Determine if the following piecewise defined function is differentiable at x = 0. 2x-5, x20 f(x) = x² + 5x -5, x < 0

Answers

Answer 1

The following piecewise function f(x)= 3x-5, x≥0 and f(x) = x² + 5x -5, x < 0 is not differentiable at x = 0 .

To determine if the piecewise defined function is differentiable at x = 0, we need to check if the left-hand limit and the right-hand limit of the function are equal at x = 0, and if the derivative exists at x = 0.

First, let's find the left-hand limit:

lim (x→0⁻) f(x) = lim (x→0⁻) (x² + 5x - 5)

= (0² + 5(0) - 5)

= -5

Next, let's find the right-hand limit:

lim (x→0⁺) f(x) = lim (x→0⁺) (3x - 5)

= (3(0) - 5)

= -5

Since the left-hand limit (-5) and the right-hand limit (-5) are equal, we can proceed to find the derivative of the function at x = 0.

For x ≥ 0, f(x) = 3x - 5. Taking the derivative of this function:

f'(x) = 3

For x < 0, f(x) = x² + 5x - 5. Taking the derivative of this function:

f'(x) = 2x + 5

Now, let's evaluate the derivative at x = 0 from both sides:

lim (x→0⁻) f'(x) = lim (x→0⁻) (2x + 5) = 2(0) + 5 = 5

lim (x→0⁺) f'(x) = lim (x→0⁺) 3 = 3

The left-hand derivative (5) and the right-hand derivative (3) are not equal.

Since the left-hand and right-hand derivatives are not equal, the derivative of the function does not exist at x = 0. Therefore, the piecewise defined function is not differentiable at x = 0.

To know more about piecewise function here

https://brainly.com/question/28225662

#SPJ4


Related Questions

Two discrete-time signals; x [n] and y[n], are given as follows. Compute x [n] *y [n] by employing convolution sum. x[n] = 28[n]-6[n-1]+6[n-3] y [n] = 8 [n+1]+8 [n]+28 [n−1]− 8 [n – 2]

Answers

We substitute the expressions for x[n] and y[n] into the convolution sum formula and perform the necessary calculations. The final result will provide the convolution of the signals x[n] and y[n].

To compute the convolution of two discrete-time signals, x[n] and y[n], we can use the convolution sum. The convolution of two signals is defined as the summation of their product over all possible time shifts.

Given the signals:

x[n] = 2δ[n] - 3δ[n-1] + 6δ[n-3]

y[n] = 8δ[n+1] + 8δ[n] + 28δ[n-1] - 8δ[n-2]

The convolution of x[n] and y[n], denoted as x[n] * y[n], is given by the following sum:

x[n] * y[n] = ∑[x[k]y[n-k]] for all values of k

Substituting the expressions for x[n] and y[n], we have:

x[n] * y[n] = ∑[(2δ[k] - 3δ[k-1] + 6δ[k-3])(8δ[n-k+1] + 8δ[n-k] + 28δ[n-k-1] - 8δ[n-k-2])] for all values of k

Now, we can simplify this expression by expanding the summation and performing the product of each term. Since the signals are represented as delta functions, we can simplify further.

After evaluating the sum, the resulting expression will provide the convolution of the signals x[n] and y[n], which represents the interaction between the two signals.

Learn more about expression here:

https://brainly.com/question/28170201

#SPJ11

Find a general solution to the differential equation. 1 31 +4y=2 tan 4t 2 2 The general solution is y(t) = C₁ cos (41) + C₂ sin (41) - 25 31 e -IN Question 4, 4.6.17 GEXCES 1 In sec (4t)+ tan (41) cos (41) 2 < Jona HW Sc Poi Find a general solution to the differential equation. 1 3t y"+2y=2 tan 2t- e 2 3t The general solution is y(t) = C₁ cos 2t + C₂ sin 2t - e 26 1 In |sec 2t + tan 2t| cos 2t. --

Answers

The general solution to the given differential equation is y(t) = [tex]C_{1}\ cos{2t}\ + C_{2} \ sin{2t} - e^{2/3t}[/tex], where C₁ and C₂ are constants.

The given differential equation is a second-order linear homogeneous equation with constant coefficients. Its characteristic equation is [tex]r^2[/tex] + 2 = 0, which has complex roots r = ±i√2. Since the roots are complex, the general solution will involve trigonometric functions.

Let's assume the solution has the form y(t) = [tex]e^{rt}[/tex]. Substituting this into the differential equation, we get [tex]r^2e^{rt} + 2e^{rt} = 0[/tex]. Dividing both sides by [tex]e^{rt}[/tex], we obtain the characteristic equation [tex]r^2[/tex] + 2 = 0.

The complex roots of the characteristic equation are r = ±i√2. Using Euler's formula, we can rewrite these roots as r₁ = i√2 and r₂ = -i√2. The general solution for the homogeneous equation is y_h(t) = [tex]C_{1}e^{r_{1} t} + C_{2}e^{r_{2}t}[/tex]

Next, we need to find the particular solution for the given non-homogeneous equation. The non-homogeneous term includes a tangent function and an exponential term. We can use the method of undetermined coefficients to find a particular solution. Assuming y_p(t) has the form [tex]A \tan{2t} + Be^{2/3t}[/tex], we substitute it into the differential equation and solve for the coefficients A and B.

After finding the particular solution, we can add it to the general solution of the homogeneous equation to obtain the general solution of the non-homogeneous equation: y(t) = y_h(t) + y_p(t). Simplifying the expression, we arrive at the general solution y(t) = C₁ cos(2t) + C₂ sin(2t) - [tex]e^{2/3t}[/tex], where C₁ and C₂ are arbitrary constants determined by initial conditions or boundary conditions.

Learn more about differential equation here:

https://brainly.com/question/32538700

#SPJ11

If G is a complementry graph, with n vertices Prove that it is either n=0 mod 4 or either n = 1 modu

Answers

If G is a complementary graph with n vertices, then n must satisfy either n ≡ 0 (mod 4) or n ≡ 1 (mod 4).

To prove this statement, we consider the definition of a complementary graph. In a complementary graph, every edge that is not in the original graph is present in the complementary graph, and every edge in the original graph is not present in the complementary graph.

Let G be a complementary graph with n vertices. The original graph has C(n, 2) = n(n-1)/2 edges, where C(n, 2) represents the number of ways to choose 2 vertices from n. The complementary graph has C(n, 2) - E edges, where E is the number of edges in the original graph.

