Dawn and Jackson have baseball cards in the ratio of 2:3. Together, they have a total of 60 baseball cards. How many baseball cards does each child have?

Answers

Answer 1

Answer:

24 and 36

Step-by-step explanation:

2x + 3x = 60

5x = 60

x = 12

Dawn has 2(12) = 24

Jackson has 3(12) = 36

Answer 2

Step-by-step explanation:

To find the number of baseball cards each person received we must first find the total parts

That's

2 + 3 = 5

For Dawn

Dawn's part is 2

We have

2/5 × 60

= 24 baseball cards

For Jackson

Jackson's part is 3

That's

3/5 × 60

= 36 baseball cards

Hope this helps you


Related Questions

is 7.2 a repeating or terminating decimal

Answers

Answer: terminating

Step-by-step explanation:

Answer:

7.2 is a terminating decimal.

Step-by-step explanation:

Terminating decimals are decimals that have an end point. The decimal does not continue to go on and on with numbers but, it stops at one number which makes it terminating.

Repeating decimals are decimals that go on and on with the same number or same patterns of numbers.

So, since 7.2 has an endpoint, then it is a terminating decimal.

type in symbols to make 3,7,12,2 equal 45

Answers

Answer:

The answer is (3×7) + (12×2) .

[tex](3 \times 7) + (12 \times 2)[/tex]

[tex] = 21 + 24[/tex]

[tex] = 45[/tex]

AB =
Round your answer to the nearest hundredth.
B
?
2
25°
С
A

Answers

Answer:

? = 4.73

Step-by-step explanation:

Since this is a right triangle we can use trig functions

sin theta = opp / hyp

sin 25 = 2 / ?

? sin 25 = 2

? = 2 / sin 25

? =4.732403166

To the nearest hundredth

? = 4.73

the cube root of 2 to the seventh power

Answers

Answer:

4 2^(1/3) or 5.0396841995794926590688424291129134022810058588060319203279004486... decimal

Step-by-step explanation:

Simplify the following:

(2^(1/3))^7

Hint: | For all a>=0, (a^(1/3))^m = a^(m/3). Apply this to (2^(1/3))^7.

Multiply exponents. (2^(1/3))^7 = 2^(7/3):

2^(7/3)

Hint: | Separate the exponent of 2^(7/3) into integer and fractional parts.

2^(7/3) = 2^(6/3 + 1/3) = 2^(6/3)×2^(1/3):

2^(6/3) 2^(1/3)

Hint: | Divide 6 by 3.

6/3 = (3×2)/3 = 2:

2^2 2^(1/3)

Hint: | Evaluate 2^2.

2^2 = 4:

Answer:  4 2^(1/3) or 5.0396841995794926590688424291129134022810058588060319203279004486... decimal

Given the following three points, find by hand the quadratic function they represent.
(-1,-8), (0, -1),(1,2)
(1 point)
Of(x) = -51% + 87 - 1
O f(x) = -3.2? + 4.1 - 1
Of(t) = -202 + 5x - 1
Of(1) = -3.1? + 10.1 - 1​

Answers

Answer:

The correct option is;

f(x) = -2·x² + 5·x - 1

Step-by-step explanation:

Given the points

(-1, -8), (0, -1), (1, 2), we have;

The general quadratic function;

f(x) = a·x² + b·x + c

From the given points, when x = -1, y = -8, which gives

-8 = a·(-1)² + b·(-1) + c = a - b + c

-8 =  a - b + c.....................................(1)

When x = 0, y = -1, which gives;

-1 = a·0² + b·0 + c = c

c = -1.....................................................(2)

When x = 1, y = 2, which gives;

2 = a·1² + b·1 + c = a + b + c...............(3)

Adding equation (1) to (3), gives;

-8 + 2 = a - b + c + a + b + c

-6 = 2·a + 2·c

From equation (2), c = -1, therefore;

-6 = 2·a + 2×(-1)

-2·a  = 2×(-1)+6 = -2 + 6 = 4

-2·a = 4

a = 4/-2 = -2

a = -2

From equation (1), we have;

-8 =  a - b + c = -2 - b - 1 = -3 - b

-8 + 3 = -b

-5 = -b

b = 5

The equation is therefore;

f(x) = -2·x² + 5·x - 1

The correct option is f(x) = -2·x² + 5·x - 1.

