Answer: The factor that lead to cyclopropane being less stable than the other cycloalkanes is the presence of a RING STRAIN.
Explanation:
In organic chemistry, the end carbon atoms of an open aliphatic chain can join together to form a closed system or ring to form cycloalkanes. Such compounds are known as cyclic compounds. Examples include cyclopropane, cyclobutane, cyclopentane and many among others.
Cyclopropane is less stable than other cycloalkanes mentioned above because of the presence of ring strain in its structural arrangement. The ring strain is the spatial orientation of atoms of the cycloalkane compounds which tend to give off a very high and non favourable energy. The release of heat energy which is stored in the bonds and molecules cause the ring to be UNSTABLE and REACTIVE.
The presence of the ring strain affects mainly the structures and the conformational function of the smaller cycloalkanes. cyclopropane, which is the smallest cycloalkane than the rest mentioned above, contains only 3 carbons with a small ring.
If we have 1.23 mol of NaOH in solution and 0.85 mol of Cl2 gas is available to react, which one is the limiting reactant? Give your reason.
Answer:
NaOH is the limiting reactant.
Explanation:
Hello there!
In this case, since the reaction taking place between sodium hydroxide and chlorine has is:
[tex]NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Which must be balanced according to the law of conservation of mass:
[tex]2NaOH+Cl_2\rightarrow NaCl+NaClO+H_2O[/tex]
Whereas there is a 2:1 mole ratio of NaOH to Cl2, which means that the moles of the former that are consumed by 0.85 moles of the latter are:
[tex]n_{NaOH}=0.85molCl_2*\frac{2molNaOH}{1molCl_2}\\\\n_{ NaOH}=1.7molNaOH[/tex]
Therefore, since we just have 1.23 moles out of 1.70 moles of NaOH, we infer this is the limiting reactant.
Regards!
A straight chain hydrocarbon with the formula C5H8_____
Answer:
I has 2 double carbon carbon bonds
A sample of oxygen gas occupies a volume of 2.,0cm3 at pressure of 700K pa. what will be pressure of the same sample occupies a volume of 150cm, assume temperature remains constant
Answer:
The pressure will be 933.33 Kpa
Explanation:
Given that:
Volume V₁ = 200 cm³ (note, there is a mistake in the volume. It is supposed to be 200 cm³)
Pressure P₁ = 700 Kpa
Pressure P₂ = ??? (unknown)
Volume V₂ = 150 cm³
Temperature = constant
Using Boyle's law:
PV = constant
i.e.
P₁V₁ = P₂V₂
700 Kpa × 200 cm³ = P₂ × 150 cm³
P₂ = (700 Kpa × 200 cm³)/150 cm³
P₂ = 933.33 Kpa
What is the meaning of beaker?
Answer:
a lipped cylindrical glass container for laboratory use
Explanation:
The information below describes a redox reaction.
Ag+ (aq) + Al(s) — Ag(s) + Al3+ (aq)
Ag+ (aq) + -> Ag(s)
Al(s)->A3+ (aq) + 3e-
What is the coefficient of silver in the final, balanced equation for this reaction?
Answer:
Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
Explanation:
Oxidation: Al°(s) => Al⁺³(aq) + 3e⁻
Reduction: 3Ag⁺(aq) + 3e⁻ => 3Ag°(s)
_________________________________________
Net Rxn: Al°(s) + 3Ag⁺(aq) => Al⁺³(aq) + 3Ag(s)
One mole of neutral aluminum atoms (Al°(s)) undergo oxidation delivering 3 moles of electrons to 3 moles silver ions (3Ag⁺³(aq)) that are reduced to 3 moles of neutral silver atoms (3Ag°(s)) in basic standard state 25°C; 1atm.
A balanced equation obeys the law of conservation of mass. According to the law of conservation of mass, mass can neither be created nor be destroyed. The coefficient of silver is 3.
What is a balanced equation?A balanced chemical equation can be defined as the chemical equation in which the number of reactants and products on both sides of the equation are equal. The amount of reactants and products on both sides of the equation will be equal in a balanced chemical equation.