Since G is complementary, the total number of edges in both G and its complement is equal to the number of edges in the complete graph with n vertices, which is C(n, 2) = n(n-1)/2.

We can now express the number of edges in the complementary graph as: E = n(n-1)/2 - E.

Simplifying the equation, we get 2E = n(n-1)/2.

This equation can be rearranged as n² - n - 4E = 0.

Applying the quadratic formula to solve for n, we get n = (1 ± √(1+16E))/2.

Since n represents the number of vertices, it must be a non-negative integer. Therefore, n = (1 ± √(1+16E))/2 must be an integer.

Analyzing the two possible cases:

If n is even (n ≡ 0 (mod 2)), then n = (1 + √(1+16E))/2 is an integer if and only if √(1+16E) is an odd integer. This occurs when 1+16E is a perfect square of an odd integer.

If n is odd (n ≡ 1 (mod 2)), then n = (1 - √(1+16E))/2 is an integer if and only if √(1+16E) is an even integer. This occurs when 1+16E is a perfect square of an even integer.

In both cases, the values of n satisfy the required congruence conditions: either n ≡ 0 (mod 4) or n ≡ 1 (mod 4).

Learn more about quadratic formula here:

https://brainly.com/question/22364785

#SPJ11

Summer Rental Lynn and Judy are pooling their savings to rent a cottage in Maine for a week this summer. The rental cost is $950. Lynn’s family is joining them, so she is paying a larger part of the cost. Her share of the cost is $250 less than twice Judy’s. How much of the rental fee is each of them paying?

Answers

Lynn is paying $550 and Judy is paying $400 for the cottage rental in Maine this summer.

To find out how much of the rental fee Lynn and Judy are paying, we have to create an equation that shows the relationship between the variables in the problem.

Let L be Lynn's share of the cost, and J be Judy's share of the cost.

Then we can translate the given information into the following system of equations:

L + J = 950 (since they are pooling their savings to pay the $950 rental cost)

L = 2J - 250 (since Lynn is paying $250 less than twice Judy's share)

To solve this system, we can use substitution.

We'll solve the second equation for J and then substitute that expression into the first equation:

L = 2J - 250

L + 250 = 2J

L/2 + 125 = J

Now we can substitute that expression for J into the first equation and solve for L:

L + J = 950

L + L/2 + 125 = 950

3L/2 = 825L = 550

So, Lynn is paying $550 and Judy is paying $400.

Learn more about substitution visit:

brainly.com/question/1132161

#SPJ11

Select the correct answer.
Which of the following represents a factor from the expression given?
5(3x² +9x) -14
O 15x²
O5
O45x
O 70

Answers

The factor from the expression 5(3x² + 9x) - 14 is not listed among the options you provided. However, I can help you simplify the expression and identify the factors within it.

To simplify the expression, we can distribute the 5 to both terms inside the parentheses:

5(3x² + 9x) - 14 = 15x² + 45x - 14

From this simplified expression, we can identify the factors as follows:

15x²: This represents the term with the variable x squared.

45x: This represents the term with the variable x.

-14: This represents the constant term.

Therefore, the factors from the expression are 15x², 45x, and -14.

find the steady state solution of the heat conduction equation

Answers

The steady-state solution of the heat conduction equation refers to the temperature distribution that remains constant over time. This occurs when the heat flow into a system is balanced by the heat flow out of the system.

To find the steady-state solution of the heat conduction equation, follow these steps:

1. Set up the heat conduction equation: The heat conduction equation describes how heat flows through a medium and is typically given by the formula:

  q = -k * A * dT/dx,

  where q represents the heat flow, k is the thermal conductivity of the material, A is the cross-sectional area through which heat flows, and dT/dx is the temperature gradient in the direction of heat flow.

2. Assume steady-state conditions: In the steady-state, the temperature does not change with time, which means dT/dt = 0.

3. Simplify the heat conduction equation: Since dT/dt = 0, the equation becomes:

  q = -k * A * dT/dx = 0.

4. Apply boundary conditions: Boundary conditions specify the temperature at certain points or surfaces. These conditions are essential to solve the equation. For example, you might be given the temperature at two ends of a rod or the temperature at the surface of an object.

5. Solve for the steady-state temperature distribution: Depending on the specific problem, you may need to solve the heat conduction equation analytically or numerically. Analytical solutions involve techniques like separation of variables or Fourier series expansion. Numerical methods, such as finite difference or finite element methods, can be used to approximate the solution.

It's important to note that the exact method for solving the heat conduction equation depends on the specific problem and the boundary conditions given. However, the general approach is to set up the heat conduction equation, assume steady-state conditions, simplify the equation, apply the boundary conditions, and solve for the steady-state temperature distribution.

Know more about steady-state solution here:

https://brainly.com/question/15073499

#SPJ11

Find the value(s) of k such that lim, 1 f(x) exist where: +1 7x² - k²x, f(x) = 15+ 8kx² + k cos(1-x), if a < 1, if > 1,

Answers

The value(s) of k for which the limit of f(x) exists can be found by considering the behavior of f(x) as x approaches 1 from both sides. The limit will exist if the left-hand limit and the right-hand limit of f(x) are equal.

To find the left-hand limit, we evaluate f(x) as x approaches 1 from the left side (a < 1). Substituting x = 1 - h, where h approaches 0, into the expression for f(x), we get f(1 - h) = 15 + 8k(1 - h)² + k cos(h). As h approaches 0, the term 8k(1 - h)² becomes 8k, and the term k cos(h) approaches k. Therefore, the left-hand limit is 15 + 8k + k = 15 + 9k.

To find the right-hand limit, we evaluate f(x) as x approaches 1 from the right side (a > 1). Substituting x = 1 + h, where h approaches 0, into the expression for f(x), we get f(1 + h) = 15 + 8k(1 + h)² + k cos(1 - h). As h approaches 0, the term 8k(1 + h)² becomes 8k, and the term k cos(1 - h) approaches k. Therefore, the right-hand limit is 15 + 8k + k = 15 + 9k.

For the limit to exist, the left-hand limit and the right-hand limit must be equal. Therefore, we equate the expressions for the left-hand and right-hand limits: 15 + 9k = 15 + 9k. This equation holds true for all values of k. Hence, the limit of f(x) exists for all values of k.

Learn more about limit here:

https://brainly.com/question/12211820

#SPJ11

For a regular surface S = {(x, y, z) = R³ | x² + y² =}. Is a helix given as a(t)= cost sint √2 √2 √2, √2) a geodesic in S? Justify your answer.

