Answer:
The motion of the particle describes an ellipse.
Step-by-step explanation:
The characteristics of the motion of the particle is derived by eliminating [tex]t[/tex] in the parametric expressions. Since both expressions are based on trigonometric functions, we proceed to use the following trigonometric identity:
[tex]\cos^{2} t + \sin^{2} t = 1[/tex] (1)
Where:
[tex]\cos t = \frac{y-3}{2}[/tex] (2)
[tex]\sin t = x - 1[/tex] (3)
By (2) and (3) in (1):
[tex]\left(\frac{y-3}{2} \right)^{2} + (x-1)^{2} = 1[/tex]
[tex]\frac{(x-1)^{2}}{1}+\frac{(y-3)^{2}}{4} = 1[/tex] (4)
The motion of the particle describes an ellipse.
PLSHELPASAPDFFFFFFFFFFFFFFFFFFFFFFFFFF
im struggling with the same one
PLEASE HELP!!! Which number is a solution of the inequality x less-than negative 4? Use the number line to help answer the question. A number line going from negative 9 to positive 1.
Answer:
is it going to be 10.5
Step-by-step explanation:
I do not have any explanation
Answer: 0 (zero)
Step-by-step explanation:
Start Learning & start growing! edge2023
*DROPS THE MIC*
The Cougar Swim Club acquired some Speedo Fastskin bodysuits and decided to test them out. A number of the club's fastest swimmers performed a 50m freestyle swim in a regular spandex bodysuit and in a Speedo Fastskin suit. The table below summarizes their times in seconds.Swimmer Spandex Speedo Fastskin1 31.1 29.12 28.9 30.43 31.4 32.04 34.9 31.75 27.7 28.26 36.7 32.97 33.3 28.68 30.8 26.2Perform a t-test for dependent means to determine if there is a difference between the regular spandex suit and the Fastskin bodysuit in terms of performance.t = _____df = _____Critical value of t = _____ (use alpha = 0.05)Would you reject the null hypothesis?
Answer:
T = 2.215
df = 7
Critical value = 2.364
Fail to reject the null
Step-by-step explanation:
Swimmer __Spandex __Speedo Fastskin__ d
1 __________31.1 _______29.1 __ 2
2_________ 28.9 ______30.4 __ -1.5
3_________ 31.4 ______ 32.0 __ - 0.6
4_________ 34.9 ______31.7 __ 3.2
5 _________27.7 ______28.2 __ - 0.5
6_________ 36.7 _____ 32.9 ___ 3.8
7 _________ 33.3 _____28.6 ___ 4.7
8_________ 30.8 _____26.2 ___ 4.6
The mean difference = Σd / n
2, - 1.5, - 0.6, 3.2, - 0.5, 3.8, 4.7, 4.6
μd = Σd / n = 15.7 / 8 = 1.9625
Sd = standard deviation of difference = 2.5065 (using calculator)
H0 : μd = 0
H1 : μd ≠ 0
The test statistic:
T = μd / (Sd/√n)
T = 1.9625 / (2.5065/√8)
T = 2.2145574
The degree of freedom, df = n - 1 = 8 - 1 = 7
Using a Pvalue calculator :
α = 0.05
Critical value, Tcritical = 2.364 (T distribution table)
Since Test statistic < Critical value
we fail to reject H0 ;
One number is 1/4 of another number. The sum of the two numbers is 5. Find the two numbers. Use a comma to separate your answer
Answer: 1, 4
Step-by-step explanation:
Number #1 = xNumber #2 = [tex]\frac{1}{4} x[/tex][tex]\frac{1}{4} x+x=5\\\\\frac{1}{4} x+\frac{4}{4} x=5\\\\\frac{5}{4} x=5\\\\5x=4*5\\5x=20\\x=4[/tex]
Number #1 = x = 4Number #2 = [tex]\frac{1}{4} x[/tex] = [tex]\frac{1}{4} *4=\frac{4}{4} =1[/tex]Golf Scores In a professional golf tournament the players participate in four rounds of golf and the player with the lowest score after all four rounds is the champion. How well does a player's performance in the first round of the tournament predict the final score
Answer:
Mean scores.