What is the value of b?

Answers

Answer:

  55°

Step-by-step explanation:

Perhaps you want the measure of angle B. (There is no "b" in the figure.)

That measure is half the measure of the intercepted arc:

  m∠B = 110°/2 = 55°

Angle B is 55°.

3/4a−16=2/3a+14 PLEASE I NEED THIS QUICK and if you explain the steps that would be geat:) Thank youuuuuuu

Answers

Answer:

360

Step-by-step explanation:

3/4a - 16 = 2/3a + 14               ⇒ collect like terms 3/4a - 2/3a = 14 + 16               ⇒ bring the fractions to same denominator9/12a - 8/12a = 30                  ⇒ simplify fraction1/12a = 30                               ⇒ multiply both sides by 12a = 30*12a = 360                                   ⇒ answer

Given that p=x^2-y^2/x^2+xy
I. Express p in the simplest form
ii. Find the value of p, if x=-4 and y=-6

Answers

Answer:

When x = -4 and y = -6, p = 37.75

Step-by-step explanation:

Given that p = x² - y²/x² + x·y, we have;

p = (x² × x² -y² + x·y×x²)/x²

p = (x²⁺² - y² + x¹⁺² × y)/x²

p = (x⁴ - y² + x³·y)/x²

Therefore, p in the simplest form is given as follows;

[tex]p = \dfrac{x^4 - y^2 + x^3 \cdot y }{x^2}[/tex]

To find the value of p when x = -4 and y = -6, we plug in the value of x and y into the above equation to get the following equation;

[tex]p = \dfrac{(-4)^4 - (-6)^2 + (-4)^3 \cdot (-6) }{(-4)^2} = 37.75[/tex]

Therefore, the value of p when x = -4 and y = -6 is equal to 37.75.

I need hellp please its my last chance to become a senior please someone

Answers

Answer:

d= 6

r= 6/2

r=3

V= π. r². h

V= π . 3². 14

V= π. 9 . 14

V= π 126 cm³

V= 126 π cm³ (π not in number)

hope it helps^°^

Answer:if you use the formula it is 126 pi cm cubed

The answer is c

Step-by-step explanation:

What the relation of 1/c=1/c1+1/c2 hence find c​

Answers

[tex]\frac 1c=\frac1{c_1}+\frac1{c_2} [/tex]

$\frac1c=\frac{c_1+c_2}{c_1c_2}$

$\implies c=\frac{c_1c_2}{c_1+c_2}$

PLEASE HELP
Find the area and the perimeter of the shaded regions below. Give your answer as a completely simplified exact value in terms of π (no approximations). The figures below are based on semicircles or quarter circles and problems b), c), and d) are involving portions of a square.

Answers

Answer:

perimeter is  4 sqrt(29) + 4pi  cm

area is 40 + 8pi cm^2

Step-by-step explanation:

We have a semicircle and a triangle

First the semicircle with diameter 8

A = 1/2 pi r^2 for a semicircle

r = d/2 = 8/2 =4

A = 1/2 pi ( 4)^2

  =1/2 pi *16

  = 8pi

Now the triangle with base 8 and height 10

A = 1/2 bh

  =1/2 8*10

  = 40

Add the areas together

A = 40 + 8pi cm^2

Now the perimeter

We have 1/2 of the circumference

1/2 C =1/2 pi *d

         = 1/2 pi 8

        = 4pi

Now we need to find the length of the hypotenuse of the right triangles

using the pythagorean theorem

a^2+b^2 = c^2

The base is 4 ( 1/2 of the diameter) and the height is 10

4^2 + 10 ^2 = c^2

16 + 100 = c^2

116 = c^2

sqrt(116) = c

2 sqrt(29) = c

Each hypotenuse is the same so we have

hypotenuse + hypotenuse + 1/2 circumference

2 sqrt(29) + 2 sqrt(29) + 4 pi

4 sqrt(29) + 4pi  cm

Step-by-step explanation:

First we need to deal with the half circle. The radius of this circle is 4, because the diameter is 8. The formula for the circumference of a circle is 2piR.