Answers

The helix given by a(t) = (cos(t), sin(t), √2t) is not a geodesic on the surface S = {(x, y, z) ∈ R³ | x² + y² = 2}.

To determine whether the helix given by a(t) = (cos(t), sin(t), √2t) is a geodesic in the regular surface S = {(x, y, z) ∈ R³ | x² + y² = 2}, we need to check if the helix satisfies the geodesic equation.

The geodesic equation for a regular surface is given by:

d²r/dt² + Γᵢⱼᵏ dr/dt dr/dt = 0,

where r(t) = (x(t), y(t), z(t)) is the parametric equation of the curve, Γᵢⱼᵏ are the Christoffel symbols, and d/dt denotes the derivative with respect to t.

In order to determine if the helix is a geodesic, we need to calculate its derivatives and the Christoffel symbols for the surface S.

The derivatives of the helix are:

dr/dt = (-sin(t), cos(t), √2),

d²r/dt² = (-cos(t), -sin(t), 0).

Next, we need to calculate the Christoffel symbols for the surface S. The non-zero Christoffel symbols for this surface are:

Γ¹²¹ = Γ²¹¹ = 1 / √2,

Γ¹³³ = Γ³³¹ = -1 / √2.

Now, we can substitute the derivatives and the Christoffel symbols into the geodesic equation:

(-cos(t), -sin(t), 0) + (-sin(t)cos(t)/√2, cos(t)cos(t)/√2, 0) + (0, 0, 0) = (0, 0, 0).

Simplifying the equation, we get:

(-cos(t) - sin(t)cos(t)/√2, -sin(t) - cos²(t)/√2, 0) = (0, 0, 0).

For the geodesic equation to hold, the equation above should be satisfied for all values of t. However, if we plug in values of t, we can see that the equation is not satisfied for the helix.

Therefore, the helix given by a(t) = (cos(t), sin(t), √2t) is not a geodesic on the surface S = {(x, y, z) ∈ R³ | x² + y² = 2}.

To learn more about Christoffel symbols visit:

brainly.com/question/32574172

#SPJ11

Find the integral. Sxtan²7x dx axtan7x + Stan7x dx-²+c 49 2 Ob. b. xtan7x += Stan7xdx = x² + C O cxtan7x-Stan7x dx-x²+c O d. x²tan 7x + Stan 7xdx-x²+ C /

Answers

Therefore, the integral of xtan²(7x) dx is (1/7)tan(7x) + (1/2)x² + C.

The integral of xtan²(7x) dx can be evaluated as follows:

Let's rewrite tan²(7x) as sec²(7x) - 1, using the identity tan²(θ) = sec²(θ) - 1:

∫xtan²(7x) dx = ∫x(sec²(7x) - 1) dx.

Now, we can integrate term by term:

∫x(sec²(7x) - 1) dx = ∫xsec²(7x) dx - ∫x dx.

For the first integral, we can use a substitution u = 7x, du = 7 dx:

∫xsec²(7x) dx = (1/7) ∫usec²(u) du

= (1/7)tan(u) + C1,

where C1 is the constant of integration.

For the second integral, we can simply integrate:

∫x dx = (1/2)x² + C2,

where C2 is another constant of integration.

Putting it all together, we have:

∫xtan²(7x) dx = (1/7)tan(7x) + (1/2)x² + C,

where C = C1 + C2 is the final constant of integration.

To know more about integral,

https://brainly.com/question/32516156

#SPJ11

Change the third equation by adding to it 3 times the first equation. Give the abbreviation of the indicated operation. x + 4y + 2z = 1 2x - 4y 5z = 7 - 3x + 2y + 5z = 7 X + 4y + 2z = 1 The transformed system is 2x - 4y- - 5z = 7. (Simplify your answers.) + Oy+ O z = The abbreviation of the indicated operations is R 1+ I

Answers

To change the third equation by adding to it 3 times the first equation, we perform the indicated operation, which is R1 + 3R3 (Row 1 + 3 times Row 3).

Original system:

x + 4y + 2z = 1

2x - 4y + 5z = 7

-3x + 2y + 5z = 7

Performing the operation on the third equation:

R1 + 3R3:

x + 4y + 2z = 1

2x - 4y + 5z = 7

3(-3x + 2y + 5z) = 3(7)

Simplifying:

x + 4y + 2z = 1

2x - 4y + 5z = 7

-9x + 6y + 15z = 21

The transformed system after adding 3 times the first equation to the third equation is:

x + 4y + 2z = 1

2x - 4y + 5z = 7

-9x + 6y + 15z = 21

The abbreviation of the indicated operation is R1 + 3R3.

Learn more about linear equation here:

https://brainly.com/question/2030026

#SPJ11

Consider the vectors r, s, and't. Explain why (rx's) 't is possible while (rs) xt is meaningless. (2 marks)

Answers

In summary, the expression (rx's) 't is valid and meaningful, while (rs) xt is not. The former involves scalar multiplication and dot product operations, making it mathematically well-defined. On the other hand, the latter expression combines scalar multiplication with a cross product, which is not defined for vectors of the same dimension.

To further elaborate, in the expression (rx's) 't, the vectors r and s are first multiplied component-wise, resulting in a new vector. This new vector can then be dotted with the vector 't, as the dot product is applicable for vectors of the same dimension. The dot product operation combines the corresponding components of the two vectors, resulting in a scalar value.

In contrast, the expression (rs) xt combines scalar multiplication and cross product. However, the cross product is only defined for vectors in three-dimensional space. Since rs and xt are both vectors, they must have the same dimension to perform the cross product. As a result, the expression (rs) xt is meaningless because it attempts to combine operations that are incompatible for vectors of the same dimension.

To learn more about scalar multiplication, click here:

brainly.com/question/31372882

#SPJ11

Cost of Renting a Truck Ace Truck leases its 10-ft box truck at $40/day and $0.50/mi, whereas Acme Truck leases a similar truck at $35/day and $0.55/mi. (a) Find the daily cost of leasing from each company as a function of the number of miles driven. (Let f(x) represent the daily cost of leasing from Ace Truck, g(x) the daily cost of leasing from Acme Truck, and x the number of miles driven.) f(x) = g(x) =

Answers

The daily cost of leasing a truck from Ace Truck (f(x)) and Acme Truck (g(x)) can be calculated as functions of the number of miles driven (x).

To find the daily cost of leasing from each company as a function of the number of miles driven, we need to consider the base daily cost and the additional cost per mile. For Ace Truck, the base daily cost is $40, and the additional cost per mile is $0.50. Thus, the function f(x) represents the daily cost of leasing from Ace Truck and is given by f(x) = 40 + 0.5x.