Step-by-step explanation:
The golf player will score in the first round, according to these scores the golf player scores can be predicted. The golf player can perform high in first round but he may score lesser in the second round due to stress or mental pressure. The scores can be predicted taking mean of the scores and adding standard deviation to it.
(Will mark brainliest!!!) 20 PTS !!
Sixty percent of all children in a school do not have cavities. The probability, rounded to four decimal places, that in a random sample of 9 children selected from this school, at least 6 do not have cavities is:
Answer:
probability[Number of 6 random sample do not have cavities] = 0.8
Step-by-step explanation
Given:
Number of student do not have cavities = 60%
Number of random sample = 9 children
Find:
Probability[Number of 6 random sample do not have cavities]
Computation:
n = 9
p = 60% = 0.6
P(At least 6)
Probability[Number of 6 random sample do not have cavities] = 1 - P(Less than 6)
Probability[Number of 6 random sample do not have cavities] = 1 - P(Less than or equal to 6)
Probability[Number of 6 random sample do not have cavities] = 0.8
Solve by graphing. Round each answer to the nearest tenth.
6x2 = −19x − 15
a: −2, 1.7
b: −1.7, −1.5
c: −1.5, 1.5
d: −1.5, 1.7
9514 1404 393
Answer:
b: -1.7, -1.5
Step-by-step explanation:
The graph is shown below. We have annotated the x-intercepts for the equivalent equation ...
6x^2 +19x +15 = 0
Julie and Mona know that that Earth’s average distance from the Sun is approximately 93 million miles and it takes 1 year to complete an orbit of the Sun. A new asteroid has been discovered orbiting the Sun at an average distance of 1,488 million miles. How long will it take for the asteroid, in Earth years, to complete one orbit of the Sun.
Answer:
16 years
Step-by-step explanation:
Given that :
Earth's distance from sun = 93 million miles
Number of years to complete an orbit = 1 year
Average orbiting distance of new asteroid = 1488 million miles
Number of years to complete an orbit = x
93,000,000 Miles = 1
1488000000 miles = x
Cross multiply :
93000000x = 1488000000
x = 1488000000 / 93000000
x = 16 years
Period taken to orbit the sun = 16 years
Answer: 64 Earth years...
Cathy is planning to take the Certified Public Accountant Examination (CPA exam). Records kept by the college of business from which she graduated indicate that 73% of students who graduated pass the CPA exam. Assume that the exam is changed each time it is given. Let n = 1, 2, 3, ... represent the number of times a person takes the CPA test until the first pass. (Assume the trials are independent).
(a) What is the probability that Cathy passes the CPA test on the first try?
(b) What is the probability that Cathy passes the CPA test on the second or third try?
Answer:
The responses to these question can be defined as follows:
Step-by-step explanation:
For point a:
[tex]\to P(1) = 0.73[/tex]
For point b:
[tex]\to P(2\ or\ 3) = P(2) + P(3)[/tex]
[tex]= 0.27 \times 0.73 + 0.27\times 0.27\times0.73\\\\=0.1971+0.1971\times 0.27\\\\=0.1971+0.053217\\\\=0.250317[/tex]
can anyone help with this please !!!!
Answer:
"Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
Step-by-step explanation:
Let be the following system of linear equations:
[tex]4\cdot x + 4\cdot y + z = 24[/tex] (1)
[tex]2\cdot x - 4\cdot y +z = 0[/tex] (2)
[tex]5\cdot x - 4\cdot y - 5\cdot z = 12[/tex] (3)
1) We eliminate [tex]y[/tex] by adding (1) and (2):
[tex](4\cdot x + 2\cdot x) +(4\cdot y - 4\cdot y) + (z + z) = 24 + 0[/tex]
[tex]6\cdot x +2\cdot z = 24[/tex] (4)
2) We eliminate [tex]y[/tex] by adding (1) and (3):
[tex](4\cdot x + 5\cdot x) +(4\cdot y - 4\cdot y) +(z -5\cdot z) = (24 + 12)[/tex]
[tex]9\cdot x -4\cdot z = 36[/tex] (5)
Hence, the correct answer is "Add equations A and B to eliminate [tex]y[/tex]. Add equations A and C to eliminate [tex]y[/tex]".