2pi4 so the perimeter for the half circle would be 8pi/2.

The area of that half circle would be piR^2 so 16pi/2.

Now moving on the triangle part, we need to find the hypotenuse side of AC. We will use the pythagoram theorem. 4^2+10^2=C^2

16+100=C^2

116=C^2

C=sqrt(116)

making the perimeter of this triangle 2×sqrt(116)

The area of this triangle is 8×10=80, than divided by 2 which is equal to 40.

We than just need to add up the perimeters and areas for both the half circle and triangle.

The area would be equal to 8pi+40

The perimeter would be equal to 4pi+4(sqrt(29))

I need help fast please

Answers

Answer:

Difference : 4th option

Step-by-step explanation:

The first thing we want to do here is to factor the expression x² + 3x + 2. This will help us if it is similar to the factored expression " ( x + 2 )( x + 1 ). " The denominators will be the same, and hence we can combine the fractions.

x² + 3x + 2 - Break the expression into groups,

( x² + x ) + ( 2x + 2 ) - Factor x from x² + x and 2 from 2x + 2,

x( x + 1 ) + 2( x + 2 ) - Group,

( x + 2 )( x + 1 )

This is the same as the denominator of the other fraction, and therefore we can combine the fractions.

x - 1 / ( x + 2 )( x + 1 )

As you can see this is not any of the options present, as we have not expanded ( x + 2 )( x + 1 ). Remember previously that ( x + 2 )( x + 1 ) = x² + 3x + 2. Hence our solution is x - 1 / x² + 3x + 2, or option d.

A spinner has 3 red spaces, 5 white spaces, and 1 black space. If the spinner is
spun once, what is the theoretical probability of the spinner NOT stopping on
red?
P(Not red) =

Answers

Answer:

[tex]\frac{2}{3}[/tex]

Step-by-step explanation:

If we have 3 red spaces, 5 white spaces, and one blank space, there are a total of 9 spaces.

Since there are 3 red spaces, there is a [tex]\frac{3}{9} = \frac{1}{3}[/tex] chance of getting a red. However, the question asks the probability of not getting a red, so the chances of not getting a red are [tex]1 -\frac{1}{3} = \frac{2}{3}[/tex].

Hope this helped!

Use the discriminant to determine the number of real solutions to the equation. −8m^2+2m=0

Answers

Answer:

discriminant is b²-4ac

= 2²-4(-8)(0)

= 0

one solution

hope this helps :)

how do you solve 2m-10=44+8m

Answers

Answer:

m = -9

Step-by-step explanation:

2m-10=44+8m

Subtract 2m from each side

2m-2m-10=44+8m-2m

-10 = 44+6m

Subtract 44 from each side

-10-44 = 44-44+6m

-54 = 6m

Divide by 6

-54/6 = 6m/6

-9 = m

Answer:

solve by solving the salvation for equation don't be a slave get educated from what's gave

Shaquira is baking cookies to put in packages for a fundraiser. Shaquira has made 86 8686 chocolate chip cookies and 42 4242 sugar cookies. Shaquira wants to create identical packages of cookies to sell, and she must use all of the cookies. What is the greatest number of identical packages that Shaquira can make?

Answers

Answer: 2

Step-by-step explanation:

Given: Shaquira has made 86  chocolate chip cookies and 42 sugar cookies.

Shaquira wants to create identical packages of cookies to sell, and she must use all of the cookies.