Similarly, for Acme Truck, the base daily cost is $35, and the additional cost per mile is $0.55. Therefore, the function g(x) represents the daily cost of leasing from Acme Truck and is given by g(x) = 35 + 0.55x.

By plugging in the number of miles driven (x) into these formulas, you can calculate the daily cost of leasing a truck from each company. The values of f(x) and g(x) will depend on the specific number of miles driven.

Learn more about functions here:

https://brainly.com/question/31062578

#SPJ11

Find the equation of the parametric curve (i.e. Cartesian equation) for the following parametric equations. Identify the type of curve. (a) x = sint; y = csct, 0

Answers

The parametric equations x = sin(t) and y = csc(t) is: xy = 1

(a) This equation represents a rectangular hyperbola.

To find the Cartesian equation for the given parametric equations, we need to eliminate the parameter. Let's start with the given parametric equations:

x = sin(t)

y = csc(t)

We can rewrite the second equation using the reciprocal of sine:

y = 1/sin(t)

Now, we'll eliminate the parameter t by manipulating the equations. Since sine is the reciprocal of cosecant, we can rewrite the first equation as:

x = sin(t) = 1/csc(t)

Combining the two equations, we have:

x = 1/y

Cross-multiplying, we get:

xy = 1

Therefore, the Cartesian equation for the parametric equations x = sin(t) and y = csc(t) is:

xy = 1

This equation represents a rectangular hyperbola.

Learn more about parametric equations here:

https://brainly.com/question/30748687

#SPJ11

Consider the function f(x) = 2x³ + 30x² 54x + 5. For this function there are three important open intervals: (− [infinity], A), (A, B), and (B, [infinity]) where A and B are the critical numbers. Find A and B For each of the following open intervals, tell whether f(x) is increasing or decreasing. ( − [infinity], A): Decreasing (A, B): Increasing (B, [infinity]): Decreasing

Answers

The critical numbers for the given function f(x) = 2x³ + 30x² + 54x + 5 are A = -1 and B = -9. Also, it is obtained that (-∞, A): Decreasing, (A, B): Decreasing, (B, ∞): Increasing.

To find the critical numbers A and B for the function f(x) = 2x³ + 30x² + 54x + 5, we need to find the values of x where the derivative of the function equals zero or is undefined. Let's go through the steps:

Find the derivative of f(x):
f'(x) = 6x² + 60x + 54
Set the derivative equal to zero and solve for x:
6x² + 60x + 54 = 0
Divide the equation by 6 to simplify:
x² + 10x + 9 = 0
Factor the quadratic equation:
(x + 1)(x + 9) = 0
Setting each factor equal to zero:
x + 1 = 0 -> x = -1
x + 9 = 0 -> x = -9

So the critical numbers are A = -1 and B = -9.

Now let's determine whether the function is increasing or decreasing in each of the open intervals:

(-∞, A) = (-∞, -1):

To determine if the function is increasing or decreasing, we can analyze the sign of the derivative.

Substitute a value less than -1, say x = -2, into the derivative:

f'(-2) = 6(-2)² + 60(-2) + 54 = 24 - 120 + 54 = -42

Since the derivative is negative, f(x) is decreasing in the interval (-∞, -1).

(A, B) = (-1, -9):

Similarly, substitute a value between -1 and -9, say x = -5, into the derivative:

f'(-5) = 6(-5)² + 60(-5) + 54 = 150 - 300 + 54 = -96

The derivative is negative, indicating that f(x) is decreasing in the interval (-1, -9).

(B, ∞) = (-9, ∞):

Substitute a value greater than -9, say x = 0, into the derivative:

f'(0) = 6(0)² + 60(0) + 54 = 54

The derivative is positive, implying that f(x) is increasing in the interval (-9, ∞).

To summarize:

A = -1

B = -9

(-∞, A): Decreasing

(A, B): Decreasing

(B, ∞): Increasing

To learn more about derivative visit:

brainly.com/question/32963989

#SPJ11

Consider the integral 17 112+ (x² + y²) dx dy a) Sketch the region of integration and calculate the integral b) Reverse the order of integration and calculate the same integral again. (10) (10) [20]

Answers

a) The region of integration is a disk centered at the origin with a radius of √17,112. The integral evaluates to (4/3)π(√17,112)^3.

b) Reversing the order of integration results in the same integral value of (4/3)π(√17,112)^3.

a) To sketch the region of integration, we have a double integral over the entire xy-plane. The integrand, x² + y², represents the sum of squares of x and y, which is equivalent to the squared distance from the origin (0,0). The constant term, 17,112, is not relevant to the region but contributes to the final integral value.

The region of integration is a disk centered at the origin with a radius of √17,112. The integral calculates the volume under the surface x² + y² over this disk. Evaluating the integral yields the result of (4/3)π(√17,112)^3, which represents the volume of a sphere with a radius of √17,112.

b) Reversing the order of integration means integrating with respect to y first and then x. Since the region of integration is a disk symmetric about the x and y axes, the limits of integration for both x and y remain the same.

Switching the order of integration does not change the integral value. Therefore, the result obtained in part a, (4/3)π(√17,112)^3, remains the same when the order of integration is reversed.

Learn more about integration here:

https://brainly.com/question/31744185

#SPJ11

Write the sentence as an equation. Let the variable x represent the number. The sum of twice a number and 6 is 20

Answers

The sentence "The sum of twice a number and 6 is 20" can be written as an equation using variable x to represent the number. The equation is: 2x + 6 = 20.The value of the number represented by the variable x is 7,

In this equation, 2x represents twice the value of the number, and adding 6 to it gives the sum. This sum is equal to 20, which represents the stated condition in the sentence. By solving this equation, we can find the value of x that satisfies the given condition.

To solve the equation, we can start by subtracting 6 from both sides:

2x = 20 - 6.

Simplifying further:

2x = 14.

Finally, we divide both sides of the equation by 2:

x = 7.

Therefore, the value of the number represented by the variable x is 7, which satisfies the given equation.

To learn more about variable click here : brainly.com/question/15078630

#SPJ11

[[(x² + y)dx + (x - y²)dy], (C) is the segment of the curve y³ = x form the point A(0, 0) to the point B(1,1).

Answers

To calculate the line integral of the given differential form [(x² + y)dx + (x - y²)dy] along the curve C, which is the segment of the curve y³ = x from point A(0, 0) to point B(1, 1).