In a random sample of students at a university, stated that they were nonsmokers. Based on this sample, compute a confidence interval for the proportion of all students at the university who are nonsmokers. Then find the lower limit and upper limit of the confidence interval.
Answer:
(0.8165 ; 0.8819)
Lower boundary = 0.8165
Upper boundary = 0.8819
Step-by-step explanation:
Given :
Sample proportion. Phat = x/ n = 276/ 325 = 0.8492
Confidence interval :
Phat ± margin of error
Margin of Error = Zα/2* [√Phat(1 - Phat) / n]
Phat ± Zα/2* [√Phat(1 - Phat) / n]
The 90% Z critical value is = 1.645
0.8492 ± 1.645*[√0.8492(1 - 0.8492) / 325)
0.8492 ± 1.645*[√0.8492(0.1508) / 325]
0.8492 ± 1.645*√0.0003940288
0.8492 ± 0.0326535
Lower boundary = 0.8492 - 0.0326535 = 0.8165
Upper boundary = 0.8492 + 0.0326535 = 0.8819
Confidence interval = (0.8165 ; 0.8819)
Suppose f(x,y,z) = x2 + y2 + z2 and W is the solid cylinder with height 7 and base radius 2 that is centered about the z-axis with its base at z = −2. Enter θ as theta.
A) As an iterated integral, ∭WfdV = ∫BA∫DC∫FE dzdrdθ with limits of integration.
B) Evaluate the integral.
In cylindrical coordinates, W is the set of points
W = {(r, θ, z) : 0 ≤ r ≤ 2 and 0 ≤ θ ≤ 2π and -2 ≤ z ≤ 5}
(A) Then the integral of f(x, y, z) over W is
[tex]\displaystyle\iiint_W(x^2+y^2+z^2)\,\mathrm dV = \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta[/tex]
(B)
[tex]\displaystyle \int_0^{2\pi}\int_0^2\int_{-2}^5r(r^2+z^2)\,\mathrm dz\,\mathrm dr\,\mathrm d\theta = 2\pi \int_0^2\int_{-2}^5(r^3+rz^2)\,\mathrm dz\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(zr^3+\frac13rz^3\right)\bigg|_{z=-2}^{z=5}\,\mathrm dr \\\\\\= 2\pi \int_0^2\left(\frac{133}3r+7r^3\right)\,\mathrm dr \\\\\\= 2\pi \left(\frac{133}6r^2+\frac74r^4\right)\bigg|_{r=0}^{r=2} \\\\\\= 2\pi \left(\frac{110}3\right) = \boxed{\frac{220\pi}3}[/tex]
SCALCET8 3.9.015. A street light is mounted at the top of a 15-ft-tall pole. A man 6 ft tall walks away from the pole with a speed of 4 ft/s along a straight path. How fast is the tip of his shadow moving when he is 35 ft from the pole
Answer:
[tex]X=6.67ft/s[/tex]
Step-by-step explanation:
From the question we are told that:
Height of pole [tex]H_p=15[/tex]
Height of man [tex]h_m=6ft[/tex]
Speed of Man [tex]\triangle a =4ft/s[/tex]
Distance from pole [tex]d=35ft[/tex]
Let
Distance from pole to man=a
Distance from man to shadow =b
Therefore
[tex]\frac{a+b}{15}=\frac{b}{6}[/tex]
[tex]6a+6b=15y[/tex]
[tex]2a=3b[/tex]
Generally the equation for change in velocity is mathematically given by
[tex]2(\triangle a)=3(\triangle b )[/tex]
[tex]2*4=3(\triangle b)[/tex]
[tex]\triangle a=\frac{8}{3}[/tex]
Since
The speed of the shadow is given as
[tex]X=\triangle b+\triangle a[/tex]
[tex]X=4+8/3[/tex]
[tex]X=6.67ft/s[/tex]
Find the perimeter of a football field which measures 90m by 60m
Hello!