The numbers which are used to balance the chemical equation are called the coefficients. The coefficients are the numbers which are added in front of the formula.
The balanced chemical equation for the given redox reaction is given as:
Al (s) + 3 Ag⁺ (aq) → Al³⁺ (aq) + 3Ag (s)
Thus the coefficient of silver is 3.
To know more about balanced equation, visit;
https://brainly.com/question/29769009
#SPJ7
54.56 g of water at 80.4 oC is added to a calorimeter that contains 47.24 g of water at 40 oC. If the final temperature of the system is 59.4 oC, what is the calorimeter constant (C calorimeter)
Answer:
49.5J/°C
Explanation:
The hot water lost some energy that is gained for cold water and the calorimeter.
The equation is:
Q(Hot water) = Q(Cold water) + Q(Calorimeter)
Where:
Q(Hot water) = S*m*ΔT = 4.184J/g°C*54.56g*(80.4°C-59.4°C) = 4794J
Q(Cold water) = S*m*ΔT = 4.184J/g°C*47.24g*(59.4°C-40°C) = 3834J
That means the heat gained by the calorimeter is
Q(Calorimeter) = 4794J - 3834J = 960J
The calorimeter constant is the heat gained per °C. The change in temperature of the calorimeter is:
59.4°C-40°C = 19.4°C
And calorimeter constant is:
960J/19.4°C =
49.5J/°C
Based on your knowledge of factors affecting the rate of reaction, why is there a danger of explosions in places such as flour mills and coal mines where there are large quantities of powdered, combustible materials? 
Classify each phrase according to whether it applies to photophosphorylation, oxidative phosphorylation, or both
Photophosphorylation Oxidative phosphorylation Both
1. occurs in plants produces ATP
2. occurs in chloroplasts
3. occurs in mitochondria
4. involves a larger electrical component
5. involves a smaller electrical component
6. involves a proton gradient
Answer:
1. Both
2. Phosphorylation
3. Both
4. Phosphorylation
5. Oxidative.
6. Both
Explanation:
Phosphorylation only occurs in chloroplast and it involves larger electrical component. Both Phosphorylation and oxidative occurs in mitochondria and it involves proton gradient. They occur in plants to produce ATP. Oxidative involves in smaller electrical component.
Photophosphorylation is a process that captures the solar energy from the sun to transform it into chemical energy. It occurs in the chloroplast of a plant cell.
What are photophosphorylation and oxidative phosphorylation?Photophosphorylation is a process of converting solar energy from the sun to ATP needed by plants and other organisms for cellular function and activity. This process takes place in the chloroplast of the plant cell and requires electrical components.
Oxidative Phosphorylation is the process of producing ATP with the help of oxygen and enzymes hence, occurs in aerobic cells. It does not need a larger electrical component.
Both phosphorylation and oxidative phosphorylation occurs in the mitochondria of plants cells and involves a proton gradient for the formation of ATP.
Therefore, oxidative phosphorylation option 5. involves a smaller electrical component, phosphorylation option 2. occurs in the chloroplast, and option 4. needs a larger electrical component.
Learn more about phosphorylation here:
https://brainly.com/question/1870229
define molecular formula?
A molecular formula is an expression that states the number and type of atoms present in a molecule of a substance.
Example : H2O (water) There are 2 atoms of Hydrogen and 1 atom of Oxygen in this substance
Which of the following ionization energies indicates an atom is most likely to gain electrons and form an anion or not form an ion at all?
Group of answer choices
578 kJ/mol
9460 kJ/mol
496 kJ/mol
786 kJ/mol
Answer:
Explanation:
578kj/mol
Can someone help me with this one
Answer:
Easy my dude let me help you out
A.In
B.27
C.73
D.49
E.56
F.56
G.114
H.180
Also with protons and electrons they equal the same atomic number
20ml of water is mixed with 40gm of fine powder. Calculate the concentration of the solution obtained.
Answer:
[tex]\%m=66.7\%[/tex]
Explanation:
Hello there!
In this case, according to the given information, it turns out possible for us to calculate the concentration of the solution obtained, by knowing 20 mL of water are the same to 20 g and therefore the mass of the solution is 40g+20g=60g.