We can parametrize the curve and then evaluate the integral using the parametric representation.

The curve C can be parameterized as x = t³ and y = t, where t varies from 0 to 1. Substituting these parameterizations into the given differential form, we obtain the new form [(t^6 + t)3t^2 dt + (t³ - t^6)(dt)].

Next, we can simplify the expression and integrate it with respect to t over the range 0 to 1. This will give us the value of the line integral along the curve C from point A to point B.

Evaluating the integral will yield the final numerical result, which represents the line integral of the given differential form along the specified curve segment.

To know more about segment click here: brainly.com/question/12622418 #SPJ11

f(x, y) = -x² - y² + 4xy 4 4 Ans: local maxima at (-1,-1,2) and (1,1,2) and a saddle point at (0,0,0).

Answers

To find the critical points of the function f(x, y) = -x² - y² + 4xy, we need to find the points where the partial derivatives with respect to x and y are zero.

Taking the partial derivative of f(x, y) with respect to x:

∂f/∂x = -2x + 4y

Taking the partial derivative of f(x, y) with respect to y:

∂f/∂y = -2y + 4x

Setting both partial derivatives equal to zero and solving the resulting system of equations, we have:

-2x + 4y = 0 ...(1)

-2y + 4x = 0 ...(2)

From equation (1), we can rewrite it as:

2x = 4y

x = 2y ...(3)

Substituting equation (3) into equation (2), we get:

-2y + 4(2y) = 0

-2y + 8y = 0

6y = 0

y = 0

Substituting y = 0 into equation (3), we find:

x = 2(0)

x = 0

So the critical point is (0, 0).

To analyze the nature of the critical point, we need to evaluate the second partial derivatives of f(x, y) and compute the Hessian matrix.

Taking the second partial derivative of f(x, y) with respect to x:

∂²f/∂x² = -2

Taking the second partial derivative of f(x, y) with respect to y:

∂²f/∂y² = -2

Taking the mixed second partial derivative of f(x, y) with respect to x and y:

∂²f/∂x∂y = 4

The Hessian matrix is:

H = [∂²f/∂x² ∂²f/∂x∂y]

[∂²f/∂x∂y ∂²f/∂y²]

Substituting the values we obtained, the Hessian matrix becomes:

H = [-2 4]

[4 -2]

To determine the nature of the critical point (0, 0), we need to examine the eigenvalues of the Hessian matrix.

Calculating the eigenvalues of H, we have:

det(H - λI) = 0

det([-2-λ 4] = 0

[4 -2-λ])

(-2-λ)(-2-λ) - (4)(4) = 0

(λ + 2)(λ + 2) - 16 = 0

(λ + 2)² - 16 = 0

λ² + 4λ + 4 - 16 = 0

λ² + 4λ - 12 = 0

(λ - 2)(λ + 6) = 0

So the eigenvalues are λ = 2 and λ = -6.

Since the eigenvalues have different signs, the critical point (0, 0) is a saddle point.

In summary, the function f(x, y) = -x² - y² + 4xy has a saddle point at (0, 0) and does not have any local maxima.

Learn more about derivative here:

https://brainly.com/question/29144258

#SPJ11

safety data sheets are only required when there are 10 gallons true or false

Answers

Safety data sheets (SDS) are not only required when there are 10 gallons. This statement is false. SDS, also known as material safety data sheets (MSDS), are required for hazardous substances, regardless of the quantity.


Safety data sheets provide detailed information about the potential hazards, handling, and emergency measures for substances. They are required under various regulations, such as the Occupational Safety and Health Administration (OSHA) Hazard Communication Standard (HCS) in the United States.

The quantity of the substance does not determine the need for an SDS. For example, even if a small amount of a highly hazardous substance is present, an SDS is still necessary for safety reasons.

SDS help workers and emergency personnel understand the risks associated with a substance and how to handle it safely. It is essential to follow proper safety protocols and provide SDS for hazardous substances, regardless of the quantity.

To know more about Protocols visit.

https://brainly.com/question/28782148

#SPJ11

(a) Let X = { € C([0, 1]): x(0) = 0} with the sup norm and Y = {² €X : [ ²2 (1) dt = 0}. Then Y is a closed proper subspace of X. But there is no 1 € X with ||1|| = 1 and dist(1, Y) = 1. (Compare 5.3.) (b) Let Y be a finite dimensional proper subspace of a normed space X. Then there is some x € X with |||| = 1 and dist(x, Y) = 1. (Compare 5.3.) 5-13 Let Y be a subspace of a normed space X. Then Y is nowhere dense in X (that is, the interior of the closure of Y is empty) if and only if Y is not dense in X. If Y is a hyperspace in X, then Y is nowhere dense in X if and only if Y is closed in X.

Answers

In part (a), the mathematical spaces X and Y are defined, where Y is a proper subspace of X. It is stated that Y is a closed proper subspace of X. However, it is also mentioned that there is no element 1 in X such that its norm is 1 and its distance from Y is 1.

In part (a), the focus is on the properties of the subspaces X and Y. It is stated that Y is a closed proper subspace of X, meaning that Y is a subspace of X that is closed under the norm. However, it is also mentioned that there is no element 1 in X that satisfies certain conditions related to its norm and distance from Y.

In part (b), the statement discusses the existence of an element x in X that has a norm of 1 and is at a distance of 1 from the subspace Y. This result holds true specifically when Y is a finite-dimensional proper subspace of the normed space X.

In 5-13, the relationship between a subspace's density and nowhere denseness is explored. It is stated that if a subspace Y is nowhere dense in the normed space X, it implies that Y is not dense in X. Furthermore, if Y is a hyperspace (a subspace defined by a closed set) in X, then Y being nowhere dense in X is equivalent to Y being closed in X.

Learn more about density here:

https://brainly.com/question/6107689

#SPJ11

Aristotle's ethics reconcile reason and emotions in moral life. A True B False

Answers

The correct option is A . True.  Aristotle's ethics theories do reconcile reason and emotions in moral life.

Aristotle believed that human beings possess both rationality and emotions, and he considered ethics to be the study of how to live a good and virtuous life. He argued that reason should guide our emotions and desires and that the ultimate goal is to achieve eudaimonia, which can be translated as "flourishing" or "fulfillment."

To reach eudaimonia, one must cultivate virtues through reason, such as courage, temperance, and wisdom. Reason helps us identify the right course of action, while emotions can motivate and inspire us to act ethically.