[tex]\large\boxed{P = 300m}[/tex]
Use the following formula for the perimeter:
P = 2l + 2w, where:
l = length
w = width
Therefore:
P = 2(90) + 2(60)
Simplify:
P = 180 + 120 = 300 m
Answer:
well how about you use common sense 100 yards long on each side 200 yards then add 5o yards since the the that is how wide it is then add another 50 and you get 300 yards then convert that to meters
A little help?? It’s trig
Answer:
12 [tex]\pi[/tex] = 37.699 f/s
Actually, the more interesting question
would have been how fast is the ball going in MPH?
25.7 MPH
Step-by-step explanation:
C = 2[tex]\pi r[/tex]
C = 2 [tex]* \pi * 1.2[/tex]
C = 2.4 [tex]\pi feet[/tex]
C (per second) = (5)(2.4 [tex]\pi feet[/tex])
C(per second) = 12 [tex]\pi[/tex] = 37.699 f/s
²/₃ + ¹/₃ please answer
FINAL ANSWER:
1
Step-by-step explanation:
[tex]\frac{2}{3} +\frac{1}{3}[/tex]
the denominators are the same so all we need to do is add.
[tex]\frac{2}{3} + \frac{1}{3} =\frac{3}{3}[/tex]
[tex]\frac{3}{3} =[/tex] 1 whole
final answer: 1
hope this answer helps you :)
have a great day and may God Bless You!
What is the rate of change of the line on the graph
Answer:
A. ¼
Step-by-step explanation:
Rate of change (m) = [tex] \frac{y_2 - y_1}{x_2 - x_1} [/tex]
Using two points on the line, (4, 1) and (-4, -1), find the rate of change using the formula stated above:
Where,
[tex] (4, 1) = (x_1, y_1) [/tex]
[tex] (-4, -1) = (x_2, y_2) [/tex]
Plug in the values
Rate of change (m) = [tex] \frac{-1 - 1}{-4 - 4} [/tex]
= [tex] \frac{-2}{-8} [/tex]
= [tex] \frac{1}{4} [/tex]
Rate of change = ¼
write the equation of the line shown in the graph above in slope-intercept form
simplify 6 x + 3y /3
Answer:
6x + y
Step-by-step explanation:
6x + 3y/3
6x + y
Answer:
6x + y
Step-by-step explanation:
6x + 3y / 3
cancel 3y by 3
6x + y
2/5 e +4 = 9
Help please
Answer:
e=12.5 or e=25/2
Step-by-step explanation:
Adam borrowed $5,600 from the bank. The bank charges 4.2% simple interest each year.
Which equation represents the amount of money in dollars, x, Adam will owe in one year, if no payments are made?
x=5,600+5,600(42)(12)
x=5,600+5,600(0.042)(1)
x=5,600+5,600(42)(1)
x=5,600+5,600(0.042)(12)
Answer:
[tex]x = 5600 + 5600 * 0.042 * 1[/tex]
Step-by-step explanation:
Given
[tex]P = 5600[/tex] -- Principal
[tex]R = 4.2\%[/tex] -- Rate
[tex]T = 1[/tex] -- Time
Required
The amount (x) to be paid
This is calculated as:
[tex]x = P + I[/tex]
Where:
[tex]I = PRT[/tex]
So, we have:
[tex]x = 5600 + 5600 * 4.2\% * 1[/tex]
Express percentage as decimal
[tex]x = 5600 + 5600 * 0.042 * 1[/tex]
(c) is correct
what is the difference between the products of the digits in 425 and the sum of the digits in the numeral 92784
Answer: 10
Step-by-step explanation:
4 x 2 x 5 = 40
9 + 2 + 7 + 8 + 4 = 30
40 - 30 = 10
= 10
Agan Interior Design provides home and office decorating assistance to its customers. In normal operation, an average of 2.5 customers arrive each hour. One design consultant is available to answer customer questions and make product recommendations. The consultant averages 10 minutes with each customer. Compute the operating characteristics of the customer waiting line, assuming Poisson arrivals and exponential service times. Round your answers to four decimal places. Do not round intermediate calculations.