Now, the greatest number of identical packages that Shaquira can make= GCD of 86 and 42

Prime factorization of 86 and 42:

86 = 2 ×43

42 = 2 × 3 × 7

GCD of 86 and 42 = 2   [GCD = greatest common factor]

Hence, the greatest number of identical packages that Shaquira can make =2

8 m minus 6 less or equal than 10

Answers

Hi there! :)

Answer:

[tex]\huge\boxed{m\leq 2}[/tex]

Equation:

8m - 6 ≤ 10

Add 6 to both sides:

8m ≤ 16

Divide both sides by 8:

8m/8 ≤ 16/8

m ≤ 2

Answer:

8m - 6≤ 10

m≤2

Step-by-step explanation:

8m - 6≤ 10

Add 6 to each side

8m - 6+6≤ 10+6

8m ≤ 16

Divide each side by 8

8m/8 ≤16/8

m≤2

solving polynomial(2x+8)(-3y-8)​

Answers

Answer:

-6xy - 16x -24y -64

Step-by-step explanation:

(2x+8)(-3y-8) =

To find the answer,

First multiply, the first number on both sides,

2x * -3y = -6xy

Then the first number on the left side and the second number on the right side,

2x * -8 = -16x

Then the second number on the left side and the first number on the right side,

8 * -3y = -24y

Then the second number on the left side and the second number on the right side,

8 * -8 = -64

Now add all the answers,

-6xy -16x -24y -64

Answer:

-6xy-16x-24y-64

Step-by-step explanation:

(2x+8)(-3y-8)​

Foil

First 2x*-3y = -6xy

outer -8*2x = -16x

inner -3y *8 = -24y

last -8*8 = -64

Add them together

-6xy-16x-24y-64

order of operation
3⋅6−2+2​

Answers

Answer:

18

Step-by-step explanation:

3⋅6−2+2​

Use PEMDAS = Parentheses, Exponent, Multiplication, Division, Addition, Subtraction

First we multiply, then add or subtract so,

18 - 2 + 2

Now we subtract,

16 + 2

Now we add,

18

PLEASE help me with this question! No nonsense answers please. This is really urgent.

Answers

Answer:

last option

Step-by-step explanation:

Let's call the original angle x° and the radius of the circle y. The area of the original sector would be x / 360 * πy². The new angle, which is a 40% increase from x, can be represented as 1.4x so the area of the new sector is 1.4x / 360 * πy². Now, to find the corresponding change, we can calculate 1.4x / 360 * πy² ÷  x / 360 * πy² = (1.4x / 360 * πy²) * (360 * πy² / x). 360 * πy² cancels out so we're left with 1.4x / x which becomes 1.4, signifying that the area of the sector increases by 40%.

I'm doing a task which involves magic v's, a maths pattern which has the rule of having the same total on each side. For e.g.
6 5
3 4
2
Is a magic v because each side adds up to 11. I need to make magic V's with the number 2-6 and 3-7. There are 24 possibilities for each number set.

Answers

Answer:

--1-- (of set 23456)

2   4

5 3

 6

--2-- (of set 23456)

2   3

5 4

 6

--3-- (of set 23456)

2   5

6 3

 4

--4-- (of set 23456)

2   3

6 5

 4

--5-- (of set 23456)

3   5

4 2

 6

--6-- (of set 23456)

3   2

4 5

 6

--7-- (of set 23456)

3   6

5 2

 4

--8-- (of set 23456)

3   2

5 6

 4

--9-- (of set 23456)

3   5

6 4

 2

--10-- (of set 23456)

3   4

6 5

 2

--11-- (of set 23456)

4   5

3 2

 6

--12-- (of set 23456)

4   2

3 5

 6

--13-- (of set 23456)

4   6

5 3

 2

--14-- (of set 23456)

4   3

5 6

 2

--15-- (of set 23456)

5   4

2 3

 6

--16-- (of set 23456)

5   3

2 4

 6

--17-- (of set 23456)

5   6

3 2

 4

--18-- (of set 23456)

5   2

3 6

 4

--19-- (of set 23456)

5   6

4 3

 2

--20-- (of set 23456)

5   3

4 6

 2

--21-- (of set 23456)

6   5

2 3

 4

--22-- (of set 23456)

6   3

2 5

 4

--23-- (of set 23456)

6   5

3 4

 2

--24-- (of set 23456)