Next, we apply the following equation to obtain the required concentration:
[tex]\%m=\frac{40g}{60g} *100\%\\\\\%m=66.7\%[/tex]
Regards!
Balance the equation by ion electron method
Answer:i believe you are to decompose the formula (i think)
You dissolve 14 g of Mg(NO3)2 in water and dilute to
750 mL. What is the molarity of this solution?
Answer:
0.127M
Explanation:
Molarity of a solution = number of moles (n) ÷ volume (V)
Molar mass of Mg(NO3)2 = 24 + (14 + 16(3)}2
= 24 + {14 + 48}2
= 24 + 124
= 148g/mol
Using the formula, mole = mass/molar mass, to convert mass of Mg(NO3)2 to mole
mole = 14g ÷ 148g/mol
mole = 0.095mol
Volume = 750mL = 750/1000 = 0.75L
Molarity = 0.095mol ÷ 0.75L
Molarity = 0.127M
Rank the solutions below in order of increasing acidity. (Drag and drop into the appropriate area)
0.01 M CH3COOH
0.1 M NaOH
0.01 M H2SO4
3 M NH3
0.1 M HCl
Answer:
0.1 M NaOH, 3 M NH3, 0.01 M CH3COOH, 0.01 M H2SO4, 0.1 M HCl
Explanation:
Strong acids are more acids than weak acids. In the same way, strong bases are more basic than weak bases that are in the same concentration.
Then, the more concentrated acid or base will be more acidic or basic.
CH3COOH. Weak acid
NaOH. Strong base
H2SO4. Strong acid
NH3. Weak base.
HCl. Strong acid
The less acid (More basic):
0.1 M NaOH, 3 M NH3, 0.01 M CH3COOH, 0.01 M H2SO4, 0.1 M HClStrong base, weak base, weak acid, diluted strong acid, undiluted strong acid
A sample of 0.2140 g of an unkown substance monoprotic acid was dissolved in 25.0 mL of water and titrated with 0.950 M NaOH. The acid required 27.4 mL of base to reach the equivalence point. After 15.0 mL of base had been added in the titration, the pH was found to be 6.50. What is the Ka for the unknown acid?
Solution :
The equation is :
[tex]$HA (aq) + NaOH(aq) \rightleftharpoons NaA(aq) + H_2O(l)$[/tex]
The number of the moles of HA os 0.00285, and the volume is 25 mL.
15 mL of the 0.0950 M NaOH is added.
The total volume of a solution is V = 25 mL + 15 mL = 40 mL
The pH of the solution is 6.50
Calculating the [tex]K_a[/tex] of HA
[tex]$HA(aq) \rightleftharpoons A^-(aq)+H^+$[/tex]
[tex]K_a=\frac{[A^-].[H^+]}{[HA]}[/tex]
Let s calculate the concentration of HA and NaOH
[tex]$[HA] = \frac{^nH_A}{V}$[/tex]
[tex]$=\frac{0.00285 \ mol}{0.04 \ L}$[/tex]
= 0.07125 M
[tex]$[NaOH]= \frac{0.015L \times 0.0950 M}{V}$[/tex]
[tex]$=\frac{0.001425 mol}{0.04L}$[/tex]
= 0.0356 M
[tex]$HA(aq) \ \ + \ \ NaOH(aq) \ \ \rightleftharpoons NaA(aq) \\ + \ \ H_2O(aq)$[/tex]
Initial conc. (M) 0.07125 M 0.0356 M 0 M
Change in conc. (M) -0.0356 M -0.0356 M + 0.0356 M
Equilibrium conc. (M) 0.03565 M 0 M 0.0356 M
Therefore, the concentration of HA and the NaA at the equilibrium are [HA] = 0.03565 M and [NaA]= 0.0356 M
0.0356 M of NaA dissociates completely into 0.0356 M [tex]Na^+[/tex] and 0.0356 M [tex]A^-[/tex]
Now for [tex][H^+][/tex]
[tex]$[H^+] = 10^{-pH}$[/tex]
[tex]$=10^{-6.5}$[/tex]
[tex]$=3.16 \times 10^{-7}$[/tex]
Calculating the value of [tex]K_a[/tex],
[tex]K_a=\frac{[A^-].[H^+]}{[HA]}[/tex]
[tex]$=\frac{0.0356 \times 3.16 \times 10^{-7}}{0.03565}$[/tex]
[tex]$=3.16\times 10^{-7}$[/tex]
Therefore the the value of [tex]K_a[/tex] for the unknown acid is [tex]$3.16\times 10^{-7}$[/tex].
