helps!
Find the slope and Y-Intercept of the line. 6X plus 2Y equals -88
Answer:
That’s ez pz
Step-by-step explanation:
Answer:
The slope is -3 and the y intercept is -44
Step-by-step explanation:
6X+ 2Y= -88
The slope intercept form of a line is y= mx+b where m is the slope and b is the y intercept
Solve for y
6X-6x+ 2Y= -88-6x
2y = -6x-88
Divide by 2
y = -3x -44
The slope is -3 and the y intercept is -44
All the edges of a cube have the same length. Tony claims that the formula SA = 6s, where s is the length of
each side of the cube, can be used to calculate the surface area of a cube.
a. Draw the net of a cube to determine if Tony's formula is correct.
b. Why does this formula work for cubes?
Frances believes this formula can be applied to calculate the surface area of any rectangular prism. Is
she correct? Why or why not?
d. Using the dimensions of Length, Width and Height, create a formula that could be used to calculate the
surface area of any rectangular prism, and prove your formula by calculating the surface area of a
rectangular prism with dimensions L = 5m, W = 6m and H=8m.
Answer:
Here's what I get
Step-by-step explanation:
a. Net of a cube
Fig. 1 is the net of a cube
b. Does the formula work?
Tony's formula works if you ignore dimensions.
There are six squares in the net of a cube.
If each side has a unit length s, the total area of the cube is 6s.
c. Will the formula work for any rectangular prism?
No, because a rectangular prism has sides of three different lengths — l, w, and h — as in Fig. 2.
d. Area of a rectangular prism
A rectangular prism has six faces.
A top (T) and a bottom (b) — A = 2×l×w
A left (L) and a right (R) — A = 2×l×h
A front (F) and a back (B) — A = 2×w×h
Total area = 2lw + 2lh + 2wh
If l = 5 m, w = 6 m and h = 8 m,
[tex]\begin{array}{rl}A &=& \text{2$\times$ 5 m $\times$ 6 m + 2$\times$ 5 m $\times$ 8 m + 2 $\times$ 6 m $\times$ 8 m}\\&=& \text{60 m}^{2} + \text{80 m}^{2} + \text{96 m}^{2}\\&=& \textbf{236 m}^{2}\\\end{array}[/tex]
ASAP PLEASE GIVE CORRECT ANSWER
In a rectangular coordinate system, what is the number of units in the distance from the origin to the point $(-15, 8)$? Enter your answer
distance of a point [tex](x,y)[/tex] from origin is $\sqrt{x^2+y^2}$
so distance is $\sqrt{(-15)^2+(8)^2}=\sqrt{225+64}=\sqrt{289}=17$
Answer:
Distance=17 units
Step-by-step explanation:
Coordinates of the origin: (0, 0)
Coordinates of the point in question: (-15, 8)
Distance formula for any two points [tex](x_1,y_1), (x_2,y_2)[/tex] on the plane:
[tex]distance=\sqrt{(x_2-x_1)^2+(y_2-y_1)^2} \\distance=\sqrt{(-15-0)^2+(8-0)^2}\\distance=\sqrt{(15)^2+(8)^2}\\distance=\sqrt{225+64} \\distance=\sqrt{289} \\distance=17[/tex]
1.Solve by factorization method: x+1/x=11 1/11 2.Comment on the nature of roots for 4x^2-5=2(〖x+1)〗^2-7 plz, help...
Answer:
The equation
[tex]4\,x^2-5=2\,(x+1)^2-7[/tex]
can be solved by first expanding all indicated operations, and later when the constant terms disappear, by factoring out 2x , leaving the equation as a product of two factors equal zero, from which it is easy to extract the roots. See below.
Step-by-step explanation:
When solving for x in the following expression, and using factoring to apply at the end the zero product theorem:
[tex]4\,x^2-5=2\,(x+1)^2-7\\4\,x^2-5=2\,(x^2+2x+1)-7\\4\,x^2-5=2\,x^2+4\,x+2-7\\4\,x^2-5=2\.x^2+4\,x-5\\4\,x^2=2\,x^2+4\,x\\4\,x^2-2\,x^2-4\,x=0\\2\,x^2-4\,x=0\\2\,x\,(x-2)=0[/tex]
We observe that for the last product, to get a zero, x has to be zero (making the first factor zero), or x has to be "2" making the binomial factor zero.