6   4

3 5

 2

--1-- (of set 34567)

3   5

6 4

 7

--2-- (of set 34567)

3   4

6 5

 7

--3-- (of set 34567)

3   6

7 4

 5

--4-- (of set 34567)

3   4

7 6

 5

--5-- (of set 34567)

4   6

5 3

 7

--6-- (of set 34567)

4   3

5 6

 7

--7-- (of set 34567)

4   7

6 3

 5

--8-- (of set 34567)

4   3

6 7

 5

--9-- (of set 34567)

4   6

7 5

 3

--10-- (of set 34567)

4   5

7 6

 3

--11-- (of set 34567)

5   6

4 3

 7

--12-- (of set 34567)

5   3

4 6

 7

--13-- (of set 34567)

5   7

6 4

 3

--14-- (of set 34567)

5   4

6 7

 3

--15-- (of set 34567)

6   5

3 4

 7

--16-- (of set 34567)

6   4

3 5

 7

--17-- (of set 34567)

6   7

4 3

 5

--18-- (of set 34567)

6   3

4 7

 5

--19-- (of set 34567)

6   7

5 4

 3

--20-- (of set 34567)

6   4

5 7

 3

--21-- (of set 34567)

7   6

3 4

 5

--22-- (of set 34567)

7   4

3 6

 5

--23-- (of set 34567)

7   6

4 5

 3

--24-- (of set 34567)

7   5

4 6

 3

Step-by-step explanation:

This javascript code is extremely brute-force, but it does the job:

function checkIfInSet(i, set) {

   return i.toString().split('').sort().join('') === set;

}

function checkIfMagic(s) {

   return (parseInt(s[0]) + parseInt(s[1]) == parseInt(s[3]) + parseInt(s[4]))

}

function printMagic(s) {

   console.log(`${s[0]}   ${s[4]}`);

   console.log(` ${s[1]} ${s[3]}`);

   console.log(`  ${s[2]}\n`);

}

function checkSet(set) {

   let counter = 1;

   for(let i=1; i<99999; i++) {

       if (checkIfInSet(i, set) && checkIfMagic(i.toString())) {

           console.log(`--${counter++}-- (of set ${set})`);

           printMagic(i.toString());

       }

   }

}

checkSet('23456');

checkSet('34567');

NEED ASAP What is the quotient and remainder of 8,595 ÷ 24?

Answers

Answer:

358.125

Step-by-step explanation:

Answer:

358 3/24

Step-by-step explanation:  

Complete the square to transform the expression x2 - 2x - 2 into the form a(x - h)2 + k

Answers

Answer:

A

Step-by-step explanation:

Find the vertex form of the quadratic function below.

y = x^2 - 4x + 3

This quadratic equation is in the form y = a{x^2} + bx + cy=ax  

2

+bx+c. However, I need to rewrite it using some algebraic steps in order to make it look like this…

y = a(x - h)^2 + k

This is the vertex form of the quadratic function where \left( {h,k} \right)(h,k) is the vertex or the “center” of the quadratic function or the parabola.

Before I start, I realize that a = 1a=1. Therefore, I can immediately apply the “completing the square” steps.

STEP 1: Identify the coefficient of the linear term of the quadratic function. That is the number attached to the xx-term.

STEP 2: I will take that number, divide it by 22 and square it (or raise to the power 22).

STEP 3: The output in step #2 will be added and subtracted on the same side of the equation to keep it balanced.

Think About It: If I add 44 on the right side of the equation, then I am technically changing the original meaning of the equation. So to keep it unchanged, I must subtract the same value that I added on the same side of the equation.

STEP 4: Now, express the trinomial inside the parenthesis as a square of a binomial, and simplify the outside constants.

After simplifying, it is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {2, - 1} \right)(2,−1).

Visually, the graph of this quadratic function is a parabola with a minimum at the point \left( {2, - 1} \right)(2,−1). Since the value of “aa” is positive, a = 1a=1, then the parabola opens in upward direction.

Example 2: Find the vertex form of the quadratic function below.