Answer:
the operating characteristics have been solved below
Step-by-step explanation:
we have an average of 10 minutes per customers
μ = mean service rate = 60/10 = 6 customers in one hr
the average number of customers that are waiting in line
mean arrival λ = 2.5
μ = 6
[tex]Lq = \frac{2.5^{2} }{6(6-2.5)} \\[/tex]
= 6.25/21
= 0.2976
we calculate the average number of customers that are in the system
[tex]L=Lq+\frac{2.5}{6}[/tex]
= 0.2976+0.4167
= 0.7143
we find the average time that a customer spends in waiting
[tex]Wq=\frac{0.2976}{2.5}[/tex]
= 0.1190 hours
when converted to minutes = 0.1190*60 = 7.1424 minutes
[tex]0.1190+\frac{1}{6}[/tex]
=0.2857
probability that arriving customers would wait for the service
= 2.5÷6 = 0.4167
Can someone help me out?
Answer:
Terms:
-5x4-x-1Like Terms:
-5x and -x4 and -1Coefficients:
The coefficient of -5x is -5.The coefficient of -x is -1.Constants:
4-1You simplify the expression by combining like terms:
-5x + 4 - x - 1 = -6x + 5
(7b - 4) + (-2b + a + 1) = 7b - 4 - 2b + a + 1 = 5b + a - 3
Compute ????×????, where ????=????−2????+5????, ????=2????+????+3????. (Write your solution using the standard basis vectors ????, ????, and ????. Use symbolic notation and fractions where needed.)
Given: ????=????−2????+5????
and ????=2????+????+3????
To find: We need to find the value of ????×????
Solution: Here given,
????=????−2????+5????
and ????=2????+????+3????
Therefore, solving these two we have, ????=0
So,????×????=0
Young invested GH150,000 and 2.5% per annum simple interest. how long will it take this amount to. yield an interest of GH11,250,00
Answer: 3 years
Step-by-step explanation:
Interest is calculated as:
= (P × R × T) / 100
where
P = principal = 150,000
R = rate = 2.5%.
I = interest = 11250
T = time = unknown.
I = (P × R × T) / 100
11250 = (150000 × 2.5 × T)/100
Cross multiply
1125000 = 375000T
T = 1125000/375000
T = 3
The time taken will be 3 years
What is the inverse of function f? f(x)=10/9+11
Answer:
Option D is answer.
Step-by-step explanation:
Hey there!
Given;
f(x) = 10/9 X + 11
Let f(X) be "y".
y = (10/9) X + 11
Interchange "X" and "y".
x = (10/9) y + 11
or, 9x = 10y + 99
or, y = (9x-99)/10
Therefore, f'(X) = (9x-99)/10.
Hope it helps!
Date Page The male population of a village is 9840 and the female population is 8965. Find the total population of the village ii) How many more males are there than females
If 3 3/4m of cloth was used for one suit, how many suits can be made with 30m cloth
Answer:
8 suits
Step-by-step explanation:
Divide 30 m by 3 [tex]\frac{3}{4}[/tex] m , or 30 ÷ 3.75 , then
30 ÷ 3.75 = 8
Then 8 suits can be made from 30 m of cloth
Marla scored 70% on her last unit exam in her statistics class. When Marla took the SAT exam, she scored at the 70th percentile in mathematics. Explain the difference in these two scores.
Answer:
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.
Step-by-step explanation:
Marla scored 70% on her last unit exam in her statistics class.
This means that in her statistics class, Marla got 70% of her test correct.
When Marla took the SAT exam, she scored at the 70th percentile in mathematics.
This means that on the SAT exam, graded on a curve, Marla scored better than 70% of the students.
Explain the difference in these two scores.
The difference is that Marla's exam in her statistics class was graded by percent of correct answers, in her case 70%, while the SAT is graded into a curve, taking other students' grades also into account, and since she scored in the 70th percentile, Marla scored better than 70% of the students.