4) The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
rate = k[P]?[Q]
Complete the table of data below for the reaction between P and Q
*Help asap please*
Answer:
The initial rate of the reaction between substances P and Q was measured in a series of
experiments and the following rate equation was deduced.
[tex]rate = k[P]^{2} [Q][/tex]
Complete the table of data below for the reaction between P and Q
Explanation:
Given rate of the reaction is:
[tex]rate= k[P]^{2} [Q]\\=>[Q]=\frac{rate}{k.[P]^{2} } \\and \\\\\\\ [P]=\sqrt{\frac{rate}{k.[Q]} }[/tex]
Substitute the given values in this formulae to get the [P], [Q] and rate values.
From the first row,
the value of k can be calulated:
[tex]k=\frac{rate}{[P]^{2}[Q] } \\ =\frac{4.8*10^-3}{(0.2)^{2} 2. (0.30)} \\ =0.4[/tex]
Second row:
2. Rate value:
[tex]rate =0.4* (0.10)^{2} * (0.10)\\\\ =4.0*10^-3mol.dm^-3.s^-1[/tex]
3.Third row:
[tex][Q]=\frac{rate}{k.[P]^{2} } \\ =9.6*10^-3 / (0.4 *(0.40)^{2} \\ =0.15mol.dm^{-3}[/tex]
4. Fourth row:
[tex][P]=\sqrt{\frac{rate}{k.[Q]} }\\=>[P]=\sqrt{\frac{19.2*10^-3}{0.60*0.4} } \\=>[P]=0.283mol.dm^{-3}[/tex]
Discuss the four impure forms of carbon
Various structures, or allotropes, of carbon, are precious stone, graphite, and fullerenes. In jewel, every carbon iota is attached to four other carbon iotas, shaping an unbending construction that makes precious stones hard.
2 AICI3 + 3 Ca - 3 CaCl2 + 2 Al
You react aluminum chloride with calcium metal. You want to produce 40.00 grams of aluminum. How many grams of calcium do
you need?
Answer:
50 gram calcium do you need
Explanation:
please make me brainlist answer
Of the below gases, which would deviate most from ideal gas behavior? CO O2 NH3 SF4
Answer:
For gases such as hydrogen, oxygen, nitrogen, helium, or neon, deviations from the ideal gas law are less than 0.1 percent at room temperature and atmospheric pressure. Other gases, such as carbon dioxide or ammonia, have stronger intermolecular forces and consequently greater deviation from ideality.
Explanation:
We have a 3.7 L container filled with 82 g of CO gas. This container is maintained at a temperature of 298 K
a) How many moles of CO gas are in this container?
b) What is the pressure inside the container?
Answer:
a) 2.9 mol
b) 19 atm
Explanation:
Step 1: Given data
Volume of the container (V): 3.7 LMass of CO gas (m): 82 gTemperature (T): 298 KStep 2: Calculate the number of moles (n) corresponding to 82 g of CO
The molar mass of CO is 28.01 g/mol.
82 g × 1 mol/28.01 g = 2.9 mol
Step 3: Calculate the pressure (P) inside the container
We will use the ideal gas equation.
P × V = n × R × T
P = n × R × T / V
P = 2.9 mol × (0.0821 atm.L/mol.K) × 298 K / 3.7 L = 19 atm
which type of chemical bond would be formed between two elements having electron configuration of 1s2 2s2 2p6 3s2 and 1s2 2s2 2p4
Classify these bonds as ionic, polar covalent, or nonpolar covalent. You are currently in a sorting module. Turn off browse mode or quick nav, Tab to items, Space or Enter to pick up, Tab to move, Space or Enter to drop. Ionic Polar covalent Nonpolar covalent C-O , Mg-F , Cl-Cl
Answer: The bond present in given compounds is as follows-
Ionic - MgFPolar covalent - CONon-polar covalent - Cl-ClExplanation:
A bond formed due to transfer of electrons from one atom to another is called ionic bond.An ionic bond is always formed between a metal and a non-metal atom.