The approach to this problem is slightly different because the value of “aa” does not equal to 11, a \ne 1a  

​  

=1. The first step is to factor out the coefficient 22 between the terms with xx-variables only.

STEP 1: Factor out 22 only to the terms with variable xx.

STEP 2: Identify the coefficient of the xx-term or linear term.

STEP 3: Take that number, divide it by 22, and square.

STEP 4: Now, I will take the output {9 \over 4}  

4

9

​  

 and add it inside the parenthesis.

By adding {9 \over 4}  

4

9

​  

 inside the parenthesis, I am actually adding 2\left( {{9 \over 4}} \right) = {9 \over 2}2(  

4

9

​  

)=  

2

9

​  

 to the entire equation.

Why multiply by 22 to get the “true” value added to the entire equation? Remember, I factored out 22 in the beginning. So for us to find the real value added to the entire equation, we need to multiply the number added inside the parenthesis by the number that was factored out.

STEP 5: Since I added {9 \over 2}  

2

9

​  

 to the equation, then I should subtract the entire equation by {9 \over 2}  

2

9

​  

 also to compensate for it.

STEP 6: Finally, express the trinomial inside the parenthesis as the square of binomial and then simplify the outside constants. Be careful combining the fractions.

It is now in the vertex form y = a{\left( {x - h} \right)^2} + ky=a(x−h)  

2

+k where the vertex \left( {h,k} \right)(h,k) is \left( {{{ - \,3} \over 2},{{ - 11} \over 2}} \right)(  

2

−3

​  

,  

2

−11

​  

).

Example 3: Find the vertex form of the quadratic function below.

Solution:

Factor out - \,3−3 among the xx-terms.

The coefficient of the linear term inside the parenthesis is - \,1−1. Divide it by 22 and square it. Add that value inside the parenthesis. Now, figure out how to make the original equation the same. Since we added {1 \over 4}  

4

1

​  

 inside the parenthesis and we factored out - \,3−3 in the beginning, that means - \,3\left( {{1 \over 4}} \right) = {{ - \,3} \over 4}−3(  

4

1

​  

)=  

4

−3

​  

 is the value that we subtracted from the entire equation. To compensate, we must add {3 \over 4}  

4

3

​  

 outside the parenthesis.

Therefore, the vertex \left( {h,k} \right)(h,k) is \left( {{1 \over 2},{{11} \over 4}} \right)(  

2

1

​  

,  

4

11

​  

).

Example 4: Find the vertex form of the quadratic function below.

y = 5x^2 + 15x - 5  

Solution:

Factor out 55 among the xx-terms. Identify the coefficient of the linear term inside the parenthesis which is 33. Divide it by 22 and square to get {9 \over 4}  

4

9

​  

.

Add {9 \over 4}  

4

9

​  

 inside the parenthesis. Since we factored out 55 in the first step, that means 5\left( {{9 \over 4}} \right) = {{45} \over 4}5(  

4

9

​  

)=  

4

45

​  

 is the number that we need to subtract to keep the equation unchanged.

Express the trinomial as a square of binomial, and combine the constants to get the final answer.

Therefore, the vertex \left( {h,k} \right)(h,k) is {{ - \,3} \over 2},{{ - \,65} \over 4}  

2

−3

​  

,  

4

−65

​  

.

Answer:

(x - 1 )^2 - 3

Step-by-step explanation:

( x - 1 )^2 + ( -3)

x^2 - 2x + 1 - 3

x^2 - 2x - 2

Given the equations of a straight line f(x) (in slope-intercept form) and a parabola g(x) (in standard form), describe how to determine the number of intersection points, without finding the coordinates of such points. Do not give an example.

Answers

Answer:

Step-by-step explanation:

Hello, when you try to find the intersection point(s) you need to solve a system like this one

[tex]\begin{cases} y&= m * x + p }\\ y &= a*x^2 +b*x+c }\end{cases}[/tex]

So, you come up with a polynomial equation like.

[tex]ax^2+bx+c=mx+p\\\\ax^2+(b-m)x+c-p=0[/tex]

And then, we can estimate the discriminant.