Aristotle emphasized the importance of cultivating virtuous habits and finding a balance between extremes, which he called the doctrine of the "golden mean." For instance, courage is a virtue between cowardice and recklessness. Through reason, one can discern the appropriate level of courage in a given situation, while emotions provide the necessary motivation to act courageously.

Therefore, Aristotle's ethics harmonize reason and emotions by using reason to guide emotions and cultivate virtuous habits, leading to a flourishing moral life.

Learn more about ethical theories here:

https://brainly.com/question/34356599

#SPJ12

. Solve the given differential equation by using an appropriate substitution. The DE is homogeneous -y dx (x+√xy) dy-0 Need Help? ZILLDIFFEQMODAP11 2.5.011.MI. DETAILS Solve the given initial-value problem. The DE is homogeneous.. x²-y)-x²³(1-3 dy Need Help? Rad Mater 6 [-/1 Points] DETAILS ZILLDIFFEQMODAP11 2.5.012 Solve the given initial-value problem. The DE is homogeneous -xy, x(-1)-3 5. [-/1 Points] MY NOTES MY NOTES MY NOTES ASK YOUR TEACHER ASK YOUR TEACHER ASK YOUR TEACHER PRACTICE ANOTHER PRACTICE AND THER

Answers

Firstly, we have to solve the given differential equation by using an appropriate substitution.The given differential equation is:-y dx (x+√xy) dy-0

To solve this, we will make the following substitution: v= √x  ySo, y= v²/x dx=2v dv/x

Now, putting these substitutions into the differential equation:

-v² dv/x + (√x v) (2v/x) dx=0v² dv + 2v³ dx=0

Separating the variables and integrating, we get:

v²/3= -v⁴/4 + C (where C is a constant of integration)

Hence, the solution of the given differential equation is:v²/3= -v⁴/4 + C (where C is a constant of integration)

Secondly, we are required to solve the given initial-value problem.

The DE is homogeneous.x²-y)-x²³(1-3 dy

The given differential equation is:x²-y)-x²³(1-3 dy

Since the given DE is homogeneous, we can make the substitution y= ux. Hence, dy= udx + xdu

Now, putting these substitutions into the differential equation:

x² - ux - x⁴(1-3 u)du=0

Separating the variables and integrating, we get:

∫dx/x³ - ∫(u + (1/3)) du= ln|x| + C (where C is a constant of integration)

Hence, the solution of the given differential equation is:(x²/2) - (y/x) - (x⁴/3) (1-3y/x) = ln|x| + C (where C is a constant of integration)

Now, let's solve the initial-value problem. The given initial conditions are:x=-1 and y=5

We have the following equation: (x²/2) - (y/x) - (x⁴/3) (1-3y/x) = ln|x| + C

Putting the given values of x and y, we get:-½ -5= ln|-1| + C

Thus, the constant of integration C is: C= -11/2

Therefore, the solution of the given initial-value problem is:(x²/2) - (y/x) - (x⁴/3) (1-3y/x) = ln|x| - 11/2

Hence, we have solved the given differential equations and initial-value problems by using the appropriate substitution. We used the substitution method to transform the given DE into a form that is easier to integrate.

To know more about differential equation visit:

brainly.com/question/32524608

#SPJ11

If p is the hypothesis of a conditional statement and q is the conclusion, which is represented by q→p?
O the original conditional statement
O the inverse of the original conditional statement
O the converse of the original conditional statement
O the contrapositive of the original conditional statement

Answers

Answer:

  (c)  the converse of the original conditional statement

Step-by-step explanation:

If a conditional statement is described by p→q, you want to know what is represented by q→p.

Conditional variations

For the conditional p→q, the variations are ...

converse: q→pinverse: p'→q'contrapositive: q'→p'

As you can see from this list, ...

  the converse of the original conditional statement is represented by q→p, matching choice C.

__

Additional comment

If the conditional statement is true, the contrapositive is always true. The inverse and converse may or may not be true.

<95141404393>

Find the equation of the tangent line to the graph of 5. Find the derivative of y = f(x) = √sin √x² +9 18-22 = 1 at (xo,yo).

Answers

The equation of the tangent line to the graph of y = √(sin(√(x^2 + 9))) at the point (xo, yo) is y = f'(xo)(x - xo) + yo, where f'(xo) is the derivative of f(x) evaluated at xo.

To find the equation of the tangent line, we first need to find the derivative of the function f(x) = √(sin(√(x^2 + 9))). Applying the chain rule, we have:

f'(x) = (1/2) * (sin(√(x^2 + 9)))^(-1/2) * cos(√(x^2 + 9)) * (1/2) * (x^2 + 9)^(-1/2) * 2x

Simplifying this expression, we get:

f'(x) = x * cos(√(x^2 + 9)) / (√(x^2 + 9) * √(sin(√(x^2 + 9))))

Next, we evaluate f'(xo) at the given point (xo, yo). Plugging xo into the derivative expression, we obtain f'(xo). Finally, using the point-slope form of a line, we can write the equation of the tangent line:

y = f'(xo)(x - xo) + yo

In this equation, f'(xo) represents the slope of the tangent line, (x - xo) represents the difference in x-values, and yo represents the y-coordinate of the given point on the graph.

Learn more about tangent here:

https://brainly.com/question/31433124

#SPJ11

Based on the data below, what is the ΣXY ? Individual X Y 4 123 + 4 O a. 529 O b. 575 O c. 151 O d. 256 597 456 00 8

Answers

The value of ΣXY based on the data is 575.

To calculate ΣXY, we need to multiply each value of X with its corresponding value of Y and then sum them up. Let's perform the calculations:

For the first set of values, X = 4 and Y = 123. So, XY = 4 * 123 = 492.

For the second set of values, X = 4 and Y = 8. So, XY = 4 * 8 = 32.

Now, let's add up the individual XY values:

ΣXY = 492 + 32 = 524.

Therefore, the value of ΣXY is 524.

Learn more about value here:

https://brainly.com/question/14316282

#SPJ11

If the plane r = (-1,2,1) + s(3,4,0) + t(0,1,-1), s, TER: What is the cartesian equation of the plane? If the point is D(6,-9,10), Is it on the plane?

Answers

The Cartesian equation of the plane is: -4x + 3y + 3z + 21 = 0

The equation holds true, the point D(6, -9, 10) lies on the plane.

To find the Cartesian equation of the plane, we need to determine the coefficients of the variables x, y, and z in the equation of the plane.

The plane is defined by the point (-1, 2, 1) and the direction vectors (3, 4, 0) and (0, 1, -1).