For example, MgF has metal magnesium and non-metal fluorine. So, an ionic bond is there in the compound MgF.
A compound in which valence electrons are shared between two atoms is called a covalent bond. A covalent bond is always formed between two or more non-metal atoms.When sharing of electrons occur between atoms of different electronegativity then the bond formed is called a polar covalent bond.
For example, C-O has a polar covalent bond.
When sharing of electrons occur between atoms of same element then bond formed is called non-polar covalent bond.For example, Cl-Cl is a non-polar covalent bond.
A chemist requires a large amount of 3-bromo-3-methyl-1-cyclohexene as starting material for a synthesis and decides to carry out the following NBS allylic bromination reaction in the presence of UV light. Draw the structures of all of the observed products.
Answer:
Explanation:
Bromination of allylic compounds occurs when hydrogen atoms from neighboring double bonds are replaced. As a result, there are four (4) potential bromination products, as seen in the figure below.
NBS, also known as N-Bromo succinimide, is employed as a replacement for Br2 in certain instances. The benefit of NBS is that it produces a reduced level concentration for Br2, which means that bromination of the double bond isn't competitive. As soon as Br2 has been produced, the reaction continues in the same way as the remaining free-radical halogenation reactions.
Atoms are found to move from one lattice position to another at the rate of 300,000 jumps/s at 500 0C when the activation energy for their movement is 10,000 cal/mol. Calculate the jump rate at 400 0C.
Answer:
1
Explanation:
1
g The activation energy for diffusion depends on the strength of atomic bonds. Higher strength bonds result in higher activation energies. How do you predict the activation energy for self diffusion will be related to melting temperature
Answer:
Yes, the activation energy for self diffusion is related to melting temperature.
Explanation:
The activation energy for self diffusion is related to melting temperature because bonds result due to activation energies and we know that bonds are break down when the temperature is increases and as a result the solid substance melts and change into liquid state. When the bonds between atoms are broken down with the use of heat energy the state of matter changes so we can say that activation energy is related to temperature.
La función de la levadura en quimica
Explanation:
las levaduras son pequeños organismos unicelulares que se alimentan de azúcares simples y los descomponen en dióxido de carbono, alcohol (etanol, específicamente), moléculas de sabor y energía. El proceso se conoce como fermentación.
Hypochlorous acid decays in the presence of ultraviolet radiation. Assume that degradation occurs accord- ing to first-order kinetics and the rate of degradation was measured to be 0.12 day−1 (at a particular sun- light intensity and temperature). Given this, how long does it take for the concentration of hypochlorous acid to reach nondetectable levels (0.05 mg · L−1) if the initial concentration were 3.65 mg · L−1?
Answer:
35.75 days
Explanation:
From the given information:
For first-order kinetics, the rate law can be expressed as:
[tex]\mathsf{In \dfrac{C}{C_o} = -kt}[/tex]
Given that:
the rate degradation constant = 0.12 / day
current concentration C = 0.05 mg/L
initial concentration C₀ = 3.65 mg/L
[tex]\mathsf{In( \dfrac{0.05}{3.65})= -(0.12) t}[/tex]
㏑(0.01369863014) = -(0.12) t
-4.29 = -(0.12)
t = -4.29/-0.12
t = 35.75 days
Which of the choices below has more heat being transferred as thermal energy from one place to another?
A. A bowl of ice water
B. A pot of boiling water
Answer:
B
Explanation:
So, a pot of boliling is hot right? of course, since it is hot thermal energy will be transferred from one place to another. I don't know if this is correct but I just wanted to give it a try.
You have 4 litres of a 3.0 mol/L solution of NaCl in a chemical store room.
How many moles of NaCl are present?
Answer:
12
Explanation:
nNaCl= 4x3=12