[tex]\Delta=(b-m)^2-4*a*(c-p)[/tex]

If [tex]\Delta<0[/tex] there is no real solution, no intersection point.

If [tex]\Delta=0[/tex] there is one intersection point.

If [tex]\Delta>0[/tex] there are two real solutions, so two intersection points.

Hope this helps.

Find the vertex of f(x)= x^2+ 6x + 36


Pls help soon

Answers

Answer:

vertex(-3,27)

Step-by-step explanation:

f(x)= x^2+ 6x + 36 ( a=1,b=6,c=36)

V(h,k)

h=-b/2a=-6/2=-3

k=f(-3)=3²+6(-3)+36

f(-3)=9-18+36=27

vertex(-3,27)

prove tan(theta/2)=sin theta/1+cos theta for theta in quadrant 1 by filling in the calculations and reasons. PLEASE HELP!!!!

Answers

Answer:

See explanation

Step-by-step explanation:

We have to prove the identity

[tex]tan(\frac{\Theta }{2})=\frac{sin\Theta}{1+cos\Theta }[/tex]

We will take right hand side of the identity

[tex]\frac{sin\Theta}{1+cos\Theta}=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{1+[2cos^{2}(\frac{\Theta }{2})-1]}[/tex]

[tex]=\frac{2sin(\frac{\Theta }{2})cos(\frac{\Theta }{2})}{2cos^{2}(\frac{\Theta }{2})}=\frac{sin(\frac{\Theta }{2})}{cos(\frac{\Theta }{2})}[/tex]

[tex]=tan(\frac{\Theta }{2})[/tex] [ Tan θ will be positive since θ lies in 1st quadrant ]

1. Suzette ran and biked for a total of 80 miles in 9 hours. Her average running speed was 5 miles per hour (mph) and her average biking speed was 12 mph. Let x = total hours Suzette ran. Let y = total hours Suzette biked. Use substitution to solve for x and y. Show your work. Check your solution. (a) How many hours did Suzette run? (b) How many hours did she bike?

Answers

Answer:

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

Step-by-step explanation:

Speed is rate of distance traveled, it is the ratio of distance traveled to time taken. It is given by:

Speed = distance / time

The total distance ran and biked by Suzette (d) = 80 miles, while the total time ran and biked by Suzette (t) = 9 hours.

For running:

Her speed was 5 miles per hour, let the total hours Suzette ran be x and the total distance she ran be p, hence since Speed = distance / time, therefore:

5 = p / x

p = 5x

For biking:

Her speed was 12 miles per hour, let the total hours Suzette ran be y and the total distance she ran be q, hence since Speed = distance / time, therefore:

12 = q / y

q = 12y

The total distance ran and biked by Suzette (d) = Distance biked + distance ran

d = p + q

80 = p + q

80 = 5x + 12y                 (1)

The total time taken to run and bike by Suzette (t) = time spent to bike + time spent to run

t = x + y

9 = x + y                         (2)

Solving equation 1 and equation 2, multiply equation 2 by 5 and subtract from equation 1:

7y = 35

y = 35/7

y = 5 hours

Put y = 5 in equation 2:

9 = x + 5

x = 9 -5

x = 4 hours

a) Suzette ran for 4 hours

b) Suzette biked for 5 hours

PLEaSE HELP!!!!!! will give brainliest to first answer

Answers

Answer:

The coordinates of A'C'S'T' are;

A'(-7, 2)

C'(-9, -1)

S'(-7, -4)

T'(-5, -1)

The correct option is;

B

Step-by-step explanation:

The coordinates of the given quadrilateral are;

A(-3, 1)

C(-5, -2)

S(-3, -5)

T(-1, -2)

The required transformation is T₍₋₄, ₁₎ which is equivalent to a movement of 4 units in the leftward direction and 1 unit upward

Therefore, we have;

A(-3, 1) + T₍₋₄, ₁₎ = A'(-7, 2)

C(-5, -2) + T₍₋₄, ₁₎ = C'(-9, -1)