To find the normal vector of the plane, we can take the cross product of the two direction vectors:

N = (3, 4, 0) × (0, 1, -1)

N = (4 * (-1) - 0 * 1, -(3 * (-1) - 0 * 0), 3 * 1 - 4 * 0)

N = (-4, 3, 3)

The Cartesian equation of the plane can be written as:

-4x + 3y + 3z + D = 0

To determine the value of D, we substitute the coordinates of the given point D(6, -9, 10) into the equation:

-4 * 6 + 3 * (-9) + 3 * 10 + D = 0

-24 - 27 + 30 + D = 0

-21 + D = 0

D = 21

Therefore, the Cartesian equation of the plane is:

-4x + 3y + 3z + 21 = 0

To check if the point D(6, -9, 10) is on the plane, we substitute its coordinates into the equation:

-4 * 6 + 3 * (-9) + 3 * 10 + 21 = 0

-24 - 27 + 30 + 21 = 0

0 = 0

Since the equation holds true, the point D(6, -9, 10) lies on the plane.

Learn more about cartesian equation

https://brainly.com/question/32622552

#SPJ11

The Cartesian equation of the plane is: -4x + 3y + 3z + 21 = 0

The equation holds true, the point D(6, -9, 10) lies on the plane.

How to find the Cartesian Equation?

In order to get the Cartesian equation of the plane, we need to find the coefficients of the variables x, y, and z that are in the equation of the plane.

We are told that the plane is the plane r = (-1,2,1) + s(3,4,0) + t(0,1,-1)

Thus, the point of the plane is (-1, 2, 1) and its' direction vectors (3, 4, 0) and (0, 1, -1).

We will get the normal vector of the plane, by finding the product of the two direction vectors as:

N = (3, 4, 0) × (0, 1, -1)

N = (4 * (-1) - 0 * 1, -(3 * (-1) - 0 * 0), 3 * 1 - 4 * 0)

N = (-4, 3, 3)

The Cartesian equation of the plane is expressed as:

-4x + 3y + 3z + D = 0

To find the value of D, we will substitute the coordinates of the given point D(6, -9, 10) into the equation to get:

(-4 * 6) + (3 * (-9)) + (3 * 10) + D = 0

-24 - 27 + 30 + D = 0

-21 + D = 0

D = 21

Therefore, the Cartesian equation of the plane is expressed as:

-4x + 3y + 3z + 21 = 0

To check if the point D(6, -9, 10) is on the plane, we substitute its coordinates into the equation:

(-4 * 6) + (3 * (-9)) + (3 * 10) + 21 = 0

-24 - 27 + 30 + 21 = 0

0 = 0

Due to the fact that the equation holds true, the point D(6, -9, 10) is said to lye on the plane.

Read more about Cartesian Equation at: https://brainly.com/question/31989985

#SPJ4

: The electronic circuit in vacuum tubes has been modelled as Van der Pol equation of d²y dt² - µ(y² – 1) +y dy dt 0, μ > 0. The parameter represents a damping indicator and y(t) is a voltage across the capacitor at time, t. Suppose that µ = 0.5 with boundary conditions y(0) = 0 and y(2) = 1. - = (a) (20 points) Given the first initial guess zo = 0.3 and the second initial guess zo 0.75, approximate the solution of y(t) using the shooting method with a step size of h = 0.4. =

Answers

Using the shooting method h = 0.4, the solution of the Van der Pol equation with boundary conditions y(0) = 0 and y(2) = 1. zo = 0.3 and zo = 0.75, we can determine the approximate solution for y(t).

The shooting method is a numerical technique used to solve boundary value problems by transforming them into initial value problems. In this case, we are solving the Van der Pol equation, which models an electronic circuit in vacuum tubes.

To approximate the solution, we start with an initial guess for the derivative of y, zo, and integrate the Van der Pol equation numerically using a step size of h = 0.4. We compare the value of y(2) obtained from the integration with the desired boundary condition of y(2) = 1.

If the obtained value of y(2) does not match the desired boundary condition, we adjust the initial guess zo and repeat the integration. We continue this process until we find an initial guess that yields a solution that satisfies the boundary conditions within the desired tolerance.

By using the shooting method with initial guesses zo = 0.3 and zo = 0.75, and iterating the integration process with a step size of h = 0.4, we can approximate the solution of the Van der Pol equation with the given boundary conditions. The resulting solution will provide an estimate of the voltage across the capacitor, y(t), for the specified time range.

Learn more about shooting method here:
https://brainly.com/question/32199492

#SPJ11

Find the distance between the given points. (1, 3, -4), (-5, 6, -2)

Answers

To find the distance between two points in three-dimensional space, we can use the distance formula:

Distance = √[(x₂ - x₁)² + (y₂ - y₁)² + (z₂ - z₁)²]

Given the points (1, 3, -4) and (-5, 6, -2), we can substitute the coordinates into the formula:

Distance = √[(-5 - 1)² + (6 - 3)² + (-2 - (-4))²]

        = √[(-6)² + 3² + 2²]

        = √[36 + 9 + 4]

        = √49

        = 7

Therefore, the distance between the points (1, 3, -4) and (-5, 6, -2) is 7 units.

learn more about distance formula here:

https://brainly.com/question/25841655

#SPJ11

. |√3²=4 dx Hint: You may do trigonomoteric substitution

Answers

Actually, the statement √3² = 4 is not correct. The square root of 3 squared (√3²) is equal to 3, not 4.

The square root (√) of a number is a mathematical operation that gives you the value which, when multiplied by itself, equals the original number. In this case, the number is 3 squared, which is 3 multiplied by itself.

When we take the square root of 3², we are essentially finding the value that, when squared, gives us 3². Since 3² is equal to 9, we need to find the value that, when squared, equals 9. The positive square root of 9 is 3, which means √9 = 3.

Therefore, √3² is equal to the positive square root of 9, which is 3. It is essential to recognize that the square root operation results in the principal square root, which is the positive value. In this case, there is no need for trigonometric substitution as the calculation involves a simple square root.

Using trigonometric substitution is not necessary in this case since it involves a simple square root calculation. The square root of 3 squared is equal to the absolute value of 3, which is 3.

Therefore, √3² = 3, not 4.

To know more about statement,

https://brainly.com/question/29045506

#SPJ11

T/F Top 40 radio played the top 40 songs repeatedly every 24 hours.

Answers

The top 40 radio stations historically played the top 40 songs repeatedly every 24 hours to engage listeners and maximize popularity, hence true.

True, top 40 radio stations traditionally played the top 40 songs repeatedly every 24 hours.