S(-3, -5) + T₍₋₄, ₁₎ = S'(-7, -4)

T(-1, -2) + T₍₋₄, ₁₎ = T'(-5, -1)

Therefore, the correct option is B

I need help asap!!!​

Answers

There are 360° total in a circle, so AB is half of the circle so it’s 180°. CBA is 180° also. 180°+55°=235°, 360-235= 125° which is AC

Represents the solution to the inequality -9=2/3x-7<5

Answers

Answer:

-3=x <13

Step-by-step explanation:

[tex] - 9 = \frac{2x}{3} - 7 < 5[/tex]

Multiply through by 3

[tex] - 27 = 2x - 21 < 15[/tex]

Add 21 to all sides

[tex] - 6 = 2x < 36[/tex]

Divide through by 2

[tex] - 3 = x < 18[/tex]

The solutin set is

[tex]{- 3 = x < 18}[/tex]

Other Questions
order of operation362+2 a 20-foot flagpole casts a 6-foot Shadow how tall is a nearby building that casts a 30-foot shadow A company issues $1,500,000 of par bonds at 98 on January 1, year 1, with a maturity date of December 31, year 30. Bond issue costs are $90,000, and the stated interest rate of the bonds is 6%. Interest is paid semiannually on January 1 and July 1. Ten years after the issue date, the entire issue was called at 102 and canceled. The company uses the straight-line method of amortization for bond discounts and issue costs, and the result of this method is not materially different from the effective interest method. The company should classify what amount as the loss on extinguishment of debt at the time the bonds are called Gabriele Enterprises has bonds on the market making annual payments, with eleven years to maturity, a par value of $1,000, and selling for $982. At this price, the bonds yield 7.6 percent.Required:What must the coupon rate be on the bonds? solving polynomial(2x+8)(-3y-8) The garden is a place of rejuvenation and transformation in The Secret Garden. Do you believe Neverland has the same qualities in Peter Pan? Explain why or why not. The following accounts are from last year's books of Sharp Manufacturing: Raw Materials Bal 0 (b) 154,800 (a) 166,000 11,200 Work In Process Bal 0 (f) 513,200 (b) 132,400 (c) 168,800 (e) 212,000 0 Finished Goods Bal 0 (g) 464,000 (f) 513,200 49,200 Manufacturing Overhead (b) 22,400 (e) 212,000 (c) 26,400 (d) 156,800 6,400 Cost of Goods Sold (g) 464,000 Sharp uses job-order costing and applies manufacturing overhead to jobs based on direct labor costs. What is the amount of direct materials used for the year 8 m minus 6 less or equal than 10 When the nuclide bismuth-210 undergoes alpha decay: The name of the product nuclide is_____. The symbol for the product nuclide is_____Fill in the nuclide symbol for the missing particle in the following nuclear equation. _____ rightarrow 4He+ 234Th2 90Write a balanced nuclear equation for the following: The nuclide radium-226 undergoes alpha emission. Find the distance between the two points (-4,4) and (1,0) the telephone numbers in a telephone book is Categoricalor Quantitative? Which is produced around a wire when an electrical current is in the wire? magnetic field solenoid electron flow electromagnet What legal and political idea is contained in this edict from Hammurabis Code? A. limits of power B. protection from unreasonable search C. presumption of innocence D. right to present evidence Solve the equation using the multiplication property of equality and the reciprocal of 14 .14 ( r 52 ) = 18 Which equation represents a population of 300 animals that decreases at an annual rate of 23%? A. p=300(1.23)t B. p=300(1.77)t C. p=300(0.77)t D. p=300(0.23)t A blue print for a house has a scale of 1:10. A wall in the blueprint is 8in. What is the length of the actual wall?6.67. inches 80 feet969 feet6.67 feet In terms of the natural laws that act on cars and drivers, what role do safety belts play? BRAINLIST AND A THANK YOU AND 5 stars WILL BE REWARDED PLS ANSER Find the doubling time of an investment earning 3% interest if interest is compounded continuously? Find the area of the following rectilinear figure.