The term "top 40" refers to a format in radio broadcasting where the station plays the current 40 most popular songs.

This format originated in the 1950s and gained popularity in the 1960s and 1970s.
In the past, top 40 radio stations used to receive weekly music charts from record companies, which ranked the popularity of songs based on sales and airplay.

The station would then select the top 40 songs and create a playlist that would be repeated throughout the day.
The repetition of the top 40 songs every 24 hours was done to maximize listener engagement.

By playing the most popular songs more frequently, radio stations aimed to attract and retain a larger audience.

This strategy helped them maintain high ratings and generate revenue through advertising.
However, it is important to note that the radio landscape has evolved over time.

With the rise of digital music platforms and personalized streaming services, the traditional top 40 radio format has faced challenges.

Today, radio stations may have more varied playlists and offer different genres of music to cater to diverse listener preferences.
It's worth noting that the radio industry has undergone changes in recent years to adapt to evolving listener demands and the emergence of new technologies.

For more related questions on maximize popularity:

https://brainly.com/question/30033752

#SPJ8

Other Questions
Do the provisions of the Fourteenth Amendment apply to professional sports league?a. Yes, because they are state actorsb. Yes, because they get governmental fundingc. No, because they are not state actorsd. No, because they are not legal persons f(xy) = x y let is it homogenuos? IF (yes), which degnu? What is the difference between hard and soft components of a financial management system why do you need to review the effectiveness of your financial management processes?kindly answer in 100 words (use your words please) One of the advantages that group living offers to human evolution is:a. ensured safety and cooperation.b. increased self-esteem.c. the means to end financial instability. the final decision to hire an applicant usually belongs to: All of the following would likely be considered investments for income except:a. government bonds.b. dividend-paying stocks.c. stock options.d. preferred stock. Compare the statement of revenues, expenditures, and changes in fund balance with the schedule of revenues, expenditures, and changes in fund balance - budget and actual, providing both similarities and differences. Project S requires an initial outlay at t = 0 of $13,000, and its expected cash flows would be $5,000 per year for 5 years. Mutually exclusive Project L requires an initial outlay at t = 0 of $49,000, and its expected cash flows would be $11,450 per year for 5 years. If both projects have a WACC of 15%, which project would you recommend?Select the correct answer.a. Both Projects S and L, since both projects have NPV's > 0. b. Both Projects S and L, since both projects have IRR's > 0. c. Project L, since the NPVL > NPVS. d. Neither Project S nor L, since each project's NPV < 0. The economy of Eastlandia in 2021: C=2870+ 0.5YD 1=1360 T = TR=G=NX = 0 The equilibrium real GDP in 2021 is $ Do not enter the $ sign. Round to 2 decimal places if required. Choose a product or service that you would like to sell (College Services, Life Insurance, Health Insurance, Financial Services. Investments, Used Cars. etc).Base your Dialogue on the example of the Questioning Process.please explain one product fully. Scenario - You have been chosen by your director to lead a project of Marketing Research for your College in order to provide extra information to help the board of directors make a more informed decision. The board of directors at your college is reviewing a proposal to offer College Diplomas delivered completely online. The logic behind this proposal is that current students will find this idea attractive as they favor convenience of working online over the experience quality which is higher in classroom lectures and exams. You are required to conduct a research of your choice to help validating or disprove the claims of the proposed idea. Please answer the following Questions: 1. What is the n this Scenario? 2. What is the Marketing Research Objective in this Scenario? 3. What is the nature of the research that can help achieving the Marketing Research Objective in this Scenario? (1 Marks) state anxiety is a ______ variable and trait anxiety is a ______ variable. I am looking to guesstimate an ROI for an EV motorcycle by Tesla - I am lost.Create and record an elevator pitch for your new product or service using your project outline as a guide. In your pitch, be sure to include the following: Justification: Justify your suggestion based on the numbers. o What will be the revenue gain? o Speculate on an ROI that justifies the project for investors and/or senior management. Enhancing the mission: o Support your position with information and data from the company's 10K (use resources like Marketline.com, Yahoo Finance, and investor relations pages within the companys website).I am lost on how to support my position with Teslas 10 k with a made-up product. Let me know if you need more information.Thank you Nash Manufacturing operates a small factory building. Recently, the company paid some amounts related to its property, plant, and equipment.Nash paid $49,200 to replace part of the factory floor. The floor had been capitalized as part of the factory building when it was purchased ten years previously and was not considered a separate component. When purchased, the building had been assumed to have a 30-year useful life and was being depreciated on a straight-line basis. At the time of the floor replacement, the building had been depreciated for 10 years. Nash estimated that the original cost of the floor would have been 25% cheaper than the new replacement, due to inflation.Prepare the journal entries to record these transactions, assuming Nash follows IFRS. A loan is amortized by level payments every February 1. plus a smaller final payment The borrower notices that the interest paid in the February I. 2004 payment was 103.00, and the interest in the February 1, 2005 payment win be 98.00. The rate of interest on the loan is i =.08. Find the principal repaid in the 2005 payment. Find the date and amount of the smaller final payment made one year after the last regular payment. In the article "Managing Oneself," author Peter F. Drucker states that "What one does well - even very well and successfully - may not fit with ones value system". How do your values play a role in the groups, organizations, or career opportunities you decide to be a part of? Is it important for your values to be aligned to that of that particular organization? Why or why not? How might this relate to your overall purpose? Use content from the article to support your response. the act of obtaining physical possession or control of anothers property is known as A hole of radius 3 is drilled through the diameter of a sphere of radius 5. For this assignment, we will be finding the volume of the remaining part of the sphere. (a) The drilled-out sphere can be thought of as a solid of revolution by taking the region bounded between y = 25-22 and the y=3 and revolving it about the z-axis. Sketch a graph of the region (two-dimensional) that will give the drilled-out sphere when revolved about the z-axis. Number the axes so that all the significant points are visible. Shade in the region and indicate the axis of revolution on the graph. (b) Based on your answer in part (a), use the washer method to express the volume of the drilled- out sphere as an integral. Show your work. (c) Evaluate the integral you found in part (b) to find the volume of the sphere with the hole removed. Show your work. Arrows B and C Question 8 In sequential order, the four phases of the business cycle are trough, peak, expansion, contraction. peak, contraction, trough, expansion. expansion, contraction, peak, trough. contraction, trough, peak, expansion. Question 9 Business fluctuations in the United States are Osmooth and steady. predictable. controllable. irregular - A school starts at 7.50 am and finishes at 2.45 pm. How long is the school day?